Bhawna, Kumar A, Bhatia M, Kapoor A, Kumar P, Kumar S. Monoamine oxidase inhibitors: A concise review with special emphasis on structure activity relationship studies.
Eur J Med Chem 2022;
242:114655. [PMID:
36037788 DOI:
10.1016/j.ejmech.2022.114655]
[Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/29/2022]
Abstract
Monoamine oxidase enzyme is necessary for the management of brain functions. It oxidatively metabolizes monoamines and produces ammonia, aldehyde and hydrogen peroxide as by-products. Excessive production of by-products of monoamine metabolism generates free radicals which cause cellular apoptosis and several neurodegenerative disorders for example Alzheimer's disease, Parkinson's disease, depression and autism. The inhibition of MAOs is an attractive target for the treatment of neurological disorders. Clinically approved MAO inhibitors for example selegiline, rasagiline, clorgyline, pargyline etc. are irreversible in nature and cause some adverse effects while recently studied reversible MAO inhibitors are devoid of harmful effects of old monoamine oxidase inhibitors. In this review article we have listed various synthesized molecules containing different moieties like coumarin, chalcone, thiazole, thiourea, caffeine, pyrazole, chromone etc. along with their activity, mode of action, structure activity relationship and molecular docking studies.
Collapse