1
|
Li B, Qi J, Liu F, Zhao R, Arabi M, Ostovan A, Song J, Wang X, Zhang Z, Chen L. Molecular imprinting-based indirect fluorescence detection strategy implemented on paper chip for non-fluorescent microcystin. Nat Commun 2023; 14:6553. [PMID: 37848423 PMCID: PMC10582162 DOI: 10.1038/s41467-023-42244-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 10/04/2023] [Indexed: 10/19/2023] Open
Abstract
Fluorescence analysis is a fast and sensitive method, and has great potential application in trace detection of environmental toxins. However, many important environmental toxins are non-fluorescent substances, and it is still a challenge to construct a fluorescence detection method for non-fluorescent substances. Here, by means of charge transfer effect and smart molecular imprinting technology, we report a sensitive indirect fluorescent sensing mechanism (IFSM) and microcystin (MC-RR) is selected as a model target. A molecular imprinted thin film is immobilized on the surface of zinc ferrite nanoparticles (ZnFe2O4 NPs) by using arginine, a dummy fragment of MC-RR. By implementation of IFSM on the paper-based microfluidic chip, a versatile platform for the quantitative assay of MC-RR is developed at trace level (the limit of detection of 0.43 μg/L and time of 20 min) in real water samples without any pretreatment. Importantly, the proposed IFSM can be easily modified and extended for the wide variety of species which lack direct interaction with the fluorescent substrate. This work offers the potential possibility to meet the requirements for the on-site analysis and may explore potential applications of molecularly imprinted fluorescent sensors.
Collapse
Affiliation(s)
- Bowei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071, Qingdao, China
| | - Ji Qi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071, Qingdao, China.
| | - Feng Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, China
| | - Rongfang Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071, Qingdao, China
| | - Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071, Qingdao, China
| | - Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071, Qingdao, China
| | - Jinming Song
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071, Qingdao, China.
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China.
- Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, 266237, Qingdao, China.
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, 264003, Yantai, China
| | - Zhiyang Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071, Qingdao, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, 266237, Qingdao, China.
| |
Collapse
|
2
|
Kang B, Kim H, Byeon SH. In situ immobilization of YVO 4:Eu phosphor particles on a film of vertically oriented Y 2(OH) 5Cl·nH 2O nanosheets. Chem Commun (Camb) 2020; 56:12745-12748. [PMID: 32966395 DOI: 10.1039/d0cc04746e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A heterostructured photoluminescence 'turn-off' film was developed using vertically oriented LYH:Eu nanosheets as a partial sacrificial layer for isolated YVO4:Eu3+ nanophosphor layers and was used for the convenient detection and removal of Cu2+ ions with excellent sensitivity and recyclability.
Collapse
Affiliation(s)
- Bora Kang
- Department of Applied Chemistry, College of Applied Science and Institute of Natural Sciences, Kyung Hee University, Gyeonggi 17104, Korea.
| | | | | |
Collapse
|