1
|
Zhang M, Fu Z, Chen H, Yu J, Zhang L, Yang C, Zhou Y, Hua Y, Wang X, Ji H. Highly exposed metal atomic active sites in Al 2O 3/CoNC: Modify reaction pathways by coupling oxygen species. J Colloid Interface Sci 2024; 676:859-870. [PMID: 39067221 DOI: 10.1016/j.jcis.2024.07.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
The catalytic oxidation of formaldehyde (HCHO) at ambient temperature is a highly efficient, cost-effective and environmentally friendly approach for formaldehyde removal. Reactive oxygen (O*) and reactive hydroxyl groups (OH*) are the main active species in the catalytic oxidation reaction of HCHO. Therefore, it is crucial to design catalysts that can simultaneously enhance the surface concentrations of O* and OH*, thereby improving their overall catalytic performance. The present study aimed to design an Al2O3/CoNC catalyst featuring layered carbon nitride coupled with metal oxides possessing domain-limited cobalt (Co) metal active sites, to efficiently remove HCHO (≈100 %, 100 ppm, RH=50 %, GSHV=20,000 mL/(g h)) and ensure stability (more than 90 % formaldehyde removal within 450 h) at ambient temperature. The characterization revealed that the interaction between Al2O3-supported metal and CoNC resulted in enhanced confinement of Co, leading to a higher abundance of edge structures exposing more active sites. Additionally, the presence of highly dispersed Co-NX active sites and increased oxygen vacancies effectively facilitated the adsorption and activation processes of HCHO and O2, as well as the adsorption and desorption dynamics of intermediates during the reaction. These factors collectively contributed to an improved catalytic activity. The results of in situ infrared spectroscopy revealed that the catalyst improved the adsorption and activation of O2 and H2O, leading to the rapid generation of substantial amounts of O* and OH*. This synergistic interaction between Al2O3 and CoNC plays a crucial role in the sustained production of O* and OH*, promoting efficient of intermediate decomposition, and ensuring excellent catalytic activity and stability for HCHO.
Collapse
Affiliation(s)
- Manyu Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhijian Fu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Hui Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jia Yu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Liwen Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | | | - Yubo Zhou
- Ningbo Solartron Technology Co., Ltd, Ningbo, China
| | - Yingjie Hua
- School of Chemistry and Chemical Engineering, the Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Hainan Normal University, Haikou, China
| | - Xuyu Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China; State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China; Jiangsu Zhongjiang Institute of Materials Technology, Zhenjiang, China; School of Chemistry and Chemical Engineering, the Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Hainan Normal University, Haikou, China; Ningbo Solartron Technology Co., Ltd, Ningbo, China.
| | - Hongbing Ji
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China; State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China; Jiangsu Zhongjiang Institute of Materials Technology, Zhenjiang, China.
| |
Collapse
|
2
|
Jiang Q, Wu Y, Wang F, Zhu P, Li R, Zhao Y, Huang Y, Wu X, Zhao S, Li Y, Wang B, Gao D, Zhang R. Floating Bimetallic Catalysts for Growing 30 cm-Long Carbon Nanotube Arrays with High Yields and Uniformity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402257. [PMID: 38831681 DOI: 10.1002/adma.202402257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/30/2024] [Indexed: 06/05/2024]
Abstract
Ultralong carbon nanotubes (CNTs) are considered as promising candidates for many cutting-edge applications. However, restricted by the extremely low yields of ultralong CNTs, their practical applications can hardly be realized. Therefore, new methodologies shall be developed to boost the growth efficiency of ultralong CNTs and alleviate their areal density decay at the macroscale level. Herein, a facile, universal, and controllable method for the in situ synthesis of floating bimetallic catalysts (FBCs) is proposed to grow ultralong CNT arrays with high yields and uniformity. Ferrocene and metal acetylacetonates serve as catalyst precursors, affording the successful synthesis of a series of FBCs with controllable compositions. Among these FBCs, the optimized FeCu catalyst increases the areal density of ultralong CNT arrays to a record-breaking value of ≈8100 CNTs mm-1 and exhibits a lifetime 3.40 times longer than that of Fe, thus achieving both high yields and uniformity. A 30-centimeters-long and high-density ultralong CNT array is also successfully grown with the assistance of FeCu catalysts. As evidenced by this kinetic model and molecular dynamics simulations, the introduction of Cu into Fe can simultaneously improve the catalyst fluidity and decrease carbon solubility, and an optimal catalytic performance will be achieved by balancing this tradeoff.
Collapse
Affiliation(s)
- Qinyuan Jiang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yibo Wu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Fei Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ping Zhu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Run Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yanlong Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ya Huang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xueke Wu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Siming Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yunrui Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Baoshun Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Di Gao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Rufan Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Liu Y, Wu G, Ge R, Jiang X, Li L, Ishida T, Murayama T, Qiao B, Wang J. Highly Active and Sintering-Resistant Pt Clusters Supported on FeO x-Hydroxyapatite Achieved by Tailoring Strong Metal-Support Interactions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22007-22015. [PMID: 38629801 DOI: 10.1021/acsami.4c02521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The catalytic performance of supported metal catalysts is closely related to their structure. While Pt-based catalysts are widely used in many catalytic reactions because of their exceptional intrinsic activity, they tend to deactivate in high-temperature reactions, requiring a tedious and expensive regeneration process. The strong metal-support interaction (SMSI) is a promising strategy to improve the stability of supported metal nanoparticles, but often at the price of the activity due to either the coverage of the active sites by support overlay and/or the too-strong metal-support bonding. Herein, we newly constructed a supported Pt cluster catalyst by introducing FeOx into hydroxyapatite (HAP) support to fine-tune the SMSIs. The catalyst exhibited not only high catalytic activity but also sintering resistance, without deactivation in a 100 h test for catalytic CO oxidation. Detailed characterizations reveal that FeOx introduced into HAP weaken the strong covalent metal-support interaction (CMSI) between Pt and FeOx while simultaneously inhibiting the oxidative strong metal-support interaction (OMSI) between Pt and HAP, giving rise to both high activity and thermal stability of the supported Pt clusters.
Collapse
Affiliation(s)
- Yunxia Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guandong Wu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rile Ge
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xunzhu Jiang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tamao Ishida
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Toru Murayama
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 minami-osawa, Hachioji, Tokyo 192-0397, Japan
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology (AU-SDARC), School of Chemistry & Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Botao Qiao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Junhu Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
4
|
Liu P, Klyushin A, Chandramathy Surendran P, Fedorov A, Xie W, Zeng C, Huang X. Carbon Encapsulation of Supported Metallic Iridium Nanoparticles: An in Situ Transmission Electron Microscopy Study and Implications for Hydrogen Evolution Reaction. ACS NANO 2023. [PMID: 38047675 DOI: 10.1021/acsnano.3c10850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Carbon-supported metal nanoparticles (NPs) comprise an important class of heterogeneous catalysts. The interaction between the metal and carbon support influences the overall material properties, viz., the catalytic performance. Herein we use in situ and ex situ transmission electron microscopy (TEM) in combination with in situ X-ray spectroscopy (XPS) to investigate the encapsulation of metallic iridium NPs by carbon in an Ir/C catalyst. Real-time atomic-scale imaging visualizes particle reshaping and increased graphitization of the carbon support upon heating of Ir/C in vacuum. According to in situ TEM results, carbon overcoating grows over Ir NPs during the heating process, starting from ca. 550 °C. With the carbon overlayers formed, no sintering and migration of Ir NPs is observed at 800 °C, yet the initial Ir NPs sinter at or below 550 °C, i.e., at a temperature associated with an incomplete particle encapsulation. The carbon overlayer corrugates when the temperature is decreased from 800 to 200 °C and this process is associated with the particle surface reconstruction and is reversible, such that the corrugated carbon overlayer can be smoothed out by increasing the temperature back to 800 °C. The catalytic performance (activity and stability) of the encapsulated Ir NPs in the hydrogen evolution reaction (HER) is higher than that of the initial (nonencapsulated) state of Ir/C. Overall, this work highlights microscopic details of the currently understudied phenomenon of the carbon encapsulation of supported noble metal NPs and demonstrates additionally that the encapsulation by carbon is an effective measure for tuning the catalytic performance.
Collapse
Affiliation(s)
- Panpan Liu
- College of Chemistry, Fuzhou University, 350108 Fuzhou, P. R. China
- Qingyuan Innovation Laboratory, 362100 Quanzhou, P. R. China
| | - Alexander Klyushin
- Department of Inorganic Chemistry, Fritz-Haber Institute of Max Planck Society, 14195 Berlin, Germany
- Research Group Catalysis for Energy, Helmholtz-Zentrum Berlin for Materials and Energy (BESSY II), Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | | | - Alexey Fedorov
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Wangjing Xie
- College of Chemistry, Fuzhou University, 350108 Fuzhou, P. R. China
- Qingyuan Innovation Laboratory, 362100 Quanzhou, P. R. China
| | - Chaobin Zeng
- Hitachi High-Tech Scientific Solutions (Beijing) Co., Ltd., 100015 Beijing, P. R. China
| | - Xing Huang
- College of Chemistry, Fuzhou University, 350108 Fuzhou, P. R. China
- Qingyuan Innovation Laboratory, 362100 Quanzhou, P. R. China
- Department of Inorganic Chemistry, Fritz-Haber Institute of Max Planck Society, 14195 Berlin, Germany
| |
Collapse
|
5
|
Ni S, Qu H, Xu Z, Zhu X, Chen L, Xing H, Wu X, Liu H, Yang L. Regulating the Spin State of Metal and Metal Carbide Heterojunctions for Efficient Oxygen Evolution. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37466139 DOI: 10.1021/acsami.3c07955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Developing high-performance electrocatalysts for oxygen evolution reaction (OER) is of importance for improving the overall efficiency of water splitting. Herein, the CoFe/(CoxFe1-x)3Mo3C heterojunction is purposely designed as an OER catalyst, which displays a low overpotential of 293 mV for affording a current density of 10 mA cm-2 and a small Tafel slope of 48 mV/dec. Various characterization results demonstrate that the significant work-function difference between CoFe and (CoxFe1-x)3Mo3C can induce interfacial charge redistribution, which results in the formation of Co and Fe sites with a high-spin state, thus stimulating the surface phase reconstruction of CoFe/(CoxFe1-x)3Mo3C to corresponding active oxyhydroxide. Meanwhile, the electrochemical leaching of Mo ions from the initial structure can contribute to the formation of defective sites, further benefiting OH- adsorption and surface oxidation. Moreover, the remaining CoFe can accelerate electron migration during the electrocatalytic process. This study presents new insights into constructing efficient OER electrocatalysts with an optimized spin-state configuration via interfacial engineering.
Collapse
Affiliation(s)
- Shan Ni
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongnan Qu
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zihao Xu
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangyang Zhu
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyan Chen
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huifang Xing
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Wu
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Huizhou Liu
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266061, China
| | - Liangrong Yang
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266061, China
| |
Collapse
|
6
|
Non-noble metal FeMn and single-walled carbon nanotubes nanocomposites as effective bifunctional electrocatalysts in alkaline media for oxygen/hydrogen revolution reactions. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Zhu D, Chen M, Huang Y, Li R, Huang T, Cao JJ, Shen Z, Lee SC. FeCo alloy encased in nitrogen-doped carbon for efficient formaldehyde removal: Preparation, electronic structure, and d-band center tailoring. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127593. [PMID: 34736177 DOI: 10.1016/j.jhazmat.2021.127593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/10/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Formaldehyde is a typical indoor air pollutant that has posed severely adverse effects on human health. Herein, a novel FeCo alloy nanoparticle-embedded nitrogen-doped carbon (FeCo@NC) was synthesized with the aim of tailoring the transition-metal d-band structure toward an improved formaldehyde oxidation activity for the first time. A unique core@shell metal-organic frameworks (MOFs) architecture with a Fe-based Prussian blue analogue core and Co-containing zeolite imidazole framework shell was firstly fabricated. Then, Fe and Co ion alloying was readily achieved owing to the inherent MOF porosity and interionic nonequilibrium diffusion occurring during pyrolysis. High-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure spectra confirm that small FeCo alloys in situ form in FeCo@NC, which exhibits a higher formaldehyde removal efficiency (93%) than the monometallic Fe-based catalyst and a remarkable CO2 selectivity (85%) at room temperature. Density functional theory calculations indicate the number of electrons transferred from the metal core to the outer carbon layer is altered by alloying Fe and Co. More importantly, a downshift in the d-band center relative to the Fermi level occurs from - 0.93 to - 1.04 eV after introducing Co, which could alleviate the adsorption of reaction intermediates and greatly improve the catalytic performance.
Collapse
Affiliation(s)
- Dandan Zhu
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Meijuan Chen
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu Huang
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| | - Rong Li
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Tingting Huang
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Jun-Ji Cao
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Zhenxing Shen
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China.
| | - Shun Cheng Lee
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
8
|
Chen J, Zhu J, li S, li Z, Wu C, wang D, Luo Z, Li Y, Luo K. In Situ Construction of FeCo Alloy Nanoparticles Embedded in Nitrogen‑Doped Bamboo-like Carbon Nanotubes as a Bifunctional Electrocatalyst for Zn-Air Battery. Dalton Trans 2022; 51:14498-14507. [DOI: 10.1039/d2dt02132c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rational design and exploration of low-cost, highly efficient, and robust bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) electrocatalysts are essential for the application of zinc-air batteries....
Collapse
|
9
|
Liu Q, Ranocchiari M, van Bokhoven JA. Catalyst overcoating engineering towards high-performance electrocatalysis. Chem Soc Rev 2021; 51:188-236. [PMID: 34870651 DOI: 10.1039/d1cs00270h] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clean and sustainable energy needs the development of advanced heterogeneous catalysts as they are of vital importance for electrochemical transformation reactions in renewable energy conversion and storage devices. Advances in nanoscience and material chemistry have afforded great opportunities for the design and optimization of nanostructured electrocatalysts with high efficiency and practical durability. In this review article, we specifically emphasize the synthetic methodologies for the versatile surface overcoating engineering reported to date for optimal electrocatalysts. We discuss the recent progress in the development of surface overcoating-derived electrocatalysts potentially applied in polymer electrolyte fuel cells and water electrolyzers by correlating catalyst intrinsic structures with electrocatalytic properties. Finally, we present the opportunities and perspectives of surface overcoating engineering for the design of advanced (electro)catalysts and their deep exploitation in a broad scope of applications.
Collapse
Affiliation(s)
- Qiang Liu
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland. .,Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Marco Ranocchiari
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Jeroen A van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland. .,Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| |
Collapse
|
10
|
Han X, Gao Q, Yan Z, Ji M, Long C, Zhu H. Electrocatalysis in confined spaces: interplay between well-defined materials and the microenvironment. NANOSCALE 2021; 13:1515-1528. [PMID: 33434259 DOI: 10.1039/d0nr08237f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Catalysis in a confined space has attracted much attention due to the simultaneously designable nature of active sites and their microenvironment, leading to a broad spectrum of highly efficient chemical conversion schemes. Recent work has extended the scope of confined catalysis to electrochemical reactions. Mechanistic studies suggest that the confined environment in electrocatalysis can modulate mechanical, electronic, and geometric effects, stabilizing important charge-transfer intermediates and promoting reaction kinetics. In this minireview, we first discuss the fundamental concepts of confined catalysis by summarizing density functional theory (DFT) calculations and experimental investigations. We then present the rational design and applications of space-confined electrocatalysts with emphasis on the confined environment provided by carbon-based materials. We specifically focus on metal-based materials confined in carbon nanotubes (CNTs) and their applications in emerging electrochemical reactions including the oxygen reduction reaction (ORR), water-splitting reactions, carbon dioxide reduction reaction (CO2RR), and nitrogen reduction reaction (NRR). Finally, the existing challenges, opportunities, and future directions of electrocatalysis in confined spaces are highlighted.
Collapse
Affiliation(s)
- Xue Han
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Wang A, Shen X, Wang Y, Wang Q, Cheng L, Chen X, Lv C, Zhu W, Li L. Rational design of FeO x-MoP@MWCNT composite electrocatalysts toward efficient overall water splitting. Chem Commun (Camb) 2021; 57:6149-6152. [PMID: 34042123 DOI: 10.1039/d1cc01585k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a series of FeOx-MoP@MWCNT composite electrocatalysts was designed and prepared to investigate the influence of the content of FeOx on the water splitting performance. The optimized FeOx-MoP@MWCNTs-2 exhibits excellent hydrogen and oxygen evolution reaction activity while a cell voltage of 1.51 V with outstanding stability is attained, attributed to the synergistic effect of each component, as evidenced by the experimental and density functional theory results. The observed electrocatalytic activity outperforms current state-of-the-art non-precious metal electrocatalysts.
Collapse
Affiliation(s)
- Aijian Wang
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Xiaoliang Shen
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Yun Wang
- Jiangsu Tianwen New Material Technology Co., Ltd, Chang Zhou, 213001, P. R. China
| | - Qi Wang
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Laixiang Cheng
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Xiaodong Chen
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Cuncai Lv
- The College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China.
| | - Weihua Zhu
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Longhua Li
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| |
Collapse
|
12
|
Gu L, Sun XL, Zhao J, Gong BQ, Bao ZL, Jia HL, Guan MY, Ma SS. A highly efficient bifunctional electrocatalyst (ORR/OER) derived from GO functionalized with carbonyl, hydroxyl and epoxy groups for rechargeable zinc–air batteries. NEW J CHEM 2021. [DOI: 10.1039/d1nj00837d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A highly efficient bifunctional electrocatalyst, Co–N/S/rGO, was prepared via modifying the surface functional groups of GO, and it showed good application prospects in zinc–air batteries.
Collapse
Affiliation(s)
- Lei Gu
- School of Chemical and Environmental Engineering
- Institute of Advanced Functional Materials for Energy
- Jiangsu University of Technology
- Changzhou 213001
- P. R. China
| | - Xuan-Long Sun
- School of Chemical and Environmental Engineering
- Institute of Advanced Functional Materials for Energy
- Jiangsu University of Technology
- Changzhou 213001
- P. R. China
| | - Jiao Zhao
- School of Chemical and Environmental Engineering
- Institute of Advanced Functional Materials for Energy
- Jiangsu University of Technology
- Changzhou 213001
- P. R. China
| | - Bing-Quan Gong
- School of Chemical and Environmental Engineering
- Institute of Advanced Functional Materials for Energy
- Jiangsu University of Technology
- Changzhou 213001
- P. R. China
| | - Zheng-Lv Bao
- School of Chemical and Environmental Engineering
- Institute of Advanced Functional Materials for Energy
- Jiangsu University of Technology
- Changzhou 213001
- P. R. China
| | - Hai-Lang Jia
- School of Chemical and Environmental Engineering
- Institute of Advanced Functional Materials for Energy
- Jiangsu University of Technology
- Changzhou 213001
- P. R. China
| | - Ming-Yun Guan
- School of Chemical and Environmental Engineering
- Institute of Advanced Functional Materials for Energy
- Jiangsu University of Technology
- Changzhou 213001
- P. R. China
| | - Shuai-Shuai Ma
- School of Chemical and Environmental Engineering
- Institute of Advanced Functional Materials for Energy
- Jiangsu University of Technology
- Changzhou 213001
- P. R. China
| |
Collapse
|