1
|
Li Z, Wu X, Wang W, Wen X, Niu F, Han D, Zhong W, Ordomsky VV, Wang Q, Wei R, Liang T. Monolayer Amphiphiles Hydrophobicize MoS 2-Mediated Real-Time Water Removal for Efficient Waterproof Hydrogen Detection. ACS Sens 2024; 9:6430-6440. [PMID: 39527835 DOI: 10.1021/acssensors.4c01696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Ensuring water-fouling-free operation of semiconductor-based gas sensors is essential to maintaining their accuracy, reliability, and stability across diverse applications. Despite the use of hydrophobic strategies to prevent external water intrusion, addressing in situ-produced water transport during H2 detection remains a challenge. Herein, we construct a novel waterproof H2 sensor by integrating single-atom Ru(III) self-assembly with monolayer amphiphiles embedded in MoS2. The unique monolayer structure enables the sensor to detect H2 in the presence of water, as well as facilitate the self-transport of in situ-generated water from the H2-O2 reaction during H2 detection. Molecular dynamics simulations reveal that monolayer amphiphiles exhibit a higher water diffusion coefficient than multilayer amphiphiles, making them more advantageous for removing in situ-produced water. Deployable on mobile platforms, it enables wireless H2cat detection for up to 6 months, without the introduction of protective membranes against dust and water ingress. This work not only enhances the performance of H2 detection but also introduces a new concept for the advancement of stable water-sensitive sensors.
Collapse
Affiliation(s)
- Zongke Li
- College of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiao Wu
- College of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wen Wang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, and School of Physics, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaoming Wen
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Feng Niu
- College of Materials and Chemistry, China Jiliang University, Zhejiang 310018, China
| | - Dandan Han
- College of Science, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Wei Zhong
- College of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Vitaly V Ordomsky
- UMR 8181-UCCS-Unit'e de Catalyse et Chimie du Solide, University of Lille, CNRS, Centrale Lille, ENSCL, University of Artois, Lille F-59000, France
| | - Qiyan Wang
- College of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ronghan Wei
- College of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Tianshui Liang
- College of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
2
|
Zuo J, Peng A, Wu P, Chen J, Yao C, Pan J, Zhu E, Weng Y, Zhang K, Feng H, Jin Z, Qian Z. Charge-regulated fluorescent anchors enable high-fidelity tracking of plasma membrane dynamics during biological events. Chem Sci 2024; 15:8934-8945. [PMID: 38873067 PMCID: PMC11168104 DOI: 10.1039/d4sc01423e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/04/2024] [Indexed: 06/15/2024] Open
Abstract
Many biological processes generally require long-term visualization tools for time-scale dynamic changes of the plasma membrane, but there is still a lack of design rules for such imaging tools based on small-molecule fluorescent probes. Herein, we revealed the key regulatory roles of charge number and species of fluorescent dyes in the anchoring ability of the plasma membrane and found that the introduction of multi-charged units and appropriate charge species is often required for fluorescent dyes with strong plasma membrane anchoring ability by systematically investigating the structure-function relationship of cyanostyrylpyridium (CSP) dyes with different charge numbers and species and their imaging performance for the plasma membrane. The CSP-DBO dye constructed exhibits strong plasma membrane anchoring ability in staining the plasma membrane of cells, in addition to many other advantages such as excellent biocompatibility and general universality of cell types. Such a fluorescent anchor has been successfully used to monitor chemically induced plasma membrane damage and dynamically track various cellular biological events such as cell fusion and cytokinesis over a long period of time by continuously monitoring the dynamic morphological changes of the plasma membrane, providing a valuable precise visualization tool to study the physiological response to chemical stimuli and reveal the structural morphological changes and functions of the plasma membrane during these important biological events from a dynamic perspective. Furthermore, CSP-DBO exhibits excellent biocompatibility and imaging capability in vivo such as labelling the plasma membrane in vivo and monitoring the metabolic process of lipofuscin as an aging indicator.
Collapse
Affiliation(s)
- Jiaqi Zuo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Material Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Aohui Peng
- College of Life Science, Zhejiang Normal University YIngbin Road 688 JInhua 321004 China
| | - Penglei Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Material Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Junyi Chen
- College of Life Science, Zhejiang Normal University YIngbin Road 688 JInhua 321004 China
| | - Chuangye Yao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Material Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Junjun Pan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Material Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Engao Zhu
- College of Life Science, Zhejiang Normal University YIngbin Road 688 JInhua 321004 China
| | - Yingye Weng
- College of Life Science, Zhejiang Normal University YIngbin Road 688 JInhua 321004 China
| | - Kewei Zhang
- College of Life Science, Zhejiang Normal University YIngbin Road 688 JInhua 321004 China
| | - Hui Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Material Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Zhigang Jin
- College of Life Science, Zhejiang Normal University YIngbin Road 688 JInhua 321004 China
| | - Zhaosheng Qian
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Material Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| |
Collapse
|
3
|
Zuo J, Zhu E, Yin W, Yao C, Liao J, Ping X, Zhu Y, Cai X, Rao Y, Feng H, Zhang K, Qian Z. Long-term spatiotemporal and highly specific imaging of the plasma membrane of diverse plant cells using a near-infrared AIE probe. Chem Sci 2023; 14:2139-2148. [PMID: 36845931 PMCID: PMC9945320 DOI: 10.1039/d2sc05727a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/19/2023] [Indexed: 01/21/2023] Open
Abstract
Fluorescent probes are valuable tools to visualize plasma membranes intuitively and clearly and their related physiological processes in a spatiotemporal manner. However, most existing probes have only realized the specific staining of the plasma membranes of animal/human cells within a very short time period, while almost no fluorescent probes have been developed for the long-term imaging of the plasma membranes of plant cells. Herein, we designed an AIE-active probe with NIR emission to achieve four-dimensional spatiotemporal imaging of the plasma membranes of plant cells based on a collaboration approach involving multiple strategies, demonstrated long-term real-time monitoring of morphological changes of plasma membranes for the first time, and further proved its wide applicability to plant cells of different types and diverse plant species. In the design concept, three effective strategies including the similarity and intermiscibility principle, antipermeability strategy and strong electrostatic interactions were combined to allow the probe to specifically target and anchor the plasma membrane for an ultralong amount of time on the premise of guaranteeing its sufficiently high aqueous solubility. The designed APMem-1 can quickly penetrate cell walls to specifically stain the plasma membranes of all plant cells in a very short time with advanced features (ultrafast staining, wash-free, and desirable biocompatibility) and the probe shows excellent plasma membrane specificity without staining other areas of the cell in comparison to commercial FM dyes. The longest imaging time of APMem-1 can be up to 10 h with comparable performance in both imaging contrast and imaging integrity. The validation experiments on different types of plant cells and diverse plants convincingly proved the universality of APMem-1. The development of plasma membrane probes with four-dimensional spatial and ultralong-term imaging ability provides a valuable tool to monitor the dynamic processes of plasma membrane-related events in an intuitive and real-time manner.
Collapse
Affiliation(s)
- Jiaqi Zuo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Material Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Engao Zhu
- College of Life Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Wenjing Yin
- College of Life Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Chuangye Yao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Material Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Jiajia Liao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Material Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Xinni Ping
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Material Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Yuqing Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Material Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Xuting Cai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Material Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Yuchun Rao
- College of Life Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Hui Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Material Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Kewei Zhang
- College of Life Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Zhaosheng Qian
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Material Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| |
Collapse
|
4
|
Abstract
Systematically dissecting the molecular basis of the cell surface as well as its related biological activities is considered as one of the most cutting-edge fields in fundamental sciences. The advent of various advanced cell imaging techniques allows us to gain a glimpse of how the cell surface is structured and coordinated with other cellular components to respond to intracellular signals and environmental stimuli. Nowadays, cell surface-related studies have entered a new era featured by a redirected aim of not just understanding but artificially manipulating/remodeling the cell surface properties. To meet this goal, biologists and chemists are intensely engaged in developing more maneuverable cell surface labeling strategies by exploiting the cell's intrinsic biosynthetic machinery or direct chemical/physical binding methods for imaging, sensing, and biomedical applications. In this review, we summarize the recent advances that focus on the visualization of various cell surface structures/dynamics and accurate monitoring of the microenvironment of the cell surface. Future challenges and opportunities in these fields are discussed, and the importance of cell surface-based studies is highlighted.
Collapse
Affiliation(s)
- Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | | | | | | |
Collapse
|
5
|
Liu X, Li K, Shi L, Zhang H, Liu YH, Wang HY, Wang N, Yu XQ. Purine-based Ir(iii) complexes for sensing viscosity of endo-plasmic reticulum with fluorescence lifetime imaging microscopy. Chem Commun (Camb) 2021; 57:2265-2268. [PMID: 33533357 DOI: 10.1039/d0cc07867k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel purine-based iridium complexes were designed for selective determination of ER viscosity. The Ir-PH possessed excellent ER targeting ability and could distinguish the viscosity changes under ER stress by fluorescence lifetime image microscopy (FLIM), which may accelerate the development of relative quantitative detection of microenvironment changes at the subcellular level.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Yuan J, Peng R, Su D, Zhang X, Zhao H, Zhuang X, Chen M, Zhang X, Yuan L. Cell membranes targeted unimolecular prodrug for programmatic photodynamic-chemo therapy. Theranostics 2021; 11:3502-3511. [PMID: 33537100 PMCID: PMC7847693 DOI: 10.7150/thno.55014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/17/2020] [Indexed: 11/29/2022] Open
Abstract
Photodynamic therapy (PDT) has emerged as one of the most up-and-coming non-invasive therapeutic modalities for cancer therapy in rencent years. However, its therapeutic effect was still hampered by the short life span, limited diffusion distance and ineluctable depletion of singlet oxygen (1O2), as well as the hypoxic microenvironment in the tumor tissue. Such problems have limited the application of PDT and appropriate solutions are highly demand. Methods: Herein, a programmatic treatment strategy is proposed for the development of a smart molecular prodrug (D-bpy), which comprise a two-photon photosensitizer and a hypoxia-activated chemotherapeutic prodrug. A rhodamine dye was designed to connect them and track the drug release by the fluorescent signal generated through azo bond cleavage. Results: The prodrug (D-bpy) can stay on the cell membrane and enrich at the tumor site. Upon light irradiation, the therapeutic effect was enhanced by a stepwise treatment: (i) direct generation of 1O2 on the cell membrane induced membrane destruction and promoted the D-bpy uptake; (ii) deep tumor hypoxia caused by two-photon PDT process further triggered the activation of the chemotherapy prodrug. Both in vitro and in vivo experiments, D-bpy have exhabited excellent tumor treatment effect. Conclusion: The innovative programmatic treatment strategy provides new strategy for the design of follow-up anticancer drugs.
Collapse
Affiliation(s)
- Jie Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R China
| | - Rong Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R China
| | - Dongdong Su
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Xingxing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R China
| | - Hepeng Zhao
- College of Physics and Microelectronics Science, Hunan University, Changsha 410082, P. R China
| | - Xiujuan Zhuang
- College of Physics and Microelectronics Science, Hunan University, Changsha 410082, P. R China
| | - Mei Chen
- College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R China
| | - Xiaobing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R China
| |
Collapse
|
7
|
Kruszewska N, Domino K, Drelich R, Urbaniak W, Petelska AD. Interactions between Beta-2-Glycoprotein-1 and Phospholipid Bilayer-A Molecular Dynamic Study. MEMBRANES 2020; 10:membranes10120396. [PMID: 33291449 PMCID: PMC7762114 DOI: 10.3390/membranes10120396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022]
Abstract
This study aims to investigate the interactions appearing when the beta-2-glycoprotein-1 binds to a lipid bilayer. The inter- and intra-molecular forces acting between the two macromolecular systems have been investigated using a molecular dynamics simulation method. The importance of water bridges has also been addressed. Additionally, the viscoelastic response of the bilayer has been studied. In detail, the (saturated-chain) 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and (unsaturated-chain) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) bilayers have been chosen to test their behavior near the protein. Both of the lipids have a polar head but different chemical structures and are similar to the main phospholipids present in the synovial fluid. This study is meaningful for further explaining the worsening friction properties in articular cartilage, as the inactivation of phospholipid bilayers by beta-2-glycoprotein-1 is believed to be a cause of the destruction of cartilage in most rheumatic diseases and osteoarthritis. It was found that the protein binds stronger to the DPPC bilayer than to the POPE, but in both cases, it has the potential to change the local bilayer stability. Nevertheless, the binding forces are placed within a small area (only a few lipids contribute to the binding, creating many interactions). However, together, they are not stronger than the covalent bonds between C-O, thus, potentially, it is possible to push the lipids into the bilayer but detaching the lipids' heads from the tail is not possible. Additionally, the protein causes water displacement from the vicinity of the bilayer, and this may be a contributor to the instability of the bilayer (disrupting the water bridges needed for the stabilization of the bilayer, especially in the case of DPPC where the heads are not so well stabilized by H-bonds as they are in POPE). Moreover, it was found that the diffusivity of lipids in the DPPC bilayer bound to the protein is significantly different from the diffusivity of the ones which are not in contact with the protein. The POPE bilayer is stiffer due to intramolecular interactions, which are stronger than in the DPPC; thus, the viscous to elastic effects in the POPE case are more significant than in the case of the DPPC. It is, therefore, harder to destabilize the POPE bilayer than the DPPC one.
Collapse
Affiliation(s)
- Natalia Kruszewska
- Institute of Mathematics and Physics, UTP University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland
- Correspondence: (N.K.); (A.D.P.)
| | - Krzysztof Domino
- Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland;
| | - Radosław Drelich
- Faculty of Mathematics, Physics and Technical Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-867 Bydgoszcz, Poland; (R.D.); (W.U.)
| | - Wiesław Urbaniak
- Faculty of Mathematics, Physics and Technical Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-867 Bydgoszcz, Poland; (R.D.); (W.U.)
| | - Aneta D. Petelska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-425 Bialystok, Poland
- Correspondence: (N.K.); (A.D.P.)
| |
Collapse
|