1
|
Roxo C, Pasternak A. Switching off cancer - An overview of G-quadruplex and i-motif functional role in oncogene expression. Bioorg Med Chem Lett 2025; 116:130038. [PMID: 39577601 DOI: 10.1016/j.bmcl.2024.130038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
DNA can self-assemble into G-quadruplexes and i-motifs non-canonical secondary structures that are formed by guanine-rich sequences and the cytosine-rich sequences, respectively. G-quadruplexes and i-motifs have been closely linked to cancer development since they can regulate genes expression in various promoter regions. Moreover, these structures have gained attention as viable targets for anticancer treatments because of their physicochemical properties and gene-regulatory functions. As a result, they are attractive molecular targets for innovative cancer therapies. Herein, we review the G-quadruplex and i-motif structures, their dynamic relationship in biological systems, as well as their significance in cancer biology and the potential therapeutic approaches. Furthermore, we also address the simultaneous and mutually exclusive formation of G-quadruplex and i-motif structures in cellular environment.
Collapse
Affiliation(s)
- Carolina Roxo
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Anna Pasternak
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| |
Collapse
|
2
|
Campanile M, Improta R, Esposito L, Platella C, Oliva R, Del Vecchio P, Winter R, Petraccone L. Experimental and Computational Evidence of a Stable RNA G-Triplex Structure at Physiological Temperature in the SARS-CoV-2 Genome. Angew Chem Int Ed Engl 2024; 63:e202415448. [PMID: 39364640 DOI: 10.1002/anie.202415448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
RG1 is a quadruplex-forming sequence in the SARS-CoV-2 genome proposed as possible therapeutic target for COVID-19. We demonstrate that the dominant conformation of RG1 under physiological conditions differs from the parallel quadruplex previously assumed. Through comprehensive investigations employing CD, UV, NMR, DSC, gel electrophoresis, MD simulations, in silico spectroscopy and the use of truncated RG1 sequences, we have identified this stable conformation as an RNA G-triplex composed of two G-triads. We believe this previously unreported RNA structure could serve as a novel therapeutic target. Our findings open new avenues for further studies on the presence and biological role of RNA G-triplexes in vivo.
Collapse
Affiliation(s)
- Marco Campanile
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Naples, Italy
| | - Roberto Improta
- Institute of Biostructure and Bioimaging, National Research Council CNR, Via P. Castellino 111, 80131, Naples, Italy
| | - Luciana Esposito
- Institute of Biostructure and Bioimaging, National Research Council CNR, Via P. Castellino 111, 80131, Naples, Italy
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Naples, Italy
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Naples, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Naples, Italy
| | - Roland Winter
- Physical Chemistry I-Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227, Dortmund, Germany
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Naples, Italy
| |
Collapse
|
3
|
Zhang Y, Zhao J, Chen X, Qiao Y, Kang J, Guo X, Yang F, Lyu K, Ding Y, Zhao Y, Sun H, Kwok CK, Wang H. DHX36 binding induces RNA structurome remodeling and regulates RNA abundance via m 6A reader YTHDF1. Nat Commun 2024; 15:9890. [PMID: 39543097 PMCID: PMC11564809 DOI: 10.1038/s41467-024-54000-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
RNA structure constitutes a new layer of gene regulatory mechanisms. RNA binding proteins can modulate RNA secondary structures, thus participating in post-transcriptional regulation. The DEAH-box helicase 36 (DHX36) is known to bind and unwind RNA G-quadruplex (rG4) structure but the transcriptome-wide RNA structure remodeling induced by DHX36 binding and the impact on RNA fate remain poorly understood. Here, we investigate the RNA structurome alteration induced by DHX36 depletion. Our findings reveal that DHX36 binding induces structural remodeling not only at the localized binding sites but also on the entire mRNA transcript most pronounced in 3'UTR regions. DHX36 binding increases structural accessibility at 3'UTRs which is correlated with decreased post-transcriptional mRNA abundance. Further analyses and experiments uncover that DHX36 binding sites are enriched for N6-methyladenosine (m6A) modification and YTHDF1 binding; and DHX36 induced structural changes may facilitate YTHDF1 binding to m6A sites leading to RNA degradation. Altogether, our findings uncover the structural remodeling effect of DHX36 binding and its impact on RNA abundance through regulating m6A dependent YTHDF1 binding.
Collapse
Grants
- 82172436 National Natural Science Foundation of China (National Science Foundation of China)
- 32300703 National Natural Science Foundation of China (National Science Foundation of China)
- 32270587 National Natural Science Foundation of China (National Science Foundation of China)
- National Key R&D Program of China to H.W. (2022YFA0806003);General Research Funds (GRF) from the Research Grants Council (RGC) of the Hong Kong Special Administrative Region (14115319, 14100620, 14106521 and 14105823 to H.W.);the research funds from Health@InnoHK program launched by Innovation Technology Commission, the Government of the Hong Kong SAR, China to H.W.; Collaborative Research Fund (CRF) from RGC to H.W. (C6018-19GF); Theme-based Research Scheme (TRS) from RGC (project number: T13-602/21-N); Hong Kong Epigenomics Project (EpiHK) Fund to H.W.; Area of Excellence Scheme (AoE) from RGC (project number: AoE/M-402/20); Health and Medical Research Fund (HMRF) from Health Bureau of the Hong Kong Special Administrative Region, China (project Code: 10210906 and 08190626 to H.W.).
- CUHK Direct Grant to X.C. (project No.: 2022.038)
- General Research Funds (GRF) from the Research Grants Council (RGC) of the Hong Kong Special Administrative Region (14120420, 14103522 and 14105123); Hong Kong Epigenomics Project (EpiHK) Fund
- General Research Funds (GRF) from the Research Grants Council (RGC) of the Hong Kong Special Administrative Region (CityU 11100123, CityU 11100222, CityU 11100421); National Natural Science Foundation of China (NSFC) Excellent Young Scientists Fund (Hong Kong and Macau) Project (32222089) to C.K.K.; Croucher Foundation Project (9509003) to C.K.K.; State Key Laboratory of Marine Pollution Seed Collaborative Research Fund (SCRF/0037, SCRF/0040, SCRF0070) to C.K.K.; City University of Hong Kong projects (9678302 and 6000827) to C.K.K.; the Hong Kong Institute for Advanced Study, City University of Hong Kong [9360157] to C.K.K..
Collapse
Affiliation(s)
- Yuwei Zhang
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Jieyu Zhao
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, SAR, China
| | - Xiaona Chen
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
- Center for Neuromusculoskeletal Restorative Medicine Limited, Hong Kong, SAR, China
| | - Yulong Qiao
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
- Center for Neuromusculoskeletal Restorative Medicine Limited, Hong Kong, SAR, China
| | - Jinjin Kang
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xiaofan Guo
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
- Center for Neuromusculoskeletal Restorative Medicine Limited, Hong Kong, SAR, China
| | - Feng Yang
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Kaixin Lyu
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, SAR, China
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Yu Zhao
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Hao Sun
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China.
| | - Chun-Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, SAR, China.
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China.
- Center for Neuromusculoskeletal Restorative Medicine Limited, Hong Kong, SAR, China.
| |
Collapse
|
4
|
Singh A, Majee P, Mishra L, Prajapat SK, Sharma TK, Kalia M, Kumar A. Role of RNA G-Quadruplexes in the Japanese Encephalitis Virus Genome and Their Recognition as Prospective Antiviral Targets. ACS Infect Dis 2024. [PMID: 39436355 DOI: 10.1021/acsinfecdis.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
G-quadruplexes (GQs) have been primarily studied in the context of cancer and neurodegenerative pathologies. However, recent research has shifted focus to their existence and functional roles in viral genomes, revealing GQ-regulated key pathways in various human pathogenic viruses. While GQ structures have been reported in the genomes of emerging and re-emerging viruses, RNA viruses have been understudied compared to DNA viruses, including notable examples such as human immunodeficiency virus-1, hepatitis C virus, Ebola virus, Nipah virus, Zika virus, and SARS-CoV-2. The flavivirus family, comprising the Japanese encephalitis virus (JEV), poses a significant global threat due to recurring outbreaks yet lacks approved antivirals. In this study, we identified and characterized eight putative G-quadruplex-forming motifs within essential genes involved in genome replication, assembly, and internalization in the host cell, conserved across different JEV isolates. The formation and stability of these motifs were validated through a multitude of biophysical and cell-based assays. The interaction and binding affinity of these motifs with the known GQ-binding ligand BRACO-19 were supported by biophysical assays, confirming the capability of these motifs to form GQ structures. Notably, BRACO-19 also exerted antiviral properties through reduction of viral replication and infectious virus titers as well as inhibition of viral protein expression, as evaluated by the cell-based assays. This comprehensive molecular characterization of G-quadruplex structures within the JEV genome highlights their potential as promising antiviral targets for intervention strategies against JEV infection through GQ-specific ligands.
Collapse
Affiliation(s)
- Aakriti Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol 453552, India
| | - Prativa Majee
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol 453552, India
| | - Laxmi Mishra
- Virology Research Group, Regional Centre for Biotechnology, Faridabad 121001, India
| | | | - Tarun Kumar Sharma
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar 382355, India
| | - Manjula Kalia
- Virology Research Group, Regional Centre for Biotechnology, Faridabad 121001, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol 453552, India
| |
Collapse
|
5
|
Obara P, Wolski P, Pańczyk T. Insights into the Molecular Structure, Stability, and Biological Significance of Non-Canonical DNA Forms, with a Focus on G-Quadruplexes and i-Motifs. Molecules 2024; 29:4683. [PMID: 39407611 PMCID: PMC11477922 DOI: 10.3390/molecules29194683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
This article provides a comprehensive examination of non-canonical DNA structures, particularly focusing on G-quadruplexes (G4s) and i-motifs. G-quadruplexes, four-stranded structures formed by guanine-rich sequences, are stabilized by Hoogsteen hydrogen bonds and monovalent cations like potassium. These structures exhibit diverse topologies and are implicated in critical genomic regions such as telomeres and promoter regions of oncogenes, playing significant roles in gene expression regulation, genome stability, and cellular aging. I-motifs, formed by cytosine-rich sequences under acidic conditions and stabilized by hemiprotonated cytosine-cytosine (C:C+) base pairs, also contribute to gene regulation despite being less prevalent than G4s. This review highlights the factors influencing the stability and dynamics of these structures, including sequence composition, ionic conditions, and environmental pH. Molecular dynamics simulations and high-resolution structural techniques have been pivotal in advancing our understanding of their folding and unfolding mechanisms. Additionally, the article discusses the therapeutic potential of small molecules designed to selectively bind and stabilize G4s and i-motifs, with promising implications for cancer treatment. Furthermore, the structural properties of these DNA forms are explored for applications in nanotechnology and molecular devices. Despite significant progress, challenges remain in observing these structures in vivo and fully elucidating their biological functions. The review underscores the importance of continued research to uncover new insights into the genomic roles of G4s and i-motifs and their potential applications in medicine and technology. This ongoing research promises exciting developments in both basic science and applied fields, emphasizing the relevance and future prospects of these intriguing DNA structures.
Collapse
Affiliation(s)
| | | | - Tomasz Pańczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30239 Cracow, Poland; (P.O.); (P.W.)
| |
Collapse
|
6
|
Johnson K, Seidel JM, Cech TR. Small molecule telomerase inhibitors are also potent inhibitors of telomeric C-strand synthesis. RNA (NEW YORK, N.Y.) 2024; 30:1213-1226. [PMID: 38918043 PMCID: PMC11331414 DOI: 10.1261/rna.080043.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Telomere replication is essential for continued proliferation of human cells, such as stem cells and cancer cells. Telomerase lengthens the telomeric G-strand, while C-strand replication is accomplished by CST-polymerase α-primase (CST-PP). Replication of both strands is inhibited by formation of G-quadruplex (GQ) structures in the G-rich single-stranded DNA. TMPyP4 and pyridostatin (PDS), which stabilize GQ structures in both DNA and RNA, inhibit telomerase in vitro, and in human cells they cause telomere shortening that has been attributed to telomerase inhibition. Here, we show that TMPyP4 and PDS also inhibit C-strand synthesis by stabilizing DNA secondary structures and thereby preventing CST-PP from binding to telomeric DNA. We also show that these small molecules inhibit CST-PP binding to a DNA sequence containing no consecutive guanine residues, which is unlikely to form GQs. Thus, while these "telomerase inhibitors" indeed inhibit telomerase, they are also robust inhibitors of telomeric C-strand synthesis. Furthermore, given their binding to GQ RNA and their limited specificity for GQ structures, they may disrupt many other protein-nucleic acid interactions in human cells.
Collapse
Affiliation(s)
- Kaitlin Johnson
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Julia M Seidel
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Thomas R Cech
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| |
Collapse
|
7
|
Gruenke P, Mayer MD, Aneja R, Schulze WJ, Song Z, Burke DH, Heng X, Lange MJ. A Branched SELEX Approach Identifies RNA Aptamers That Bind Distinct HIV-1 Capsid Structural Components. ACS Infect Dis 2024; 10:2637-2655. [PMID: 39016538 PMCID: PMC11320578 DOI: 10.1021/acsinfecdis.3c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
The HIV-1 capsid protein (CA) assumes distinct structural forms during replication, each presenting unique, solvent-accessible surfaces that facilitate multifaceted functions and host factor interactions. However, functional contributions of individual CA structures remain unclear, as evaluation of CA presents several technical challenges. To address this knowledge gap, we identified CA-targeting aptamers with different structural specificities, which emerged through a branched SELEX approach using an aptamer library previously selected to bind the CA hexamer lattice. Subsets were either highly specific for the CA lattice or bound both the CA lattice and CA hexamer. We then evaluated four representatives to reveal aptamer regions required for binding, highlighting interesting structural features and challenges in aptamer structure determination. Further, we demonstrate binding to biologically relevant CA structural forms and aptamer-mediated affinity purification of CA from cell lysates without virus or host modification, supporting the development of structural form-specific aptamers as exciting new tools for the study of CA.
Collapse
Affiliation(s)
- Paige
R. Gruenke
- Department
of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, United States
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Bond
Life Sciences Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Miles D. Mayer
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Rachna Aneja
- Department
of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, United States
| | - William J. Schulze
- Department
of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, United States
| | - Zhenwei Song
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Donald H. Burke
- Department
of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, United States
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Bond
Life Sciences Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Xiao Heng
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Margaret J. Lange
- Department
of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, United States
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
8
|
Singh A, Jain N, Shankar U, Sharma TK, Kumar A. Characterization of G-quadruplex structures in genes involved in survival and pathogenesis of Acinetobacter baumannii as a potential drug target. Int J Biol Macromol 2024; 269:131806. [PMID: 38670179 DOI: 10.1016/j.ijbiomac.2024.131806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/21/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024]
Abstract
Acinetobacter baumannii is a notorious pathogen that commonly thrives in hospital environments and is responsible for numerous nosocomial infections in humans. The burgeoning multi-drug resistance leaves relatively minimal options for treating the bacterial infection, posing a significant problem and prompting the identification of new approaches for tackling the same. This motivated us to focus on non-canonical nucleic acid structures, mainly G-quadruplexes, as drug targets. G-quadruplexes have recently been gaining attention due to their involvement in multiple bacterial and viral pathogenesis. Herein, we sought to explore conserved putative G-quadruplex motifs in A. baumannii. In silico analysis revealed the presence of eight conserved motifs in genes involved in bacterial survival and pathogenesis. The biophysical and biomolecular analysis confirmed stable G-quadruplex formation by the motifs and showed a high binding affinity with the well-reported G-quadruplex binding ligand, BRACO-19. BRACO-19 exposure also decreased the growth of bacteria and downregulated the expression of G-quadruplex-harboring genes. The biofilm-forming ability of the bacteria was also affected by BRACO-19 addition. Taking all these observations into account, we have shown here for the first time the potential of G-quadruplex structures as a promising drug target in Acinetobacter baumannii, for addressing the challenges posed by this infamous pathogen.
Collapse
Affiliation(s)
- Aakriti Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Neha Jain
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Uma Shankar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Tarun Kumar Sharma
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar 382355, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India.
| |
Collapse
|
9
|
Trajkovski M, Pastore A, Plavec J. Dimeric structures of DNA ATTTC repeats promoted by divalent cations. Nucleic Acids Res 2024; 52:1591-1601. [PMID: 38296828 PMCID: PMC10899783 DOI: 10.1093/nar/gkae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
Structural studies of repetitive DNA sequences may provide insights why and how certain repeat instabilities in their number and nucleotide sequence are managed or even required for normal cell physiology, while genomic variability associated with repeat expansions may also be disease-causing. The pentanucleotide ATTTC repeats occur in hundreds of genes important for various cellular processes, while their insertion and expansion in noncoding regions are associated with neurodegeneration, particularly with subtypes of spinocerebellar ataxia and familial adult myoclonic epilepsy. We describe a new striking domain-swapped DNA-DNA interaction triggered by the addition of divalent cations, including Mg2+ and Ca2+. The results of NMR characterization of d(ATTTC)3 in solution show that the oligonucleotide folds into a novel 3D architecture with two central C:C+ base pairs sandwiched between a couple of T:T base pairs. This structural element, referred to here as the TCCTzip, is characterized by intercalative hydrogen-bonding, while the nucleobase moieties are poorly stacked. The 5'- and 3'-ends of TCCTzip motif are connected by stem-loop segments characterized by A:T base pairs and stacking interactions. Insights embodied in the non-canonical DNA structure are expected to advance our understanding of why only certain pyrimidine-rich DNA repeats appear to be pathogenic, while others can occur in the human genome without any harmful consequences.
Collapse
Affiliation(s)
- Marko Trajkovski
- Slovenian NMR Centre, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Annalisa Pastore
- King's College London, the Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, 1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
- EN-FIST, Center of Excellence, 1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
De Rache A, Marquevielle J, Bouaziz S, Vialet B, Andreola ML, Mergny JL, Amrane S. Structure of a DNA G-quadruplex that Modulates SP1 Binding Sites Architecture in HIV-1 Promoter. J Mol Biol 2024; 436:168359. [PMID: 37952768 DOI: 10.1016/j.jmb.2023.168359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
Nucleic acid sequences containing guanine tracts are able to form non-canonical DNA or RNA structures known as G-quadruplexes (or G4s). These structures, based on the stacking of G-tetrads, are involved in various biological processes such as gene expression regulation. Here, we investigated a G4 forming sequence, HIVpro2, derived from the HIV-1 promoter. This motif is located 60 nucleotides upstream of the proviral Transcription Starting Site (TSS) and overlaps with two SP1 transcription factor binding sites. Using NMR spectroscopy, we determined that HIVpro2 forms a hybrid type G4 structure with a core that is interrupted by a single nucleotide bulge. An additional reverse-Hoogsteen AT base pair is stacked on top of the tetrad. SP1 transcription factor is known to regulate transcription activity of many genes through the recognition of Guanine-rich duplex motifs. Here, the formation of HIVpro2 G4 may modulate SP1 binding sites architecture by competing with the formation of the canonical duplex structure. Such DNA structural switch potentially participates to the regulation of viral transcription and may also interfere with HIV-1 reactivation or viral latency.
Collapse
Affiliation(s)
- Aurore De Rache
- Université de Bordeaux, Bordeaux, France; ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, Bordeaux, France; Department of Chemistry, U. Namur, 61 rue de Bruxelles, B5000 Namur, Belgium
| | - Julien Marquevielle
- Université de Bordeaux, Bordeaux, France; ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, Bordeaux, France
| | | | - Brune Vialet
- Université de Bordeaux, Bordeaux, France; ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, Bordeaux, France
| | - Marie-Line Andreola
- Université de Bordeaux, Bordeaux, France; MFP Laboratory, UMR5234, CNRS, Bordeaux, France
| | - Jean-Louis Mergny
- Laboratoire d'Optique & Biosciences, École Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Samir Amrane
- Université de Bordeaux, Bordeaux, France; ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, Bordeaux, France.
| |
Collapse
|
11
|
Vianney YM, Schröder N, Jana J, Chojetzki G, Weisz K. Showcasing Different G-Quadruplex Folds of a G-Rich Sequence: Between Rule-Based Prediction and Butterfly Effect. J Am Chem Soc 2023; 145:22194-22205. [PMID: 37751488 DOI: 10.1021/jacs.3c08336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
In better understanding the interactions of G-quadruplexes in a cellular or noncellular environment, a reliable sequence-based prediction of their three-dimensional fold would be extremely useful, yet is often limited by their remarkable structural diversity. A G-rich sequence related to a promoter sequence of the PDGFR-β nuclease hypersensitivity element (NHE) comprises a G3-G3-G2-G4-G3 pattern of five G-runs with two to four G residues. Although the predominant formation of three-layered canonical G-quadruplexes with uninterrupted G-columns can be expected, minimal base substitutions in a non-G-tract domain were shown to guide folding into either a basket-type antiparallel quadruplex, a parallel-stranded quadruplex with an interrupted G-column, a quadruplex with a V-shaped loop, or a (3+1) hybrid quadruplex. A 3D NMR structure for each of the different folds was determined. Supported by thermodynamic profiling on additional sequence variants, formed topologies were rationalized by the identification and assessment of specific critical interactions of loop and overhang residues, giving valuable insights into their contribution to favor a particular conformer. The variability of such tertiary interactions, together with only small differences in quadruplex free energies, emphasizes current limits for a reliable sequence-dependent prediction of favored topologies from sequences with multiple irregularly positioned G-tracts.
Collapse
Affiliation(s)
- Yoanes Maria Vianney
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff Str. 4, D-17489 Greifswald, Germany
| | - Nina Schröder
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff Str. 4, D-17489 Greifswald, Germany
| | - Jagannath Jana
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff Str. 4, D-17489 Greifswald, Germany
| | - Gregor Chojetzki
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff Str. 4, D-17489 Greifswald, Germany
| | - Klaus Weisz
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff Str. 4, D-17489 Greifswald, Germany
| |
Collapse
|
12
|
Liu Y, Li J, Zhang Y, Wang Y, Chen J, Bian Y, Xia Y, Yang MH, Zheng K, Wang KB, Kong LY. Structure of the Major G-Quadruplex in the Human EGFR Oncogene Promoter Adopts a Unique Folding Topology with a Distinctive Snap-Back Loop. J Am Chem Soc 2023; 145:16228-16237. [PMID: 37460135 DOI: 10.1021/jacs.3c05214] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
EGFR tyrosine kinase inhibitors have made remarkable success in targeted cancer therapy. However, therapeutic resistance inevitably occurred and EGFR-targeting therapy has been demonstrated to have limited efficacy or utility in glioblastoma, colorectal cancer, and hepatocellular carcinoma. Therefore, there is a high demand for the development of new targets to inhibit EGFR signaling. Herein, we found that the EGFR oncogene proximal promoter sequence forms a unique type of snap-back loop containing G-quadruplex (G4), which can be targeted by small molecules. For the first time, we determined the NMR solution structure of this snap-back EGFR-G4, a three-tetrad-core, parallel-stranded G4 with naturally occurring flanking residues at both the 5'-end and 3'-end. The snap-back loop located at the 3'-end region forms a stable capping structure through two stacked G-triads connected by multiple potential hydrogen bonds. Notably, the flanking residues are consistently absent in reported snap-back G4s, raising the question of whether such structures truly exist under in vivo conditions. The resolved EGFR-G4 structure has eliminated the doubt and showed distinct structural features that distinguish it from the previously reported snap-back G4s, which lack the flanking residues. Furthermore, we found that the snap-back EGFR-G4 structure is highly stable and can form on an elongated DNA template to inhibit DNA polymerase. The unprecedented high-resolution EGFR-G4 structure has thus contributed a promising molecular target for developing alternative EGFR signaling inhibitors in cancer therapeutics. Meanwhile, the two stacked triads may provide an attractive site for specific small-molecule targeting.
Collapse
Affiliation(s)
- Yushuang Liu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Jinzhu Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Yongqiang Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Yingying Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Juannan Chen
- School of Biomedical Sciences, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Yuting Bian
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Yuanzheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Ming-Hua Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Kewei Zheng
- School of Biomedical Sciences, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Kai-Bo Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| |
Collapse
|
13
|
Li F, Zhou J. G-quadruplexes from non-coding RNAs. J Mol Med (Berl) 2023:10.1007/s00109-023-02314-7. [PMID: 37069370 DOI: 10.1007/s00109-023-02314-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
Non-coding RNAs (ncRNAs) are significant regulators of gene expression in a wide range of biological processes, such as transcription, RNA maturation, or translation. ncRNAs interplay with proteins or other RNAs through not only classical sequence-based mechanisms but also unique higher-order structures such as RNA G-quadruplexes (rG4s). rG4s are predictably formed in guanine-rich sequences and are closely related to various human diseases, such as tumors, neurodegenerative diseases, and infections. This review focuses on the vital role of rG4s in ncRNAs, particularly lncRNAs and miRNAs. We outline the dynamic balance between rG4s and RNA stem-loop/hairpin structures and the interplay between ncRNAs and interactors, thereby modulating gene expression and disease progression. A complete understanding of the biological regulatory role and mechanism of rG4s in ncRNAs affirms the critical importance of folding into the appropriate three-dimensional structure in maintaining or modulating the functions of ncRNAs. It makes them novel therapeutic targets for adjusting potential-G4-containing-ncRNAs-associated diseases.
Collapse
Affiliation(s)
- Fangyuan Li
- Department Medical Research Central, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiang Zhou
- Beijing National Laboratory for Molecular Sciences, Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
14
|
López-Tena M, Chen SK, Winssinger N. Supernatural: Artificial Nucleobases and Backbones to Program Hybridization-Based Assemblies and Circuits. Bioconjug Chem 2023; 34:111-123. [PMID: 35856656 DOI: 10.1021/acs.bioconjchem.2c00292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The specificity and predictability of hybridization make oligonucleotides a powerful platform to program assemblies and networks with logic-gated responses, an area of research which has grown into a field of its own. While the field has capitalized on the commercial availability of DNA oligomers with its four canonical nucleobases, there are opportunities to extend the capabilities of the hardware with unnatural nucleobases and other backbones. This Topical Review highlights nucleobases that favor hybridizations that are empowering for assemblies and networks as well as two chiral XNAs than enable orthogonal hybridization networks.
Collapse
Affiliation(s)
- Miguel López-Tena
- University of Geneva, Department of Organic Chemistry, Faculty of Science, NCCR Chemical Biology, 30 Quai Ernest Ansermet, CH-1205 Geneva, Switzerland
| | - Si-Kai Chen
- University of Geneva, Department of Organic Chemistry, Faculty of Science, NCCR Chemical Biology, 30 Quai Ernest Ansermet, CH-1205 Geneva, Switzerland
| | - Nicolas Winssinger
- University of Geneva, Department of Organic Chemistry, Faculty of Science, NCCR Chemical Biology, 30 Quai Ernest Ansermet, CH-1205 Geneva, Switzerland
| |
Collapse
|
15
|
Kotkowiak W, Roxo C, Pasternak A. Physicochemical and antiproliferative characteristics of RNA and DNA sequence-related G-quadruplexes. ACS Med Chem Lett 2023; 14:35-40. [PMID: 36655120 PMCID: PMC9841586 DOI: 10.1021/acsmedchemlett.2c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/03/2022] [Indexed: 01/21/2023] Open
Abstract
In this article the physicochemical and biological properties of sequence-related G-quadruplex forming oligonucleotides in RNA and DNA series are analyzed and compared. The intermolecular G-quadruplexes vary in loop length, number of G-tetrads and homogeneity of the core. Our studies show that even slight variations in sequence initiate certain changes of G-quadruplex properties. DNA G-quadruplexes are less thermally stable than their RNA counterparts, more topologically diversified and are better candidates as inhibitors of cancer cells proliferation. The most efficient antiproliferative activity within the studied group of molecules was observed for two DNA G-quadruplexes with unperturbed core and lower content of thymidine residues within the loops leading to reduction of cells viability up to 65% and 33% for HeLa and MCF-7 cell lines, respectively.
Collapse
Affiliation(s)
- Weronika Kotkowiak
- Department of Nucleic Acids
Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Carolina Roxo
- Department of Nucleic Acids
Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Anna Pasternak
- Department of Nucleic Acids
Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
16
|
Structural Polymorphism of Guanine Quadruplex-Containing Regions in Human Promoters. Int J Mol Sci 2022; 23:ijms232416020. [PMID: 36555662 PMCID: PMC9786302 DOI: 10.3390/ijms232416020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Intramolecular guanine quadruplexes (G4s) are non-canonical nucleic acid structures formed by four guanine (G)-rich tracts that assemble into a core of stacked planar tetrads. G4-forming DNA sequences are enriched in gene promoters and are implicated in the control of gene expression. Most G4-forming DNA contains more G residues than can simultaneously be incorporated into the core resulting in a variety of different possible G4 structures. Although this kind of structural polymorphism is well recognized in the literature, there remain unanswered questions regarding possible connections between G4 polymorphism and biological function. Here we report a detailed bioinformatic survey of G4 polymorphism in human gene promoter regions. Our analysis is based on identifying G4-containing regions (G4CRs), which we define as stretches of DNA in which every residue can form part of a G4. We found that G4CRs with higher degrees of polymorphism are more tightly clustered near transcription sites and tend to contain G4s with shorter loops and bulges. Furthermore, we found that G4CRs with well-characterized biological functions tended to be longer and more polymorphic than genome-wide averages. These results represent new evidence linking G4 polymorphism to biological function and provide new criteria for identifying biologically relevant G4-forming regions from genomic data.
Collapse
|
17
|
Vianney YM, Weisz K. High-affinity binding at quadruplex-duplex junctions: rather the rule than the exception. Nucleic Acids Res 2022; 50:11948-11964. [PMID: 36416262 PMCID: PMC9723630 DOI: 10.1093/nar/gkac1088] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022] Open
Abstract
Quadruplex-duplex (Q-D) junctions constitute unique structural motifs in genomic sequences. Through comprehensive calorimetric as well as high-resolution NMR structural studies, Q-D junctions with a hairpin-type snapback loop coaxially stacked onto an outer G-tetrad were identified to be most effective binding sites for various polycyclic quadruplex ligands. The Q-D interface is readily recognized by intercalation of the ligand aromatic core structure between G-tetrad and the neighboring base pair. Based on the thermodynamic and structural data, guidelines for the design of ligands with enhanced selectivity towards a Q-D interface emerge. Whereas intercalation at Q-D junctions mostly outcompete stacking at the quadruplex free outer tetrad or intercalation between duplex base pairs to varying degrees, ligand side chains considerably contribute to the selectivity for a Q-D target over other binding sites. In contrast to common perceptions, an appended side chain that additionally interacts within the duplex minor groove may confer only poor selectivity. Rather, the Q-D selectivity is suggested to benefit from an extension of the side chain towards the exposed part of the G-tetrad at the junction. The presented results will support the design of selective high-affinity binding ligands for targeting Q-D interfaces in medicinal but also technological applications.
Collapse
Affiliation(s)
- Yoanes Maria Vianney
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, D-17489 Greifswald, Germany
| | - Klaus Weisz
- To whom correspondence should be addressed. Tel: +49 3834 420 4426; Fax: +49 3834 420 4427;
| |
Collapse
|
18
|
Kabbara A, Vialet B, Marquevielle J, Bonnafous P, Mackereth CD, Amrane S. RNA G-quadruplex forming regions from SARS-2, SARS-1 and MERS coronoviruses. Front Chem 2022; 10:1014663. [PMID: 36479439 PMCID: PMC9719988 DOI: 10.3389/fchem.2022.1014663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/26/2022] [Indexed: 11/14/2023] Open
Abstract
COVID-19 (Corona Virus Disease 2019), SARS (Severe Acute Respiratory Syndrome) and MERS (Middle East Respiratory Syndrome) are infectious diseases each caused by coronavirus outbreaks. Small molecules and other therapeutics are rapidly being developed to treat these diseases, but the threat of new variants and outbreaks argue for the identification of additional viral targets. Here we identify regions in each of the three coronavirus genomes that are able to form G-quadruplex (G4) structures. G4s are structures formed by DNA or RNA with a core of two or more stacked planes of guanosine tetrads. In recent years, numerous DNA and RNA G4s have emerged as promising pharmacological targets for the treatment of cancer and viral infection. We use a combination of bioinformatics and biophysical approaches to identify conserved RNA G4 regions from the ORF1A and S sequences of SARS-CoV, SARS-CoV-2 and MERS-CoV. Although a general depletion of G4-forming regions is observed in coronaviridae, the preservation of these selected G4 sequences support a significance in viral replication. Targeting these RNA structures may represent a new antiviral strategy against these viruses distinct from current approaches that target viral proteins.
Collapse
Affiliation(s)
| | | | | | | | | | - Samir Amrane
- Université de Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, Bordeaux, France
| |
Collapse
|
19
|
Higashi SL, Shintani Y, Ikeda M. Installing Reduction Responsiveness into Biomolecules by Introducing Nitroaryl Groups. Chemistry 2022; 28:e202201103. [DOI: 10.1002/chem.202201103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Sayuri L. Higashi
- United Graduate School of Drug Discovery and Medical Information Sciences Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Present address: Institut für Physiologische Chemie und Pathobiochemie Universität Münster Waldeyerstraße 15 48149 Münster Germany
| | - Yuki Shintani
- Department of Life Science and Chemistry Graduate School of Natural Science and Technology Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Masato Ikeda
- United Graduate School of Drug Discovery and Medical Information Sciences Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Department of Life Science and Chemistry Graduate School of Natural Science and Technology Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Institute for Glyco-core Research (iGCORE) Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Institute of Nano-Life-Systems Institutes of Innovation for Future Society Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
20
|
Jana J, Vianney YM, Schröder N, Weisz K. Guiding the folding of G-quadruplexes through loop residue interactions. Nucleic Acids Res 2022; 50:7161-7175. [PMID: 35758626 PMCID: PMC9262619 DOI: 10.1093/nar/gkac549] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022] Open
Abstract
A G-rich sequence was designed to allow folding into either a stable parallel or hybrid-type topology. With the parent sequence featuring coexisting species, various related sequences with single and double mutations and with a shortened central propeller loop affected the topological equilibrium. Two simple modifications, likewise introduced separately to all sequences, were employed to lock folds into one of the topologies without noticeable structural alterations. The unique combination of sequence mutations, high-resolution NMR structural information, and the thermodynamic stability for both topological competitors identified critical loop residue interactions. In contrast to first loop residues, which are mostly disordered and exposed to solvent in both propeller and lateral loops bridging a narrow groove, the last loop residue in a lateral three-nucleotide loop is engaged in stabilizing stacking interactions. The propensity of single-nucleotide loops to favor all-parallel topologies by enforcing a propeller-like conformation of an additional longer loop is shown to result from their preference in linking two outer tetrads of the same tetrad polarity. Taken together, the present studies contribute to a better structural and thermodynamic understanding of delicate loop interactions in genomic and artificially designed quadruplexes, e.g. when employed as therapeutics or in other biotechnological applications.
Collapse
Affiliation(s)
- Jagannath Jana
- Institute of Biochemistry, Universität Greifswald, D-17489 Greifswald, Germany
| | | | - Nina Schröder
- Institute of Biochemistry, Universität Greifswald, D-17489 Greifswald, Germany
| | - Klaus Weisz
- To whom correspondence should be addressed. Tel: +49 3834 420 4426; Fax: +49 3834 420 4427;
| |
Collapse
|
21
|
Zurkowski M, Zok T, Szachniuk M. DrawTetrado to create layer diagrams of G4 structures. Bioinformatics 2022; 38:3835-3836. [PMID: 35703937 PMCID: PMC9344840 DOI: 10.1093/bioinformatics/btac394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/13/2022] [Accepted: 06/13/2022] [Indexed: 11/14/2022] Open
Abstract
Motivation Quadruplexes are specific 3D structures found in nucleic acids. Due to the exceptional properties of these motifs, their exploration with the general-purpose bioinformatics methods can be problematic or insufficient. The same applies to visualizing their structure. A hand-drawn layer diagram is the most common way to represent the quadruplex anatomy. No molecular visualization software generates such a structural model based on atomic coordinates. Results DrawTetrado is an open-source Python program for automated visualization targeting the structures of quadruplexes and G4-helices. It generates static layer diagrams that represent structural data in a pseudo-3D perspective. The possibility to set color schemes, nucleotide labels, inter-element distances or angle of view allows for easy customization of the output drawing. Availability and implementation The program is available under the MIT license at https://github.com/RNApolis/drawtetrado.
Collapse
Affiliation(s)
- Michal Zurkowski
- Institute of Computing Science, Poznan University of Technology, Piotrowo 2, Poznan, 60-965, Poland
| | - Tomasz Zok
- Institute of Computing Science, Poznan University of Technology, Piotrowo 2, Poznan, 60-965, Poland
| | - Marta Szachniuk
- Institute of Computing Science, Poznan University of Technology, Piotrowo 2, Poznan, 60-965, Poland.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan, 61-704, Poland
| |
Collapse
|
22
|
Kumar S, Reddy Sannapureddi RK, Todankar CS, Ramanathan R, Biswas A, Sathyamoorthy B, Pradeepkumar PI. Bisindolylmaleimide Ligands Stabilize c-MYC G-Quadruplex DNA Structure and Downregulate Gene Expression. Biochemistry 2022; 61:1064-1076. [PMID: 35584037 DOI: 10.1021/acs.biochem.2c00116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
G-Quadruplex (G4) structures play a pivotal role in diverse biological functions, including essential processes, such as telomere maintenance and gene regulation. G4 structures formed in functional regions of genomes are actively pursued toward therapeutics and are targeted by small-molecule ligands that alter their structure and/or stability. Herein, we report the synthesis of bisindolylmaleimide-based (BIM) ligands, which preferentially stabilize parallel G4 structures of c-MYC and c-KIT oncogenes over the telomeric h-RAS1 G4 and duplex DNAs. The preferential stabilization of parallel G4s with BIM ligands is further validated by the DNA polymerase stop assay, where stop products were only observed for templates containing the c-MYC G4 sequence. Nuclear magnetic resonance (NMR) titration studies indicate that the lead ligand BIM-Pr1 forms a 2:1 complex with c-MYC G4 DNA with a KD of 38 ± 5 μM. The BIM ligand stacks at the 5' and 3' quartets, with molecular modeling and dynamics studies supporting the proposed binding mode. The ligand is cytotoxic to HeLa cells and downregulates c-MYC gene expression. Collectively, the results present bisindolylmaleimide scaffolds as novel and powerful G4 targeting agents.
Collapse
Affiliation(s)
- Satendra Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | - Chaitra S Todankar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - R Ramanathan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Annyesha Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Bharathwaj Sathyamoorthy
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - P I Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
23
|
Detecting G4 unwinding. Methods Enzymol 2022; 672:261-281. [DOI: 10.1016/bs.mie.2022.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Platella C, Capasso D, Riccardi C, Musumeci D, DellaGreca M, Montesarchio D. Natural compounds from Juncus plants interacting with telomeric and oncogene G-quadruplex structures as potential anticancer agents. Org Biomol Chem 2021; 19:9953-9965. [PMID: 34747958 DOI: 10.1039/d1ob01995c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aiming at discovering novel, putative anticancer drugs featuring low-to-null side effects, natural compounds isolated from Juncaceae were studied here for their ability to target G-quadruplex structures originating from cancer-related telomeric and oncogene DNA sequences. Particularly, various dihydrophenanthrene, benzocoumarin and dihydrodibenzoxepin derivatives were firstly screened by the affinity chromatography-based G4-CPG assay, and the compound with the highest affinity and selectivity for G-quadruplexes (named J10) was selected for further studies. Fluorescence spectroscopy and circular dichroism experiments corroborated its capability to selectively recognize and stabilize G-quadruplexes over duplex DNA, also showing a preference for parallel G-quadruplexes. Molecular docking proved that the selective G-quadruplex interactions over duplex interactions could be due to the ability of J10 to bind to the grooves of the telomeric and oncogene G-quadruplex structures. Finally, biological assays demonstrated that J10 induces significant antiproliferative effects on human leukemia cells, with no relevant effects on healthy human fibroblasts. Interestingly, J10 exerts its antiproliferative action on tumor cells by activating the apoptotic pathway.
Collapse
Affiliation(s)
- Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 21, 80126 Naples, Italy.
| | - Domenica Capasso
- CIRPEB, University of Naples Federico II, Naples, Italy.,CESTEV, University of Naples Federico II, Naples, Italy
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 21, 80126 Naples, Italy.
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 21, 80126 Naples, Italy. .,Institute of Biostructures and Bioimaging (IBB) - CNR, Naples, Italy
| | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 21, 80126 Naples, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 21, 80126 Naples, Italy.
| |
Collapse
|
25
|
Grün JT, Schwalbe H. Folding dynamics of polymorphic G-quadruplex structures. Biopolymers 2021; 113:e23477. [PMID: 34664713 DOI: 10.1002/bip.23477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022]
Abstract
G-quadruplexes (G4), found in numerous places within the human genome, are involved in essential processes of cell regulation. Chromosomal DNA G4s are involved for example, in replication and transcription as first steps of gene expression. Hence, they influence a plethora of downstream processes. G4s possess an intricate structure that differs from canonical B-form DNA. Identical DNA G4 sequences can adopt multiple long-lived conformations, a phenomenon known as G4 polymorphism. A detailed understanding of the molecular mechanisms that drive G4 folding is essential to understand their ambivalent regulatory roles. Disentangling the inherent dynamic and polymorphic nature of G4 structures thus is key to unravel their biological functions and make them amenable as molecular targets in novel therapeutic approaches. We here review recent experimental approaches to monitor G4 folding and discuss structural aspects for possible folding pathways. Substantial progress in the understanding of G4 folding within the recent years now allows drawing comprehensive models of the complex folding energy landscape of G4s that we herein evaluate based on computational and experimental evidence.
Collapse
Affiliation(s)
- J Tassilo Grün
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Frankfurt/M, Germany.,Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Frankfurt/M, Germany
| |
Collapse
|
26
|
Weisz K. A world beyond double-helical nucleic acids: the structural diversity of tetra-stranded G-quadruplexes. CHEMTEXTS 2021. [DOI: 10.1007/s40828-021-00150-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractNucleic acids can adopt various secondary structures including double-, triple-, and tetra-stranded helices that differ by the specific hydrogen bond mediated pairing pattern between their nucleobase constituents. Whereas double-helical DNA relies on Watson–Crick base pairing to play a prominent role in storing genetic information, G-quadruplexes are tetra-stranded structures that are formed by the association of guanine bases from G-rich DNA and RNA sequences. During the last few decades, G-quadruplexes have attracted considerable interest after the realization that they form and exert regulatory functions in vivo. In addition, quadruplex architectures have also been recognized as versatile and powerful tools in a growing number of technological applications. To appreciate the astonishing structural diversity of these tetra-stranded structures and to give some insight into basic interactions that govern their folding, this article gives an overview of quadruplex structures and rules associated with the formation of different topologies. A brief discussion will also focus on nonconventional quadruplexes as well as on general principles when targeting quadruplexes with ligands.
Graphic abstract
Collapse
|