1
|
Wang P, Liu C. Deep eutectic solvents in food contaminants detection: Characteristics, interaction mechanism and application advances from extracting to other roles. Food Chem 2025; 476:143521. [PMID: 40009889 DOI: 10.1016/j.foodchem.2025.143521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Food safety is crucial for public health, yet it faces growing threats from environmental and anthropogenic pollutants. Deep eutectic solvents (DESs) have emerged as green and efficient alternative solvents for detecting trace pollutants. This review highlights the characteristics of DESs, their mechanisms for extracting target analytes and applications in food analysis. Subsequently, the challenges faced by DESs in the detection of food samples and future development trends are further discussed. DESs can selectively interact with various target analytes (including pesticides, veterinary drugs, food additives, heavy metals, toxins, and other residues) during the food safety testing process by forming hydrogen bond networks. Beyond serving as extraction solvents, DESs can act as adsorbents, eluents, and reaction media, thereby simplifying sample pretreatment and enhancing the detection performance of various contaminants. Overall, as customizable functional solvents, DESs hold great promise for advancing next-generation food analysis methods, though some technical barriers remain to be addressed.
Collapse
Affiliation(s)
- Peiyi Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Changhong Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
2
|
Liu Y, Huang D, Zhuo C, Guo M, Chen L, Chen X, Li H, Xu W. Evaluation of chiral separation ability and separation principle of β-cyclodextrins-based supramolecular deep eutectic solvent in capillary electrophoresis. Talanta 2025; 283:127099. [PMID: 39476791 DOI: 10.1016/j.talanta.2024.127099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 12/11/2024]
Abstract
A series of supramolecular deep eutectic solvents (SURPADESs) consisting of β-cyclodextrin (β-CDs) (β-CD, HP-β-CD, M-β-CD) and l-lactic acid were synthesized and employed as chiral selector to investigate their chiral selectivity in capillary electrophoresis. Key elements influencing the separation efficiency, such as the ratio of HBA/HBD of SUPRADESs, the concentration of SUPRADESs, and buffer pH were thoroughly examined and deliberated upon. Under the optimum enantioseparation conditions, three SUPRADESs systems showed markedly enhanced chiral separation of model chiral drugs, in comparison with single CDs and dual chiral selectors composed by adding its two constituents CDs and l-lactic acid separately. Additionally, the Benesi-Hildebrand plot was employed to determine the binding constant for the inclusion complexes, and molecular modeling was used to explore the mechanisms behind the increased chiral separations in SUPRADESs. Results demonstrated that SUPRADESs exhibit significantly improved chiral selectivity efficiency by enhancing the host-guest encapsulation of the constituent β-CDs, which is attributed to the increased hydrogen bonding and hydrophobic interactions between chiral analytes and β-CDs and HBD of SUPRADESs. This work provides a possibility for SUPRADESs to be used as chiral selection in CE.
Collapse
Affiliation(s)
- Yongjing Liu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Dongting Huang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Chenxi Zhuo
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Min Guo
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Lirong Chen
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Xiaofen Chen
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Hua Li
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Wei Xu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| |
Collapse
|
3
|
Ioannou KA, Georgiou MN, Ioannou GD, Christou A, Stavrou IJ, Schmid MG, Kapnissi-Christodoulou CP. Enantiomeric separation of nefopam and cathinone derivatives using a supramolecular deep eutectic solvent as a chiral selector in capillary electrophoresis. Electrophoresis 2024; 45:1721-1726. [PMID: 38962870 DOI: 10.1002/elps.202400092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
The present study investigates the utilization of a supramolecular deep eutectic solvent (SUPRADES), consisting of sulfated-β-cyclodextrin (S-β-CD) and citric acid (CA), as a chiral selector (CS) in capillary electrophoresis for the enantiomeric separation of nefopam (NEF) and five cathinone derivatives (3-methylmethcathinone [3-MMC], 4-methylmethcathinone [4-MMC], 3,4-dimethylmethcathinone [3,4-DMMC], 4-methylethcathinone [4-MEC], and 3,4-methylendioxycathinone [MDMC]). A significant improvement in enantiomeric separation of the target analytes was observed upon the addition of S-β-CD-CA to the background electrolyte (BGE), leading to a baseline separation of all analytes. In particular, the optimum percentage of S-β-CD-CA, added to the BGE, was determined to be 0.075% v/v for NEF (Rs = 1.5) and 0.050% v/v for three out of five cathinone derivatives (Rs = 1.5, 1.6, and 2.4 for 3-MMC, 4-MEC, and 3,4-DMMC, respectively). In the case of 4-MMC and MDMC, a higher percentage of the CS, equal to 0.075% and 0.10% v/v, respectively, was required to achieve baseline separation (Rs = 1.5, 1.9 for MDMC and 4-MMC, respectively). The outcomes of the present study highlight the potential effectiveness of using SUPRADES as a CS in electrophoretic enantioseparations.
Collapse
Affiliation(s)
| | | | | | | | - Ioannis J Stavrou
- Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
| | - Martin G Schmid
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | | |
Collapse
|
4
|
Gao Y, Fan M, Cheng X, Liu X, Yang H, Ma W, Guo M, Li L. Deep eutectic solvent: Synthesis, classification, properties and application in macromolecular substances. Int J Biol Macromol 2024; 278:134593. [PMID: 39127290 DOI: 10.1016/j.ijbiomac.2024.134593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Deep eutectic solvent (DES) is a kind of solvent prepared by mixing hydrogen bond donors and hydrogen bond acceptors, and have become a hot topic in ecological civilization construction due to its low toxicity and sustainability. Its excellent properties such as low volatility, thermal stability and biodegradability make it stand out among many organic solvents and widely used in fields including medicine, chemical industry and agriculture, with broad development prospects. In recent years, the application of DES in the food field has mostly focused on the extraction of small molecular substances, and there are few summaries on the application of DES in macromolecular substances. In this review, we introduced the synthesis, classification and properties of DES, and summarized the application of DES in the food industry for macromolecular substances, including the extraction of macromolecular substances such as chitosan and pectin, as well as the preparation of related macromolecular substrate films. At the same time, we analyzed the characteristics of DES and its advantages and limitations in application, and provided prospects for future development.
Collapse
Affiliation(s)
- Yuying Gao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Min Fan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Xiaoxiao Cheng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaofang Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Hui Yang
- Xin Yang Vocational and Technical College, Xinyang 464000, China
| | - Wenya Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Min Guo
- COFCO Nutrition and Health Research Institute, Beijing 102209, China
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
5
|
Zhang J, Li S, Yao L, Han Y, Chen K, Qian M, Li Z, Lin H. Cyclodextrin-based ternary supramolecular deep eutectic solvents for efficient extraction and analysis of trace quinolones and sulfonamides in wastewater by adjusting pH. Anal Chim Acta 2024; 1311:342714. [PMID: 38816153 DOI: 10.1016/j.aca.2024.342714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Antibiotics residues can accelerate the growth of drug-resistant bacteria and harm the ecological environment. Under the effect of enrichment and biomagnification, the emergence of drug-resistant pathogenic bacteria may eventually lead to humans being ineffective to drugs in the face of bacterial or fungal disease infections in the future. It is urgent to develop an efficient separation medium and analytical method for simultaneous extraction and determination of antibiotics in the water environment. RESULTS This work doped 2,6-Di-O-methyl-β-cyclodextrin, randomly methyl-β-cyclodextrin, 2-hydroxypropyl-β-cyclodextrin with thymol:fatty acid respectively to construct non-covalent interaction-dominated pH-responsive ternary supramolecular deep eutectic solvents (SUPRADESs), which can undergo a hydrophilic/hydrophobic transition with aqueous phase to achieve an efficient microextraction. Semi-empirical method illustrated that SUPRADESs have a wide range of hydrogen bond receptor sites. We developed a SUPRADES-based analytical method combined with liquid chromatography-triple quadrupole mass spectrometry for the extraction and determination of trace quinolones and sulfonamides in wastewater. The overall limits of detection of the method were 0.0021-0.0334 ng mL-1 and the limits of quantification were 0.0073-0.1114 ng mL-1. The linearity maintained good in the spiked level of 0.01-100 ng mL-1 (R2 > 0.99). The overall enrichment factors of the method were 157-201 with lower standard deviations (≤8.7). SIGNIFICANCE The method gave an extraction recovery of 70.1-115.3 % for 28 antibiotics in livestock farming wastewater samples from Zhejiang, China, at trace levels (minimum 0.5 ng mL-1). The results demonstrated that inducing the phase transition between SUPRADES and aqueous phase by adjusting pH for extraction is a novel and efficient pretreatment strategy. To our knowledge, this is the first application of cyclodextrin-based ternary SUPRADESs with pH-responsive reversible hydrophobicity-hydrophilicity transition behavior in wastewater analysis.
Collapse
Affiliation(s)
- Jingyu Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Shang Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Liping Yao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yulin Han
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Kexian Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Mingrong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Zuguang Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Hui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
6
|
Sun P, Wang C, Li S, Li N, Gao Y. Supramolecular deep eutectic solvent: a powerful tool for pre-concentration of trace metals in edible oil. Anal Bioanal Chem 2024; 416:3533-3542. [PMID: 38691170 DOI: 10.1007/s00216-024-05304-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024]
Abstract
The utilization of supramolecular deep eutectic solvent eddy-assisted liquid-liquid microextraction utilizing 2-hydroxypropyl β-cyclodextrin (SUPRADES) has been identified as a successful method for pre-enriching Cu, Zn, and Mn in vegetable oil samples. Determination of each element was conducted by inductively coupled plasma optical emission spectrometry (ICP-OES) after digestion of metal-enriched phases. Various parameters were examined, including the composition of SUPRADES species [2HP-β-CD: DL-lactic acid], a cyclodextrin mass ratio of 20 wt%, a water bath temperature of 75 °C, an extractor volume of 800 μL, a dispersant volume of 50 μL, and an eddy current time of 5 min. Optimal conditions resulted in extraction rates of 99.6% for Cu, 105.2% for Zn, and 101.5% for Mn. The method exhibits a broad linear range spanning from 10 to 20,000 μg L-1, with determination coefficients exceeding 0.99 for all analytes. Enrichment coefficients of 24, 21, and 35 were observed. Limits of detection ranged from 0.89 to 1.30 μg L-1, while limits of quantification ranged from 3.23 to 4.29 μg L-1. The unique structural characteristics of the method enable the successful determination of trace elements in a variety of edible vegetable oils.
Collapse
Affiliation(s)
- Peng Sun
- College of Food Science, Heilongjiang Bayi Agricultural University, No. 5, Xinfeng Road, Daqing, 163319, China.
- Agricultural Products and Processed Products Supervision and Testing Center, Ministry of Agriculture, Daqing, 163319, China.
- National Coarse Cereals Engineering Research Center, Daqing, 163319, China.
| | - Chao Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, No. 5, Xinfeng Road, Daqing, 163319, China
- National Coarse Cereals Engineering Research Center, Daqing, 163319, China
| | - Shuo Li
- Agricultural Products and Processed Products Supervision and Testing Center, Ministry of Agriculture, Daqing, 163319, China
- National Coarse Cereals Engineering Research Center, Daqing, 163319, China
| | - Nan Li
- College of Food Science, Heilongjiang Bayi Agricultural University, No. 5, Xinfeng Road, Daqing, 163319, China
- National Coarse Cereals Engineering Research Center, Daqing, 163319, China
| | - Yuling Gao
- Agricultural Products and Processed Products Supervision and Testing Center, Ministry of Agriculture, Daqing, 163319, China
- National Coarse Cereals Engineering Research Center, Daqing, 163319, China
| |
Collapse
|
7
|
Sarmento C, Duarte ARC, Rita Jesus A. Can (Natural) deep eutectic systems increase the efficacy of ocular therapeutics? Eur J Pharm Biopharm 2024; 198:114276. [PMID: 38582179 DOI: 10.1016/j.ejpb.2024.114276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
The eye is one of the most complex organs in the human body, with a unique anatomy and physiology, being divided into anterior and posterior segments. Ocular diseases can occur in both segments, but different diseases affect different segments. Glaucoma and cataracts affect the anterior segment, while macular degeneration and diabetic retinopathy occur in the posterior segment. The easiest approach to treat ocular diseases, especially in the anterior segment, is through the administration of topical eye drops, but this route presents many constraints, namely precorneal dynamic and static ocular barriers. On the other hand, the delivery of drugs to the posterior segment of the eye is far more challenging and is mainly performed by the intravitreal route. However, it can lead to severe complications such as retinal detachment, endophthalmitis, increased intraocular pressure and haemorrhage. The design of new drug delivery systems for the anterior segment is very challenging, but targeting the posterior one is even more difficult and little progress has been made. In this review we will discuss various strategies including the incorporation of additives in the formulations, such as viscosity, permeability, and solubility enhancers, namely based on Deep eutectic systems (DES). Natural deep eutectic systems (NADES) have emerged to solve several problems encountered in pharmaceutical industry, regarding the pharmacokinetic and pharmacodynamic properties of drugs. NADES can contribute to the design of advanced technologies for ocular therapeutics, including hydrogels and nanomaterials. Here in, we revise some applications of (NA)DES in the development of new drug delivery systems that can be translated into the ophthalmology field.
Collapse
Affiliation(s)
- Célia Sarmento
- LAQV-REQUIMTE, Chemistry Department, NOVA - School of Science and Technology, 2829-516 Caparica, Portugal
| | - Ana Rita C Duarte
- LAQV-REQUIMTE, Chemistry Department, NOVA - School of Science and Technology, 2829-516 Caparica, Portugal
| | - Ana Rita Jesus
- LAQV-REQUIMTE, Chemistry Department, NOVA - School of Science and Technology, 2829-516 Caparica, Portugal.
| |
Collapse
|
8
|
Şuta LM, Ridichie A, Ledeţi A, Temereancă C, Ledeţi I, Muntean D, Rădulescu M, Văruţ RM, Watz C, Crăineanu F, Ivan D, Vlase G, Stelea L. Host-Guest Complexation of Itraconazole with Cyclodextrins for Bioavailability Enhancement. Pharmaceutics 2024; 16:560. [PMID: 38675221 PMCID: PMC11054515 DOI: 10.3390/pharmaceutics16040560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Itraconazole is an antifungal agent included in the triazole pharmacological classification that belongs to the BCS class II, characterized by a low solubility in an aqueous medium (of 1 ng/mL, at neutral pH), which is frequently translated in a low oral bioavailability but with a high permeability. In this sense, it is necessary to find solutions to increase/improve the solubility of itraconazole in the aqueous environment. The main purpose of this study is the preparation and analysis of five different guest-host inclusion complexes containing intraconazole. Initially, a blind docking process was carried out to determine the interactions between itraconazole and the selected cyclodextrins. The second step of the study was to find out if the active pharmaceutical ingredient was entrapped in the cavity of the cyclodextrin, by using spectroscopic and thermal techniques. Also, the antifungal activity of the inclusion complexes was studied to examine if the entrapment of itraconazole influences the therapeutic effect. The results showed that the active substance was entrapped in the cavity of the cyclodextrins, with a molar ratio of 1:3 (itraconazole-cyclodextrin), and that the therapeutic effect was not influenced by the entrapment.
Collapse
Affiliation(s)
- Lenuţa-Maria Şuta
- Advanced Instrumental Screening Center, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.-M.Ş.); (A.L.); (I.L.); (D.I.)
- Department II—Pharmaceutical Technology, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Amalia Ridichie
- Advanced Instrumental Screening Center, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.-M.Ş.); (A.L.); (I.L.); (D.I.)
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timisoara, 2 Victoriei Square, 300006 Timisoara, Romania
| | - Adriana Ledeţi
- Advanced Instrumental Screening Center, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.-M.Ş.); (A.L.); (I.L.); (D.I.)
| | - Claudia Temereancă
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timisoara, 2 Victoriei Square, 300006 Timisoara, Romania
| | - Ionuţ Ledeţi
- Advanced Instrumental Screening Center, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.-M.Ş.); (A.L.); (I.L.); (D.I.)
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timisoara, 2 Victoriei Square, 300006 Timisoara, Romania
| | - Delia Muntean
- Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (D.M.); (M.R.); (F.C.); (L.S.)
| | - Matilda Rădulescu
- Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (D.M.); (M.R.); (F.C.); (L.S.)
| | - Renata-Maria Văruţ
- Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, 2-4 Petru Rares Str., 200349 Craiova, Romania;
| | - Claudia Watz
- Department I—Pharmaceutical Physics, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Florentin Crăineanu
- Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (D.M.); (M.R.); (F.C.); (L.S.)
| | - Denisa Ivan
- Advanced Instrumental Screening Center, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.-M.Ş.); (A.L.); (I.L.); (D.I.)
| | - Gabriela Vlase
- Research Centre for Thermal Analysis in Environmental Problems, West University of Timisoara, Pestalozzi Street 16, 300115 Timisoara, Romania;
| | - Lavinia Stelea
- Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (D.M.); (M.R.); (F.C.); (L.S.)
| |
Collapse
|
9
|
Kapre S, Palakurthi SS, Jain A, Palakurthi S. DES-igning the future of drug delivery: A journey from fundamentals to drug delivery applications. J Mol Liq 2024; 400:124517. [DOI: 10.1016/j.molliq.2024.124517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
|
10
|
Ioannou KA, Ioannou GD, Christou A, Schmid MG, Stavrou IJ, Kapnissi-Christodoulou CP. Novel supramolecular deep eutectic solvent (SUPRADES) as a sole chiral selector in capillary electrophoresis for the enantiomeric separation of fluorine-substituted amphetamine analogs. J Chromatogr A 2024; 1715:464628. [PMID: 38183783 DOI: 10.1016/j.chroma.2024.464628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
In this study, a novel supramolecular deep eutectic solvent consisting of sulfated-β-CD and citric acid (S-β-CD-CA) is reported for the first time. This innovative system was evaluated as a sole chiral selector in capillary electrophoresis for the enantioseparation of six fluorine-substituted amphetamine analogs, yielding remarkable outcomes. Baseline separations of all amphetamine analogs under study were achieved in less than 21.00 min using the S-β-CD-CA as the chiral selector. It was observed that the addition of 0.050 % v/v S-β-CD-CA into the background electrolyte resulted in the baseline separation of five out of the six fluorine-substituted amphetamine analogs, while in the case of the para-substituted amphetamine analog, 4-fluoramphetamine (4-FA), a higher percentage (0.15 % v/v) was required to achieve baseline enantioseparation. These findings emphasized the potential of this new supramolecular system in providing a class of solvents with promising chiral recognition properties.
Collapse
Affiliation(s)
| | | | | | - Martin G Schmid
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Graz 8010, Austria
| | - Ioannis J Stavrou
- Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus.
| | | |
Collapse
|
11
|
Qi Y, Ayinla M, Clifford S, Ramström O. Spontaneous and Selective Macrocyclization in Nitroaldol Reaction Systems. J Org Chem 2023. [PMID: 38154053 DOI: 10.1021/acs.joc.3c02148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Through a dynamic polymerization and self-sorting process, a range of lowellane macrocycles have been efficiently generated in nitroaldol systems composed of aromatic dialdehydes and aliphatic or aromatic dinitroalkanes. All identified macrocycles show a composition of two repeating units, resulting in tetra-β-nitroalcohols of different structures. The effects of the building block structure on the macrocyclization process have been demonstrated, and the influence from the solvent has been explored. In general, the formation of the lowellanes was amplified in response to phase-change effects, although solution-phase structures were, in some cases, favored.
Collapse
Affiliation(s)
- Yunchuan Qi
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, Massachusetts 01854, United States
| | - Mubarak Ayinla
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, Massachusetts 01854, United States
| | - Stephen Clifford
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, Massachusetts 01854, United States
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, Massachusetts 01854, United States
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| |
Collapse
|
12
|
Balenzano G, Racaniello GF, Arduino I, Lopedota AA, Lopalco A, Laquintana V, Denora N. Cyclodextrin-based supramolecular deep eutectic solvent (CycloDES): A vehicle for the delivery of poorly soluble drugs. Int J Pharm 2023; 647:123553. [PMID: 37884215 DOI: 10.1016/j.ijpharm.2023.123553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
The aim of this work was to develop a new class of deep eutectic solvent (DES) composed of a complexation agent, namely hydroxy-propyl-β-cyclodextrin (HPβCD), to exploit a synergic solubilization-enhancing approach. For this purpose, cyclodextrin-based supramolecular DES (CycloDES) were physical-chemical characterized and loaded with three different BCS class II model drugs, specifically Cannabidiol, Indomethacin, and Dexamethasone, evaluating the influence of different factors on the observed solubility and permeation compared with the only HPβCD/drug complexation. Hence, CycloDESs were presented as a possible vehicle for drugs and represent a novel potential approach for solving BCS class II and IV solubility issues, demonstrating at least a 100-fold improvement in the investigated drug solubilities. Furthermore, CycloDESs demonstrated a significantly improved resistance to dilution preserving a high percentage of drug in solution (i.e. 93% for Indomethacin) when water is added to the DES if compared with a glucose-choline chloride DES, used as a standard. This evidence guarantees the solubility-enhancing effect useful for the delivery of BCS class II and IV drugs converting solid raw material to advantageous liquid vehicles bypassing the rate-determining dissolution step.
Collapse
Affiliation(s)
- Gennaro Balenzano
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona, 4, I-70125 Bari, Italy
| | - Giuseppe Francesco Racaniello
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona, 4, I-70125 Bari, Italy
| | - Ilaria Arduino
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona, 4, I-70125 Bari, Italy
| | - Angela Assunta Lopedota
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona, 4, I-70125 Bari, Italy
| | - Antonio Lopalco
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona, 4, I-70125 Bari, Italy
| | - Valentino Laquintana
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona, 4, I-70125 Bari, Italy
| | - Nunzio Denora
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona, 4, I-70125 Bari, Italy.
| |
Collapse
|
13
|
Jia Z, Wang S, Yu H, Li W, Ye J, Hu Y, Liu C, Ye Z, Sun Y, Xu X. Novel supramolecular deep eutectic solvent pretreatment for obtaining fluorescent lignin and promoting biomass pyrolytic saccharification. BIORESOURCE TECHNOLOGY 2023; 388:129780. [PMID: 37739185 DOI: 10.1016/j.biortech.2023.129780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
In this study, β-CD was used as a receptor to prepare three novel SDES, which were used to pretreat corn stalks for obtaining fluorescent lignin and promoting biomass pyrolytic saccharification. It was found that GA-residue had a high cellulose retention ratio (94.63%) and the highest lignin removal ratio (61.78%). Besides, the yield of carbohydrates in bio-oil was increased from 0.63% to 49.37%, and fluorescent lignin was prepared for explosion detection, fluorescent film, and information encryption. It was confirmed that the weak interaction between β-CD and HBDs or dimer was mainly performed by hydrogen bond and van der Waals force. The minimum frontier orbital energy difference ΔEU (0.1976 a.u.) and high binding energy (-5456.71 kJ/mol) between molecules were calculated by DFT. Moreover, the mechanism of biomass pretreatment was explored. The green and efficient SDES developed in this study were of great significance for biomass pretreatment and efficient utilization of components.
Collapse
Affiliation(s)
- Zhiwen Jia
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| | - Shiyang Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| | - Haipeng Yu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| | - Wanyu Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| | - Jiamin Ye
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| | - Yihao Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| | - Cong Liu
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Zijian Ye
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Yan Sun
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| | - Xiwei Xu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China; Lingnan Modern Agricultural Science and Technology Maoming Branch of Guangdong Provincial Laboratory, Maoming 525032, Guangdong, China.
| |
Collapse
|
14
|
Oyoun F, Toncheva A, Henríquez LC, Grougnet R, Laoutid F, Mignet N, Alhareth K, Corvis Y. Deep Eutectic Solvents: An Eco-friendly Design for Drug Engineering. CHEMSUSCHEM 2023; 16:e202300669. [PMID: 37463123 DOI: 10.1002/cssc.202300669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/27/2023] [Accepted: 07/18/2023] [Indexed: 07/20/2023]
Abstract
In the spirit of circular economy and sustainable chemistry, the use of environmentally friendly chemical products in pharmacy has become a hot topic. In recent years, organic solvents have been the subject of a great range of restriction policies due to their harmful effects on the environment and toxicity to human health. In parallel, deep eutectic solvents (DESs) have emerged as suitable greener solvents with beneficial environmental impacts and a rich palette of physicochemical advantages related to their low cost and biocompatibility. Additionally, DESs can enable remarkable solubilizing effect for several active pharmaceutical ingredients (APIs), thus forming therapeutic DESs (TheDESs). In this work, special attention is paid to DESs, presenting a precise definition, classification, methods of preparation, and characterization. A description of natural DESs (NaDESs), i. e., eutectic solvents present in natural sources, is also reported. Moreover, the present review article is the first one to detail the different approaches for judiciously selecting the constituents of DESs in order to minimize the number of experiments. The role of DESs in the biomedical and pharmaceutical sectors and their impact on the development of successful therapies are also discussed.
Collapse
Affiliation(s)
- Feras Oyoun
- CNRS, Inserm, Chemical and Biological Techniques for Health (UTCBS), Université Paris Cité, School of Pharmacy, 4 avenue de l'Observatoire, F-75006, Paris, France
- Laboratory of Polymeric & Composite Materials, Materia Nova - Research and Innovative Center, Avenue Copernic 3, B-7000, Mons, Belgium
| | - Antoniya Toncheva
- Laboratory of Polymeric & Composite Materials, Materia Nova - Research and Innovative Center, Avenue Copernic 3, B-7000, Mons, Belgium
| | - Luis Castillo Henríquez
- CNRS, Inserm, Chemical and Biological Techniques for Health (UTCBS), Université Paris Cité, School of Pharmacy, 4 avenue de l'Observatoire, F-75006, Paris, France
| | - Raphael Grougnet
- Natural products, Analysis, Synthesis, UMR CNRS 8038 CiTCoM, Université Paris Cité, School of Pharmacy, F-75006, Paris, France
| | - Fouad Laoutid
- Laboratory of Polymeric & Composite Materials, Materia Nova - Research and Innovative Center, Avenue Copernic 3, B-7000, Mons, Belgium
| | - Nathalie Mignet
- CNRS, Inserm, Chemical and Biological Techniques for Health (UTCBS), Université Paris Cité, School of Pharmacy, 4 avenue de l'Observatoire, F-75006, Paris, France
| | - Khair Alhareth
- CNRS, Inserm, Chemical and Biological Techniques for Health (UTCBS), Université Paris Cité, School of Pharmacy, 4 avenue de l'Observatoire, F-75006, Paris, France
| | - Yohann Corvis
- CNRS, Inserm, Chemical and Biological Techniques for Health (UTCBS), Université Paris Cité, School of Pharmacy, 4 avenue de l'Observatoire, F-75006, Paris, France
| |
Collapse
|
15
|
Triolo A, Lo Celso F, Fourmentin S, Russina O. Liquid Structure Scenario of the Archetypal Supramolecular Deep Eutectic Solvent: Heptakis(2,6-di- O-methyl)-β-cyclodextrin/levulinic Acid. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:9103-9110. [PMID: 37351462 PMCID: PMC10283020 DOI: 10.1021/acssuschemeng.3c01858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/24/2023] [Indexed: 06/24/2023]
Abstract
The concept of supramolecular solvents has been recently introduced, and the extended liquid-state window accessible for mixtures of functionalized cyclodextrins (CDs) with hydrogen bond (HB) donor species, e.g., levulinic acid, led to the debut of supramolecular deep eutectic solvents (SUPRA-DES). These solvents retain CD's inclusion ability and complement it with enhanced solvation effectiveness due to an extended HB network. However, so far, these promising features were not rationalized in terms of a microscopic description, thus hindering a more complete capitalization. This is the first joint experimental and computational study on the archetypal SUPRA-DES: heptakis(2,6-di-O-methyl)-β-CD/levulinic acid (1:27). We used X-ray scattering to probe CD's aggregation level and molecular dynamics simulation to determine the nature of interactions between SUPRA-DES components. We discover that CDs are homogeneously distributed in bulk and that HB interactions, together with the electrostatic ones, play a major role in determining mutual interaction between components. However, dispersive forces act in synergy with HB to accomplish a fundamental task in hindering hydrophobic interactions between neighbor CDs and maintaining the system homogeneity. The mechanism of mutual solvation of CD and levulinic acid is fully described, providing fundamental indications on how to extend the spectrum of SUPRA-DES combinations. Overall, this study provides the key to interpreting structural organization and solvation tunability in SUPRA-DES to extend the range of sustainable applications for these new, unique solvents.
Collapse
Affiliation(s)
- Alessandro Triolo
- Laboratorio
Liquidi Ionici, Istituto Struttura della
Materia-Consiglio Nazionale delle Ricerche (ISM-CNR), Rome 00133, Italy
| | - Fabrizio Lo Celso
- Laboratorio
Liquidi Ionici, Istituto Struttura della
Materia-Consiglio Nazionale delle Ricerche (ISM-CNR), Rome 00133, Italy
- Department
of Physics and Chemistry, Università
di Palermo, Palermo 90133, Italy
| | - Sophie Fourmentin
- Unité
de Chimie Environnementale et Interactions sur le Vivant (UCEIV, UR
4492), Université du Littoral Côte
d’Opale (ULCO), 59140 Dunkerque, France
| | - Olga Russina
- Laboratorio
Liquidi Ionici, Istituto Struttura della
Materia-Consiglio Nazionale delle Ricerche (ISM-CNR), Rome 00133, Italy
- Department
of Chemistry, Sapienza University of Rome, Rome 00185, Italy
| |
Collapse
|
16
|
Makoś-Chełstowska P. VOCs absorption from gas streams using deep eutectic solvents - A review. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130957. [PMID: 36860043 DOI: 10.1016/j.jhazmat.2023.130957] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Volatile organic compounds (VOCs) are one of the most severe atmospheric pollutants. They are mainly emitted into the atmosphere from anthropogenic sources such as automobile exhaust, incomplete fuel combustion, and various industrial processes. VOCs not only cause hazards to human health or the environment but also adversely affect industrial installation components due to their specific properties, i.e., corrosive and reactivity. Therefore, much attention is being paid to developing new methods for capturing VOCs from gaseous streams, i.e., air, process streams, waste streams, or gaseous fuels. Among the available technologies, absorption based on deep eutectic solvents (DES) is widely studied as a green alternative to other commercial processes. This literature review presents a critical summary of the achievements in capturing individual VOCs using DES. The types of used DES and their physicochemical properties affecting absorption efficiency, available methods for evaluating the effectiveness of new technologies, and the possibility of regeneration of DES are described. In addition, critical comments on the new gas purification methods and future perspectives are included.
Collapse
Affiliation(s)
- Patrycja Makoś-Chełstowska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland; EcoTech Center, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| |
Collapse
|
17
|
Abdelquader MM, Li S, Andrews GP, Jones DS. Therapeutic Deep Eutectic Solvents: A Comprehensive Review of Their Thermodynamics, Microstructure and Drug Delivery Applications. Eur J Pharm Biopharm 2023; 186:85-104. [PMID: 36907368 DOI: 10.1016/j.ejpb.2023.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/13/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Deep eutectic solvents (DES) are multicomponent liquids that are usually formed by coupling a hydrogen bond donor and acceptor leading to strong non-covalent (NC) intermolecular networking and profound depression in the melting point of the system. Pharmaceutically, this phenomenon has been exploited to improve drugs' physicochemical properties, with an established DES therapeutic subcategory, therapeutic deep eutectic solvents (THEDES). THEDES preparation is usually via straightforward synthetic processes with little involvement of sophisticated techniques, which, in addition to its thermodynamic stability, make these multi-component molecular adducts a very attractive alternative for drug enabling purposes. Other NC bonded binary systems (e.g., co-crystals and ionic liquids) are utilized in the pharmaceutical field for enhancing drug's behaviours. However, a clear distinction between these systems and THEDES is scarcely discussed in the current literature. Accordingly, this review provides a structure-based categorization for DES formers, a discussion of its thermodynamic properties and phase behaviour, and it clarifies the physicochemical and microstructure boundaries between DES and other NC systems. Additionally, a summary of its preparation techniques and their experimental conditions preparation is supplied. Instrumental analysis techniques can be used to characterize and differentiate DES from other NC mixtures, hence this review draws a road map to for this purpose. Since this work mainly focuses on pharmaceutical applications of DES, all types of THEDES including the highly discussed types (conventional, drugs dissolved in DES and polymer based) in addition to the less discussed categories are covered. Finally, the regulatory status of THEDES was investigated despite the current unclear situation.
Collapse
Affiliation(s)
- Magdy M Abdelquader
- Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanat, Egypt.
| | - Shu Li
- Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Gavin P Andrews
- Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - David S Jones
- Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
18
|
Albertini B, Bertoni S, Sangiorgi S, Nucci G, Passerini N, Mezzina E. NaDES as a green technological approach for the solubility improvement of BCS class II APIs: An insight into the molecular interactions. Int J Pharm 2023; 634:122696. [PMID: 36758882 DOI: 10.1016/j.ijpharm.2023.122696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Recently, Natural Deep Eutectic Solvents (NaDES) have emerged as potential solvents for boosting drug bioavailability. In this work, the mechanism of solubility enhancement of some APIs belonging to BCS class II (tolbutamide, nimesulide, domperidone and cinnarizine) in these eutectic bio-solvents was investigated in order to get deeper insights into the molecular interactions between the NaDES components and the selected drugs. Different NaDES formulations based on choline chloride, proline, solid organic acids (citric, tartaric and malic acid), sugars (glucose and xylitol) and water were prepared by mild heating (70 °C). Characterization of unloaded NaDES (pH, Karl Fisher titration, viscosity and FTIR analysis) indicated that the type of Hydrogen Bond Acceptor (HBA) and Hydrogen Bond Donor (HBD), their molar ratio as well as water amount strongly affect the extent of H-bonding interactions. Hard gelatin capsules filled with NaDES maintained their integrity until 6 months, proving that all water molecules participate in H-bond network. APIs' solubility enhancement was significant in all NaDES with respect to buffer solutions (pH 1.2 and 6.8). Analysing NaDES having Choline as HBA, it was found that the solubility of smaller molecules increased using larger HBD, while higher molecular weight APIs can be better inserted into the network formed by smaller HBD. NOE experiments demonstrated the formation of a robust supramolecular structure among the protons of choline, those of organic acid and water. In addition, 1D ROESY spectra revealed for the first time the crucial role of choline (methyl groups) in establishing hydrophobic interactions with the relative aliphatic or aromatic portion of the drugs. These data suggest the complex structure of the API-NaDES supramolecular assembly and underline that drug solubility is dependent on a balance network of H-bonds and hydrophobic interactions as well. Understanding the type of interactions between the API and NaDES is essential for their use as effective solubilisation aid.
Collapse
Affiliation(s)
- Beatrice Albertini
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy.
| | - Serena Bertoni
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Stefano Sangiorgi
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Giorgia Nucci
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Nadia Passerini
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Elisabetta Mezzina
- Department of Chemistry "G. Ciamician", University of Bologna, Via San Giacomo 11, 40126 Bologna, Italy
| |
Collapse
|
19
|
Schlicht S, Drummer D. Eutectic In Situ Modification of Polyamide 12 Processed through Laser-Based Powder Bed Fusion. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2050. [PMID: 36903165 PMCID: PMC10003968 DOI: 10.3390/ma16052050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Laser-based powder bed fusion (LPBF) of polymers allows for the additive manufacturing of dense components with high mechanical properties. Due to inherent limitations of present material systems suitable for LPBF of polymers and required high processing temperatures, the present paper investigates the in situ modification of material systems using powder blending of p-aminobenzoic acid and aliphatic polyamide 12, followed by subsequent laser-based additive manufacturing. Prepared powder blends exhibit a considerable reduction of required processing temperatures dependent on the fraction of p-aminobenzoic acid, allowing for the processing of polyamide 12 at a build chamber temperature of 141.5 °C. An elevated fraction of 20 wt% of p-aminobenzoic acid allows for obtaining a considerably increased elongation at break of 24.65% ± 2.87 while exhibiting a reduced ultimate tensile strength. Thermal investigations demonstrate the influence of the thermal material history on thermal properties, associated with the suppression of low-melting crystalline fractions, yielding amorphous material properties of the previously semi-crystalline polymer. Based on complementary infrared spectroscopic analysis, the increased presence of secondary amides can be observed, indicating the influence of both covalently bound aromatic groups and hydrogen-bound supramolecular structures on emerging material properties. The presented approach represents a novel methodology for the energy-efficient in situ preparation of eutectic polyamides, potentially allowing for the manufacturing of tailored material systems with adapted thermal, chemical, and mechanical properties.
Collapse
Affiliation(s)
- Samuel Schlicht
- Institute of Polymer Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Am Weichselgarten 10, 91058 Erlangen, Germany
- Collaborative Research Center 814, Friedrich-Alexander-Universität Erlangen-Nürnberg, Am Weichselgarten 10, 91058 Erlangen, Germany
| | - Dietmar Drummer
- Institute of Polymer Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Am Weichselgarten 10, 91058 Erlangen, Germany
- Collaborative Research Center 814, Friedrich-Alexander-Universität Erlangen-Nürnberg, Am Weichselgarten 10, 91058 Erlangen, Germany
| |
Collapse
|
20
|
Ahmer MF, Ullah Q. Development and applications of deep eutectic solvents in different chromatographic techniques. JPC-J PLANAR CHROMAT 2023. [DOI: 10.1007/s00764-022-00216-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Nakhle L, Kfoury M, Greige-Gerges H, Landy D. Retention of a plethora of essential oils and aromas in deep eutectic solvent:water:cyclodextrin mixtures. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
El Masri S, Ruellan S, Zakhour M, Auezova L, Fourmentin S. Cyclodextrin-based low melting mixtures as a solubilizing vehicle: Application to non-steroidal anti-inflammatory drugs. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Shi B, Zhao X, Chai Y, Qin P, Qu W, Lin Q, Zhang Y. Detection of L‐Aspartic Acid and L‐Glutamic Acid in Water Using a Fluorescent Nanoparticle Constructed by Pillar[5]arene‐Based Molecular Recognition. ChemistrySelect 2022. [DOI: 10.1002/slct.202200757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bingbing Shi
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Xing‐Xing Zhao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Yongping Chai
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Peng Qin
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Wen‐Juan Qu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Qi Lin
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - You‐Ming Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
- Gansu Natural Energy Research Institute Lanzhou Gansu 730046 P. R. China
| |
Collapse
|
24
|
Krawczyk K, Silvestri D, Nguyen NHA, Ševců A, Łukowiec D, Padil VVT, Řezanka M, Černík M, Dionysiou DD, Wacławek S. Enhanced degradation of sulfamethoxazole by a modified nano zero-valent iron with a β-cyclodextrin polymer: Mechanism and toxicity evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152888. [PMID: 34998775 DOI: 10.1016/j.scitotenv.2021.152888] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Rising concern about emerging and already persisting pollutants in water has urged the scientific community to develop novel remedial techniques. A new group of remediation methods is based on the modification of nanoscale zero-valent iron particles (nZVI), which are well known for treating volatile organic compounds and heavy metals. The properties of nZVI may be further enhanced by modifying their structure or surface using "green" polymers. Herein, nZVI was modified by a β-cyclodextrin polymer (β-CDP), which is considered an environmentally safe and inexpensive adsorbent of contaminants. This composite was used for the first time for the degradation of sulfamethoxazole (SMX). Coating by β-CDP not only enhanced the degradation of SMX (>95%, under 10 min) by the nanoparticles in a wide pH range (3-9) and enabled their efficient reusability (for three cycles) but also made the coated nZVI less toxic to the model bioindicator microalga Raphidocelis subcapitata. Moreover, degradation products of SMX were found to be less toxic to Escherichia coli bacteria and R. subcapitata microalga, contrary to the SMX antibiotic itself, indicating a simple and eco-friendly cleaning process. This research aims to further stimulate and develop novel remedial techniques based on nZVI, and provides a potential application in the degradation of antibiotics in a wide pH range. Moreover, the wealth of available cyclodextrin materials used for surface modification may open a way to discover more efficient and attractive composites for environmental applications.
Collapse
Affiliation(s)
- Kamil Krawczyk
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic, EU
| | - Daniele Silvestri
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic, EU
| | - Nhung H A Nguyen
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic, EU
| | - Alena Ševců
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic, EU
| | - Dariusz Łukowiec
- Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18a St., 44-100 Gliwice, Poland
| | - Vinod V T Padil
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic, EU
| | - Michal Řezanka
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic, EU
| | - Miroslav Černík
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic, EU.
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH 45221-0012, USA
| | - Stanisław Wacławek
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic, EU.
| |
Collapse
|
25
|
Effect of β-cyclodextrin/polydopamine composite modified anode on the performance of microbial fuel cell. Bioprocess Biosyst Eng 2022; 45:855-864. [PMID: 35230555 DOI: 10.1007/s00449-022-02703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/28/2022] [Indexed: 11/02/2022]
Abstract
The relatively weak microbial adhesion is a bottleneck in improving the power generation performance of microbial fuel cell (MFC). Anode modification is a simple and effective method to solve this problem. A new type of β-cyclodextrin/polydopamine modified carbon felt anode was prepared, and the effects of β-cyclodextrin/polydopamine modified anode on the main performance indexes such as power density and chemical oxygen demand (COD) removal rate of MFC were evaluated. The maximum power density and the output electric energy during the test period of MFC using the modified anode were 102 mW/m2 and 84.96 J, which were 364% and 295.3% higher than those of MFC with conventional carbon felt anode, respectively; and the COD removal rate was 124.4% higher than that of MFC with unmodified anode. Modifying the anode with β-cyclodextrin-polyacyclic composite materials is an effective method to improve the overall performance of MFC.
Collapse
|
26
|
Panda S, Fourmentin S. Cyclodextrin-based supramolecular low melting mixtures: efficient absorbents for volatile organic compounds abatement. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:264-270. [PMID: 34490573 DOI: 10.1007/s11356-021-16279-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Cyclodextrins (CDs) and deep eutectic solvents (DESs) are emerging absorbent materials for the removal of volatile organic compounds (VOCs). In this study, we have used combination of modified CDs and levulinic acid to form four DESs analogs, referred to as supramolecular low-melting mixtures (LMMs), to study their absorption characteristics towards five VOCs, namely acetaldehyde, butanone, dichloromethane, thiophene, and toluene. The supramolecular LMMs showed up to 250-fold reduction in the vapor-liquid partition coefficients compared to water. The overall absorption capacity found to be synergistic and seemed to be dictated by the hydrophobicity of the VOCs. Toluene and dichloromethane were absorbed at 99 and 95% by the supramolecular LMMs, respectively, even at higher concentrations, with a linear relationship between the concentration and absorption capacity. The LMMs also retained their absorption capacities even after five absorption/desorption cycles.
Collapse
Affiliation(s)
- Somenath Panda
- Univ. Littoral Côte d'Opale, UR 4492, UCEIV, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, F-59140, Dunkerque, France
| | - Sophie Fourmentin
- Univ. Littoral Côte d'Opale, UR 4492, UCEIV, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, F-59140, Dunkerque, France.
| |
Collapse
|
27
|
Farooq MQ, Zeger VR, Anderson JL. Comparing the extraction performance of cyclodextrin-containing supramolecular deep eutectic solvents versus conventional deep eutectic solvents by headspace single drop microextraction. J Chromatogr A 2021; 1658:462588. [PMID: 34662824 DOI: 10.1016/j.chroma.2021.462588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/05/2023]
Abstract
A headspace single drop microextraction (HS-SDME) method coupled with high performance liquid chromatography was developed to compare the extraction of eighteen aromatic organic pollutants from aqueous solutions using cyclodextrin-based supramolecular deep eutectic solvents (SUPRADESs) and alkylammonium halide-based conventional deep eutectic solvents (DESs). Different derivatives of beta-cyclodextrin (β-CD) were employed as hydrogen bond acceptors (HBA) in SUPRADESs and the extraction performance investigated. SUPRADES comprised of the 20 wt% native β-CD HBA provided the highest enrichment factors of analytes compared to SUPRADESs comprised of other derivatives of β-CD (random methylated β-cyclodextrin, heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin, and 2-hydroxypropyl β-cyclodextrin). In addition, native β-CD and its derivatives were dissolved in the neat DESs and their effect on the extraction of analytes examined. Dissolution of 20 wt% native β-CD in the choline chloride ([Ch+][Cl-]):2Urea DES resulted in a significant increase in the extraction efficiencies of target analytes compared to the neat [Ch+][Cl-]:2Urea DES. Under optimum conditions, the extraction method required a solvent microdroplet of 6.5 μL, 1000 rpm stir rate, 30% (w/v) salt concentration, and a temperature of 40 °C. The tetrabutylammonium chloride: 2 lactic acid DES resulted in the highest enrichment factors while the [Ch+][Cl-]:2Urea DES had the lowest for most of the analytes among the evaluated solvents. The method provided limits of detection (LODs) down to 35 μg L-1. Furthermore, the developed method was applied for the analysis of spiked tap and lake water, where relative recoveries ranging from 83.7% ̶ 119.7% and relative standard deviations lower than 19.2% were achieved.
Collapse
Affiliation(s)
- Muhammad Qamar Farooq
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA; Ames Laboratory-USDOE, Iowa State University, Ames, Iowa 50011, USA
| | - Victoria R Zeger
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA; Ames Laboratory-USDOE, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
28
|
Wils L, Hilali S, Boudesocque-Delaye L. Biomass Valorization Using Natural Deep Eutectic Solvents: What's New in France? Molecules 2021; 26:6556. [PMID: 34770964 PMCID: PMC8586925 DOI: 10.3390/molecules26216556] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
With the growing interest in more environmentally friendly solvents and processes, the introduction of Natural Deep Eutectic Solvents (NaDES) as low cost, non-toxic and biodegradable solvents represent a new opportunity for green and sustainable chemistry. Thanks to their remarkable advantages, NaDES are now arousing growing interest in many fields of research such as food, health, cosmetics and biofuels. Around the world, NaDES are seen as a promising alternative to commonly used petrochemical solvents. The objective of this review is to draw up a panorama of the existing skills on NaDES in French laboratories and industries for the valuation of natural products. This review therefore focuses on current applications, skills and perspectives, in order to analyze the place of French research in the use of NaDES for the valorization of biomass since 2015.
Collapse
Affiliation(s)
| | | | - Leslie Boudesocque-Delaye
- EA 7502 Synthèse et Isolement de Molécules BioActives (SIMBA), Université de Tours, 31 Avenue Monge, 37200 Tours, France; (L.W.); (S.H.)
| |
Collapse
|
29
|
Abstract
Various eutectic systems have been proposed and studied over the past few decades. Most of the studies have focused on three typical types of eutectics: eutectic metals, eutectic salts, and deep eutectic solvents. On the one hand, they are all eutectic systems, and their eutectic principle is the same. On the other hand, they are representative of metals, inorganic salts, and organic substances, respectively. They have applications in almost all fields related to chemistry. Their different but overlapping applications stem from their very different properties. In addition, the proposal of new eutectic systems has greatly boosted the development of cross-field research involving chemistry, materials, engineering, and energy. The goal of this review is to provide a comprehensive overview of these typical eutectics and describe task-specific strategies to address growing demands.
Collapse
Affiliation(s)
- Dongkun Yu
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China.
| | - Zhimin Xue
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Tiancheng Mu
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China.
| |
Collapse
|
30
|
Shumilin I, Harries D. Cyclodextrin solubilization in hydrated reline: Resolving the unique stabilization mechanism in a deep eutectic solvent. J Chem Phys 2021; 154:224505. [PMID: 34241212 DOI: 10.1063/5.0052537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
By complexing with hydrophobic compounds, cyclodextrins afford increased solubility and thermodynamic stability to hardly soluble compounds, thereby underlining their invaluable applications in pharmaceutical and other industries. However, common cyclodextrins such as β-cyclodextrin, suffer from limited solubility in water, which often leads to precipitation and formation of unfavorable aggregates, driving the search for better solvents. Here, we study the solvation of cyclodextrin in deep eutectic solvents (DESs), environmentally friendly media that possess unique properties. We focus on reline, the DES formed from choline chloride and urea, and resolve the mechanism through which its constituents elevate β-cyclodextrin solubility in hydrated solutions compared to pure water or dry reline. Combining experiments and simulations, we determine that the remarkable solubilization of β-cyclodextrin in hydrated reline is mostly due to the inclusion of urea inside β-cyclodextrin's cavity and at its exterior surfaces. The role of choline chloride in further increasing solvation is twofold. First, it increases urea's solubility beyond the saturation limit in water, ultimately leading to much higher β-cyclodextrin solubility in hydrated reline in comparison to aqueous urea solutions. Second, choline chloride increases urea's accumulation in β-cyclodextrin's vicinity. Specifically, we find that the accumulation of urea becomes stronger at high reline concentrations, as the solution transitions from reline-in-water to water-in-reline, where water alone cannot be regarded as the solvent. Simulations further suggest that in dry DES, the mechanism of β-cyclodextrin solvation changes so that reline acts as a quasi-single component solvent that lacks preference for the accumulation of urea or choline chloride around β-cyclodextrin.
Collapse
Affiliation(s)
- Ilan Shumilin
- The Fritz Haber Research Center, and The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, Institute of Chemistry, The Hebrew University, Jerusalem 9190401, Israel
| | - Daniel Harries
- The Fritz Haber Research Center, and The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, Institute of Chemistry, The Hebrew University, Jerusalem 9190401, Israel
| |
Collapse
|
31
|
Fabrication of a novel bio-sorbent based on magnetic β-cyclodextrin composites modified by polymeric deep eutectic solvent for the efficient separation of Ovalbumin. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Cantelli A, Franchi P, Mezzina E, Lucarini M. Determination of Binding Strengths of Host‐Guest Complexes in Deep Eutectic Solvents Using Spin Probe Methodology. Chemphyschem 2021; 22:517-521. [DOI: 10.1002/cphc.202001007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/15/2021] [Indexed: 01/04/2023]
Affiliation(s)
- Andrea Cantelli
- Department of Chemistry “G. Ciamician” University of Bologna Via San Giacomo 11 Bologna
| | - Paola Franchi
- Department of Chemistry “G. Ciamician” University of Bologna Via San Giacomo 11 Bologna
| | - Elisabetta Mezzina
- Department of Chemistry “G. Ciamician” University of Bologna Via San Giacomo 11 Bologna
| | - Marco Lucarini
- Department of Chemistry “G. Ciamician” University of Bologna Via San Giacomo 11 Bologna
| |
Collapse
|
33
|
El Achkar T, Moura L, Moufawad T, Ruellan S, Panda S, Longuemart S, Legrand FX, Costa Gomes M, Landy D, Greige-Gerges H, Fourmentin S. New generation of supramolecular mixtures: Characterization and solubilization studies. Int J Pharm 2020; 584:119443. [PMID: 32447025 DOI: 10.1016/j.ijpharm.2020.119443] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 11/28/2022]
Abstract
In this work, a series of novel low melting mixtures (LMM) based on cyclodextrins (CD) and levulinic acid and inspired by the deep eutectic solvents (DES), were prepared. These supramolecular mixtures are the first reported CD-based mixtures that are liquid at room temperature. Density, viscosity and rheological measurements as well as differential scanning calorimetry and thermogravimetric analysis were performed to characterize these new LMM. Nuclear magnetic resonance (NMR) spectroscopy was used to monitor their stability. Furthermore, their ability to solubilize trans-anethole (AN) and related essentials oils were evaluated by static headspace-gas chromatography (SH-GC), in comparison with water. AN was up to 1300 times more soluble in the CD-based LMM than in water. Finally, multiple headspace extraction (MHE) was used to monitor the release of AN from these LMM. After 10 extractions, 20 to 40% of AN was released from the studied LMM, while 70% was released from water. The new CD-based LMM have potential applications for solubilization and delivery of poorly soluble drugs.
Collapse
Affiliation(s)
- Tracy El Achkar
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV,UR 4492), SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, 59140 Dunkerque, France; Bioactive Molecules Research Laboratory, Faculty of Sciences, Lebanese University, 1202 Jdeidet El Metn, Lebanon
| | - Leila Moura
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV,UR 4492), SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
| | - Tarek Moufawad
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV,UR 4492), SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, 59140 Dunkerque, France; Laboratoire de Chimie, ENS Lyon, UMR CNRS 5182, 46 Allée Italie, 69007 Lyon, France
| | - Steven Ruellan
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV,UR 4492), SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
| | - Somenath Panda
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV,UR 4492), SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
| | - Stéphane Longuemart
- Unité Dynamique et Structures des Matériaux Moléculaires (UDSMM, EA 4476), Université du Littoral Côte d'Opale, 59140 Dunkerque, France
| | - François-Xavier Legrand
- Institut Galien Paris-Sud, Université Paris-Sud, CNRS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | | | - David Landy
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV,UR 4492), SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Faculty of Sciences, Lebanese University, 1202 Jdeidet El Metn, Lebanon
| | - Sophie Fourmentin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV,UR 4492), SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, 59140 Dunkerque, France.
| |
Collapse
|