1
|
Musa M, Chukwuyem E, Enaholo E, Esekea I, Iyamu E, D'Esposito F, Tognetto D, Gagliano C, Zeppieri M. Amniotic Membrane Transplantation: Clinical Applications in Enhancing Wound Healing and Tissue Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39514052 DOI: 10.1007/5584_2024_834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Chronic wounds and non-healing tissue defects pose significant clinical challenges, necessitating innovative therapeutic approaches. A comprehensive literature review of amniotic membrane transplantation for wound healing and tissue repair evaluates the efficacy and safety of amniotic membrane transplantation in enhancing wound healing and tissue repair. Amniotic membranes promote wound closure and reduce inflammation and scarring via abundant growth factors, cytokines, and extracellular matrix components, which foster conducive environments for tissue regeneration. Amniotic membrane transplantation is effective in various medical disciplines, including ophthalmology, dermatology, and orthopedics. Low immunogenicity and anti-microbial properties ensure their safe application. Amniotic membrane transplantation offers a promising therapeutic approach for wound healing and tissue repair, and further research is warranted to explore its regenerative potential fully.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin City, Nigeria
- Department of Ophthalmology, Centre for Sight Africa, Nkpor, Nigeria
| | - Ekele Chukwuyem
- Department of Ophthalmology, Centre for Sight Africa, Nkpor, Nigeria
| | - Ehimare Enaholo
- Department of Ophthalmology, Centre for Sight Africa, Nkpor, Nigeria
| | - Ifeoma Esekea
- Department of Optometry, University of Benin, Benin City, Nigeria
| | - Eghosasere Iyamu
- Department of Optometry, University of Benin, Benin City, Nigeria
| | - Fabiana D'Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London, UK
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Daniele Tognetto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna "Kore", Piazza dell'Università, Enna, Italy
- Mediterranean Foundation "G.B. Morgagni", Catania, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine, Italy.
| |
Collapse
|
2
|
Li Q, Sun Y, Zhao H, Zhang F, Guo Y, Chen X, Zhao G. Structure and properties of the acellular porcine cornea irradiated with 60Co-γ and electron beam and its histocompatibility. J Biomed Mater Res A 2024; 112:825-840. [PMID: 38158889 DOI: 10.1002/jbm.a.37663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 08/15/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Acellular porcine cornea (APC) has been used in corneal transplantation and treatment of the corneal diseases. Sterilization is a key step before the application of graft, and irradiation is one of the most commonly used methods. In this paper, APC was prepared by the physical freeze-thawing combined with biological enzymes, and the effects of the electron beam (E-beam) and cobalt 60 (60Co-γ) at the dose of 15 kGy on the physicochemical properties, structure, immunogenicity, and biocompatibility of the APC were investigated. After decellularization, the residual DNA was 20.86 ± 1.02 ng/mg, and the α-Gal clearance rate was more than 99%. Irradiation, especially the 60Co-γ, reduced the cornea's transmittance, elastic modulus, enzymatic hydrolysis rate, swelling ratio, and cross-linking degree. Meanwhile, the diameter and spacing of the collagen fibers increased. In the rat subcutaneous implantation, many inflammatory cells appeared in the unirradiated APC, while the irradiated had good histocompatibility, but the degradation was faster. The lamellar keratoplasty in rabbits indicated that compared to the E-beam, the 60Co-γ damaged the chemical bond of collagen to a larger extent, reduced the content of GAGs, and prolonged the complete epithelization of the grafts. The corneal edema was more serious within 1 month after the surgery. After 2 months, the thickness of the APC with the two irradiation methods tended to be stable, but that in the 60Co-γ group became thinner. The pathological results showed that the collagen structure was looser and the pores were larger, indicating the 60Co-γ had a more extensive effect on the APC than the E-beam at 15 kGy.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Yajun Sun
- Qingdao Chunghao Tissue Engineering Co., Ltd., Qingdao, Shandong, China
| | - Haibin Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Fan Zhang
- Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yu Guo
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Xin Chen
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Guoqun Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Song L, Yang X, Cui H. Plasma fibrin membranes loaded with bone marrow mesenchymal stem cells and corneal epithelial cells promote corneal injury healing via attenuating inflammation and fibrosis after corneal burns. Biomater Sci 2023; 11:5970-5983. [PMID: 37486330 DOI: 10.1039/d3bm00713h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The shortage of corneal donors has prompted the development of tissue-engineered corneal grafts as an alternative solution. Currently, amniotic membranes with good biocompatibility are widely used as scaffolds for loading stem cells in the treatment of corneal injury. However, this approach has its limitations. In this study, BMSCs were induced to differentiate into corneal epithelial cells via direct contact co-culture, and platelet-poor plasma was used to prepare fibrin gels, which were compressed to remove excess liquid and then lyophilized to obtain plasma fibrin membranes (PFMs). A tissue-engineered corneal implant with PFMs as a scaffold loaded with BMSCs and corneal epithelial cells was designed and obtained. Scanning electron microscopy showed that PFMs have a uniformly distributed microporous surface that facilitates cell attachment and nutrient transport. The rheological results showed that the freeze-dried and rehydrated PFMs were more rigid than fresh membranes, which makes it easier to use them for transplantation after cell loading. The experimental results of a rat alkali burn cornea injury model showed that PFMs effectively reduced the inflammatory reaction, inhibited fibrosis, and accelerated the healing of corneal wounds. It was also found that some of the BMSCs were successfully implanted into the corneal injury site in rats and differentiated into corneal epithelial cells. These results demonstrate the potential of tissue-engineered corneal implants using BMSCs and corneal epithelial cells and PFMs as scaffolds as a new treatment option for corneal injury.
Collapse
Affiliation(s)
- Liqun Song
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| | - Xue Yang
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| | - Huifei Cui
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- National Glycoengineering Research Center, Cheeloo College of Medicine, Shandon University, Jinan, 250012, Shandong, China
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry end Glycobiology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| |
Collapse
|
4
|
Raveendran R, Prabakaran L, Senthil R, Yesudhason BV, Dharmalingam S, Sathyaraj WV, Atchudan R. Current Innovations in Intraocular Pressure Monitoring Biosensors for Diagnosis and Treatment of Glaucoma-Novel Strategies and Future Perspectives. BIOSENSORS 2023; 13:663. [PMID: 37367028 DOI: 10.3390/bios13060663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
Biosensors are devices that quantify biologically significant information required for diverse applications, such as disease diagnosis, food safety, drug discovery and detection of environmental pollutants. Recent advancements in microfluidics, nanotechnology and electronics have led to the development of novel implantable and wearable biosensors for the expedient monitoring of diseases such as diabetes, glaucoma and cancer. Glaucoma is an ocular disease which ranks as the second leading cause for loss of vision. It is characterized by the increase in intraocular pressure (IOP) in human eyes, which results in irreversible blindness. Currently, the reduction of IOP is the only treatment used to manage glaucoma. However, the success rate of medicines used to treat glaucoma is quite minimal due to their curbed bioavailability and reduced therapeutic efficacy. The drugs must pass through various barriers to reach the intraocular space, which in turn serves as a major challenge in glaucoma treatment. Rapid progress has been observed in nano-drug delivery systems for the early diagnosis and prompt therapy of ocular diseases. This review gives a deep insight into the current advancements in the field of nanotechnology for detecting and treating glaucoma, as well as for the continuous monitoring of IOP. Various nanotechnology-based achievements, such as nanoparticle/nanofiber-based contact lenses and biosensors that can efficiently monitor IOP for the efficient detection of glaucoma, are also discussed.
Collapse
Affiliation(s)
- Rubiya Raveendran
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Lokesh Prabakaran
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Rethinam Senthil
- Department of Pharmacology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India
| | - Beryl Vedha Yesudhason
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Sankari Dharmalingam
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Weslen Vedakumari Sathyaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| |
Collapse
|
5
|
Li M, Tian W, Yu Y, Zhang Y, Zhang B, Xu J, Wang J. Effect of degumming degree on the structure and tensile properties of RSF/RSS composite films prepared by one-step extraction. Sci Rep 2023; 13:6689. [PMID: 37095290 PMCID: PMC10126198 DOI: 10.1038/s41598-023-33844-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/19/2023] [Indexed: 04/26/2023] Open
Abstract
Regenerated silk fibroin (RSF) and regenerated sericin (RSS) have attracted much attention for tissue engineering due to excellent biocompatibility and controllable degradation. However, pure RSF films prepared by existing methods are brittle, which limits applications in the field of high-strength and/or flexible tissues (e.g. cornea, periosteum and dura). A series of RSF/RSS composite films were developed from solutions prepared by dissolving silks with different degumming rates. The molecular conformation, crystalline structure and tensile properties of the films and the effect of sericin content on the structure and properties were investigated. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction results revealed more β-sheets in films prepared by boiling water degumming than in Na2CO3-degummed RSFC film. Analysis of mechanical properties showed that the breaking strength (3.56 MPa) and elongation (50.51%) of boiling water-degummed RSF/RSS film were significantly increased compared with RSFC film (2.60 MPa and 32.31%), and the flexibility of films could be further improved by appropriately reducing the degumming rate.
Collapse
Affiliation(s)
- Meng Li
- College of Textile and Clothing Engineering, Soochow University, No. 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, China
| | - Wei Tian
- College of Textile and Clothing Engineering, Soochow University, No. 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, China
| | - Yangxiao Yu
- College of Textile and Clothing Engineering, Soochow University, No. 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, China
| | - Yao Zhang
- College of Textile and Clothing Engineering, Soochow University, No. 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, China
| | - Boyu Zhang
- College of Textile and Clothing Engineering, Soochow University, No. 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, China
| | - Jianmei Xu
- College of Textile and Clothing Engineering, Soochow University, No. 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, China
| | - Jiannan Wang
- College of Textile and Clothing Engineering, Soochow University, No. 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
6
|
Ra’oh NA, Man RC, Fauzi MB, Ghafar NA, Buyong MR, Hwei NM, Halim WHWA. Recent Approaches to the Modification of Collagen Biomatrix as a Corneal Biomatrix and Its Cellular Interaction. Polymers (Basel) 2023; 15:polym15071766. [PMID: 37050380 PMCID: PMC10097332 DOI: 10.3390/polym15071766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Over the last several decades, numerous modifications and advancements have been made to design the optimal corneal biomatrix for corneal epithelial cell (CECs) or limbal epithelial stem cell (LESC) carriers. However, researchers have yet to discover the ideal optimization strategies for corneal biomatrix design and its effects on cultured CECs or LESCs. This review discusses and summarizes recent optimization strategies for developing an ideal collagen biomatrix and its interactions with CECs and LESCs. Using PRISMA guidelines, articles published from June 2012 to June 2022 were systematically searched using Web of Science (WoS), Scopus, PubMed, Wiley, and EBSCOhost databases. The literature search identified 444 potential relevant published articles, with 29 relevant articles selected based on inclusion and exclusion criteria following screening and appraising processes. Physicochemical and biocompatibility (in vitro and in vivo) characterization methods are highlighted, which are inconsistent throughout various studies. Despite the variability in the methodology approach, it is postulated that the modification of the collagen biomatrix improves its mechanical and biocompatibility properties toward CECs and LESCs. All findings are discussed in this review, which provides a general view of recent trends in this field.
Collapse
Affiliation(s)
- Nur Amalia Ra’oh
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Rohaina Che Man
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Norzana Abd Ghafar
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Muhamad Ramdzan Buyong
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ng Min Hwei
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Wan Haslina Wan Abdul Halim
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
7
|
Chen P, Park KH, Zhang L, Lucas AR, Chandler HL, Zhu H. Mouse Corneal Transplantation. Methods Mol Biol 2023; 2597:19-24. [PMID: 36374411 DOI: 10.1007/978-1-0716-2835-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Corneal transplantation is the most common form of organ transplantation worldwide. Transplant survival depends on various factors, many of which are not fully understood. Due to the existence of many genetically defined strains, mouse models of corneal transplantation are most commonly used. Here, we describe a method for a mouse corneal transplantation.
Collapse
Affiliation(s)
- Peng Chen
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ki Ho Park
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Liqiang Zhang
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Alexandra R Lucas
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | | | - Hua Zhu
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
8
|
Orash Mahmoud Salehi A, Heidari-Keshel S, Poursamar SA, Zarrabi A, Sefat F, Mamidi N, Behrouz MJ, Rafienia M. Bioprinted Membranes for Corneal Tissue Engineering: A Review. Pharmaceutics 2022; 14:2797. [PMID: 36559289 PMCID: PMC9784133 DOI: 10.3390/pharmaceutics14122797] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Corneal transplantation is considered a convenient strategy for various types of corneal disease needs. Even though it has been applied as a suitable solution for most corneal disorders, patients still face several issues due to a lack of healthy donor corneas, and rejection is another unknown risk of corneal transplant tissue. Corneal tissue engineering (CTE) has gained significant consideration as an efficient approach to developing tissue-engineered scaffolds for corneal healing and regeneration. Several approaches are tested to develop a substrate with equal transmittance and mechanical properties to improve the regeneration of cornea tissue. In this regard, bioprinted scaffolds have recently received sufficient attention in simulating corneal structure, owing to their spectacular spatial control which produces a three-cell-loaded-dimensional corneal structure. In this review, the anatomy and function of different layers of corneal tissue are highlighted, and then the potential of the 3D bioprinting technique for promoting corneal regeneration is also discussed.
Collapse
Affiliation(s)
- Amin Orash Mahmoud Salehi
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnologico de Monterrey, Monterrey 64849, NL, Mexico
| | - Saeed Heidari-Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1434875451, Iran
| | - Seyed Ali Poursamar
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan 8174673441, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK
- Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford BD7 1DP, UK
| | - Narsimha Mamidi
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnologico de Monterrey, Monterrey 64849, NL, Mexico
| | - Mahmoud Jabbarvand Behrouz
- Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran 1985717443, Iran
| | - Mohammad Rafienia
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan 8174673441, Iran
| |
Collapse
|
9
|
Das B, Nayak AK, Mallick S. Lipid-based nanocarriers for ocular drug delivery: An updated review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Yao X, Liu Y, Chu Z, Jin W. Membranes for the life sciences and their future roles in medicine. Chin J Chem Eng 2022; 49:1-20. [PMID: 35755178 PMCID: PMC9212902 DOI: 10.1016/j.cjche.2022.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 01/12/2023]
Abstract
Since the global outbreak of COVID-19, membrane technology for clinical treatments, including extracorporeal membrane oxygenation (ECMO) and protective masks and clothing, has attracted intense research attention for its irreplaceable abilities. Membrane research and applications are now playing an increasingly important role in various fields of life science. In addition to intrinsic properties such as size sieving, dissolution and diffusion, membranes are often endowed with additional functions as cell scaffolds, catalysts or sensors to satisfy the specific requirements of different clinical applications. In this review, we will introduce and discuss state-of-the-art membranes and their respective functions in four typical areas of life science: artificial organs, tissue engineering, in vitro blood diagnosis and medical support. Emphasis will be given to the description of certain specific functions required of membranes in each field to provide guidance for the selection and fabrication of the membrane material. The advantages and disadvantages of these membranes have been compared to indicate further development directions for different clinical applications. Finally, we propose challenges and outlooks for future development.
Collapse
Affiliation(s)
- Xiaoyue Yao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yu Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhenyu Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
11
|
Liu X, Hu L, Liu F. Mesenchymal stem cell-derived extracellular vesicles for cell-free therapy of ocular diseases. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:102-117. [PMID: 39698446 PMCID: PMC11648472 DOI: 10.20517/evcna.2022.08] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/31/2022] [Accepted: 04/18/2022] [Indexed: 12/20/2024]
Abstract
Mesenchymal stem cells-derived extracellular vesicles (MSC-EVs) have noticeably attracted clinicians' attention in treating ocular diseases. As the paracrine factor of MSCs and an alternative for cell-free therapies, MSC-EVs can be conveniently dropped over the ocular surface or diffused through the retina upon intravitreal injection, without increasing the risks of cellular rejection and tumor formation. For clinical translation, a standardized and scalable production, as well as reprogramming the MSC-EVs, are highly encouraged. This review aims to assess the potential approaches for EV production and functional modification, in addition to summarizing the worldwide clinical trials initiated for various physiological systems and the specific biochemical effects of MSC-EVs on the therapy of eye diseases. Recent advances in the therapy of ocular diseases based on MSC-EVs are reviewed, and the associated challenges and prospects are discussed as well.
Collapse
Affiliation(s)
- Xiaoling Liu
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Liang Hu
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Fei Liu
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
- Wenzhou Institute, University of Chinese Academy of Science, Wenzhou 325000, Zhejiang, China
| |
Collapse
|
12
|
Terzopoulou Z, Zamboulis A, Koumentakou I, Michailidou G, Noordam MJ, Bikiaris DN. Biocompatible Synthetic Polymers for Tissue Engineering Purposes. Biomacromolecules 2022; 23:1841-1863. [PMID: 35438479 DOI: 10.1021/acs.biomac.2c00047] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Synthetic polymers have been an integral part of modern society since the early 1960s. Besides their most well-known applications to the public, such as packaging, construction, textiles and electronics, synthetic polymers have also revolutionized the field of medicine. Starting with the first plastic syringe developed in 1955 to the complex polymeric materials used in the regeneration of tissues, their contributions have never been more prominent. Decades of research on polymeric materials, stem cells, and three-dimensional printing contributed to the rapid progress of tissue engineering and regenerative medicine that envisages the potential future of organ transplantations. This perspective discusses the role of synthetic polymers in tissue engineering, their design and properties in relation to each type of application. Additionally, selected recent achievements of tissue engineering using synthetic polymers are outlined to provide insight into how they will contribute to the advancement of the field in the near future. In this way, we aim to provide a guide that will help scientists with synthetic polymer design and selection for different tissue engineering applications.
Collapse
Affiliation(s)
- Zoi Terzopoulou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Alexandra Zamboulis
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Ioanna Koumentakou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Georgia Michailidou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Michiel Jan Noordam
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
13
|
Feng L, Liu R, Zhang X, Li J, Zhu L, Li Z, Li W, Zhang A. Thermo-Gelling Dendronized Chitosans as Biomimetic Scaffolds for Corneal Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49369-49379. [PMID: 34636236 DOI: 10.1021/acsami.1c16087] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biomimetic scaffolds with transparent, biocompatible, and in situ-forming properties are highly desirable for corneal tissue engineering, which can deeply fill corneal stromal defects with irregular shapes and support tissue regeneration. We here engineer a novel class of corneal scaffolds from oligoethylene glycol (OEG)-based dendronized chitosans (DCs), whose aqueous solutions show intriguing sol-gel transitions triggered by physiological temperature, resulting in highly transparent hydrogels. Gelling points of these hydrogels can be easily tuned, and furthermore, their mechanical strengths can be significantly enhanced when injected into PBS at 37 °C instead of pure water. In vitro tests indicate that these DC hydrogels exhibit excellent biocompatibility and can promote proliferation and migration of keratocyte. When applied in the rabbit eyes with corneal stromal defects, in situ formed DC hydrogels play a positive effect for new tissue regeneration. Overall, this thermo-gelling DCs possess appealing features as corneal tissue substitutes with their excellent biocompatibility and unprecedented thermoresponsiveness.
Collapse
Affiliation(s)
- Letian Feng
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Ruixing Liu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xiacong Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Lei Zhu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Zhanrong Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
14
|
Formisano N, van der Putten C, Grant R, Sahin G, Truckenmüller RK, Bouten CVC, Kurniawan NA, Giselbrecht S. Mechanical Properties of Bioengineered Corneal Stroma. Adv Healthc Mater 2021; 10:e2100972. [PMID: 34369098 PMCID: PMC11468718 DOI: 10.1002/adhm.202100972] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/15/2021] [Indexed: 12/26/2022]
Abstract
For the majority of patients with severe corneal injury or disease, corneal transplantation is the only suitable treatment option. Unfortunately, the demand for donor corneas greatly exceeds the availability. To overcome shortage issues, a myriad of bioengineered constructs have been developed as mimetics of the corneal stroma over the last few decades. Despite the sheer number of bioengineered stromas developed , these implants fail clinical trials exhibiting poor tissue integration and adverse effects in vivo. Such shortcomings can partially be ascribed to poor biomechanical performance. In this review, existing approaches for bioengineering corneal stromal constructs and their mechanical properties are described. The information collected in this review can be used to critically analyze the biomechanical properties of future stromal constructs, which are often overlooked, but can determine the failure or success of corresponding implants.
Collapse
Affiliation(s)
- Nello Formisano
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Cas van der Putten
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612 APThe Netherlands
| | - Rhiannon Grant
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Gozde Sahin
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Roman K. Truckenmüller
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Carlijn V. C. Bouten
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612 APThe Netherlands
| | - Nicholas A. Kurniawan
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612 APThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| |
Collapse
|
15
|
Bazgir M, Zhang W, Zhang X, Elies J, Saeinasab M, Coates P, Youseffi M, Sefat F. Degradation and Characterisation of Electrospun Polycaprolactone (PCL) and Poly(lactic-co-glycolic acid) (PLGA) Scaffolds for Vascular Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4773. [PMID: 34500862 PMCID: PMC8432541 DOI: 10.3390/ma14174773] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022]
Abstract
The current study aimed to evaluate the characteristics and the effects of degradation on the structural properties of Poly(lactic-co-glycolic acid) (PLGA)- and polycaprolactone (PCL)-based nanofibrous scaffolds. Six scaffolds were prepared by electrospinning, three with PCL 15% (w/v) and three with PLGA 10% (w/v), with electrospinning processing times of 30, 60 and 90 min. Both types of scaffolds displayed more robust mechanical properties with increased spinning times. The tensile strength of both scaffolds with 90-min electrospun membranes did not show a significant difference in their strengths, as the PCL and PLGA scaffolds measured at 1.492 MPa ± 0.378 SD and 1.764 MPa ± 0.7982 SD, respectively. All membranes were shown to be hydrophobic under a wettability test. A degradation behaviour study was performed by immersing all scaffolds in phosphate-buffered saline (PBS) solution at room temperature for 12 weeks and for 4 weeks at 37 °C. The effects of degradation were monitored by taking each sample out of the PBS solution every week, and the structural changes were investigated under a scanning electron microscope (SEM). The PCL and PLGA scaffolds showed excellent fibre structure with adequate degradation, and the fibre diameter, measured over time, showed slight increase in size. Therefore, as an example of fibre water intake and progressive degradation, the scaffold's percentage weight loss increased each week, further supporting the porous membrane's degradability. The pore size and the porosity percentage of all scaffolds decreased substantially over the degradation period. The conclusion drawn from this experiment is that PCL and PLGA hold great promise for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Morteza Bazgir
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK; (M.B.); (M.Y.)
| | - Wei Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China;
- Advanced Polymer Materials Research Center, Sichuan University, Shishi 362700, China
| | - Ximu Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401174, China;
| | - Jacobo Elies
- Faculty of Life Sciences, School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK;
| | - Morvarid Saeinasab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran;
| | - Phil Coates
- Interdisciplinary Research Centre in Polymer Science and Technology (Polymer IRC), University of Bradford, Bradford BD7 1DP, UK;
| | - Mansour Youseffi
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK; (M.B.); (M.Y.)
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK; (M.B.); (M.Y.)
- Interdisciplinary Research Centre in Polymer Science and Technology (Polymer IRC), University of Bradford, Bradford BD7 1DP, UK;
| |
Collapse
|
16
|
Abdul-Al M, Kyeremeh GK, Saeinasab M, Heidari Keshel S, Sefat F. Stem Cell Niche Microenvironment: Review. Bioengineering (Basel) 2021; 8:bioengineering8080108. [PMID: 34436111 PMCID: PMC8389324 DOI: 10.3390/bioengineering8080108] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
The cornea comprises a pool of self-regenerating epithelial cells that are crucial to preserving clarity and visibility. Limbal epithelial stem cells (LESCs), which live in a specialized stem cell niche (SCN), are crucial for the survival of the human corneal epithelium. They live at the bottom of the limbal crypts, in a physically enclosed microenvironment with a number of neighboring niche cells. Scientists also simplified features of these diverse microenvironments for more analysis in situ by designing and recreating features of different SCNs. Recent methods for regenerating the corneal epithelium after serious trauma, including burns and allergic assaults, focus mainly on regenerating the LESCs. Mesenchymal stem cells, which can transform into self-renewing and skeletal tissues, hold immense interest for tissue engineering and innovative medicinal exploration. This review summarizes all types of LESCs, identity and location of the human epithelial stem cells (HESCs), reconstruction of LSCN and artificial stem cells for self-renewal.
Collapse
Affiliation(s)
- Mohamed Abdul-Al
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD71DP, UK; (M.A.-A.); (G.K.K.)
| | - George Kumi Kyeremeh
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD71DP, UK; (M.A.-A.); (G.K.K.)
| | - Morvarid Saeinasab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 91779 48974, Iran;
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839 69411, Iran;
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD71DP, UK; (M.A.-A.); (G.K.K.)
- Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford BD71DP, UK
- Correspondence:
| |
Collapse
|
17
|
The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: An overview on soft-tissue engineering. J Control Release 2021; 332:460-492. [DOI: 10.1016/j.jconrel.2021.02.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/11/2022]
|
18
|
Cytocompatibility and Suitability of Protein-Based Biomaterials as Potential Candidates for Corneal Tissue Engineering. Int J Mol Sci 2021; 22:ijms22073648. [PMID: 33807473 PMCID: PMC8037783 DOI: 10.3390/ijms22073648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022] Open
Abstract
The vision impairments suffered by millions of people worldwide and the shortage of corneal donors show the need of substitutes that mimic native tissue to promote cell growth and subsequent tissue regeneration. The current study focused on the in vitro assessment of protein-based biomaterials that could be a potential source for corneal scaffolds. Collagen, soy protein isolate (SPI), and gelatin films cross-linked with lactose or citric acid were prepared and physicochemical, transmittance, and degradation measurements were carried out. In vitro cytotoxicity, cell adhesion, and migration studies were performed with human corneal epithelial (HCE) cells and 3T3 fibroblasts for the films’ cytocompatibility assessment. Transmittance values met the cornea’s needs, and the degradation profile revealed a progressive biomaterials’ decomposition in enzymatic and hydrolytic assays. Cell viability at 72 h was above 70% when exposed to SPI and gelatin films. Live/dead assays and scanning electron microscopy (SEM) analysis demonstrated the adhesion of both cell types to the films, with a similar arrangement to that observed in controls. Besides, both cell lines were able to proliferate and migrate over the films. Without ruling out any material, the appropriate optical and biological properties shown by lactose-crosslinked gelatin film highlight its potential for corneal bioengineering.
Collapse
|