1
|
Komiyama M. Monomeric, Oligomeric, Polymeric, and Supramolecular Cyclodextrins as Catalysts for Green Chemistry. RESEARCH (WASHINGTON, D.C.) 2024; 7:0466. [PMID: 39253101 PMCID: PMC11381675 DOI: 10.34133/research.0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024]
Abstract
This review comprehensively covers recent developments of cyclodextrin-mediated chemical transformations for green chemistry. These cyclic oligomers of glucose are nontoxic, eco-friendly, and recyclable to accomplish eminent functions in water. Their most important feature is to form inclusion complexes with reactants, intermediates, and/or catalysts. As a result, their cavities serve as sterically restricted and apolar reaction fields to promote the efficiency and selectivity of reactions. Furthermore, unstable reagents and intermediates are protected from undesired side reactions. The scope of their applications has been further widened through covalent or noncovalent modifications. Combinations of them with metal catalysis are especially successful. In terms of these effects, various chemical reactions are achieved with high selectivity and yield so that valuable chemicals are synthesized from multiple components in one-pot reactions. Furthermore, cyclodextrin units are orderly assembled in oligomers and polymers to show their cooperation for advanced properties. Recently, cyclodextrin-based metal-organic frameworks and polyoxometalate-cyclodextrin frameworks have been fabricated and employed for unique applications. Cyclodextrins fulfill many requirements for green chemistry and should make enormous contributions to this growing field.
Collapse
Affiliation(s)
- Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| |
Collapse
|
2
|
Wang S, Li Z, Xu J, Lin Q, Huang W, Fan M, Wang R, Luo Z. Rational design of a near-infrared dual-emission fluorescent probe for ratiometric imaging of glutathione in cells. Mikrochim Acta 2024; 191:92. [PMID: 38217642 DOI: 10.1007/s00604-024-06179-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024]
Abstract
Sensors for which the output signal is an intensity change for a single-emission peak are easily disturbed by many factors, such as the stability of the instrument, intensity of the excitation light, and biological background. However, for ratiometric fluorescence sensors, the output signal is a change in the intensity ratio of two or more emission peaks. The fluorescence intensity of these emission peaks is similarly affected by external factors; thus, these sensors have the ability to self-correct, which can greatly improve the accuracy and reliability of the detection results. To accurately image glutathione (GSH) in cells, gold nanoclusters (AuNCs) with intrinsic double emission at wavelengths of 606 nm and 794 nm were synthesized from chloroauric acid. With the emission peak at 606 nm as the recognition signal and the emission peak at 794 nm as the reference signal, a near-infrared dual-emission ratio fluorescence sensing platform was constructed to accurately detect changes in the GSH concentration in cells. In vitro and in vivo analyses showed that the ratiometric fluorescent probe specifically detects GSH and enables ultrasensitive imaging, providing a new platform for the accurate detection of active small molecules.
Collapse
Affiliation(s)
- Shulong Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, 537000, China
| | - Zhifang Li
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, 537000, China
| | - Jiayao Xu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, 537000, China.
| | - Qingyan Lin
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, 537000, China
| | - Wenfang Huang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, 537000, China
| | - Mingzhu Fan
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, 537000, China
| | - Rong Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, 537000, China.
| | - Zhihui Luo
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, 537000, China.
| |
Collapse
|
3
|
Huang X, Chen H, Huang R, Shi Y, Ye R, Qiu B. Adjustable luminescence copper nanoclusters nanoswitch based on competitive coordination of samarium ions for cascade detection of adenosine triphosphate and acid phosphatase activity. Mikrochim Acta 2023; 191:54. [PMID: 38151694 DOI: 10.1007/s00604-023-06138-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023]
Abstract
Benefit from the strong coordination property, lanthanide metal ions have been used as competitive reagents to modulate the fluorescence changes of the system. However, lanthanide metal ions as inducers for aggregation-induced emission enhancement in nanosystems is rare. Herein, we report a "turn on-off-on" fluorescent switch for cascade detection of acid phosphatase (ACP) and adenosine triphosphate (ATP) based on the competitive coordination of samarium ions (Sm3+). Novel copper nanoclusters (CuNCs) with long wavelength emission (614 nm) stabilized by glutathione (GSH) and glycylglycine (Gly-Gly) have been confirmed to have AIE property. With the continuous aggregation of GSH/Gly-Gly CuNCs under the induction of Sm3+, the fluorescence of the system increased to achieve the "turn-on" process. The coordinated behaviour between Sm3+ and GSH/Gly-Gly CuNCs is discussed. Due to the strong metal coordination ability of ATP, the Sm3+ coordinated with the GSH/Gly-Gly CuNCs is competed out, resulting in the fluorescence "turn-off" process of the system. As the substrate of enzymatic hydrolysis of ACP, with the continuous hydrolysis of ATP by ACP, Sm3+ coordinates with GSH/Gly-Gly CuNCs again, which leads to the AIE effect and realize the fluorescence "turn-on" process of the system. This strategy results in ATP linear range of 0.508 ~ 120.0 μM with a detection limit of 0.508 μM (S/N = 3) and ACP linear range of 0.011 ~ 30.0 U·L-1 with a detection limit of 0.011 U·L-1 (S/N = 3). Application to biologic samples was successful.
Collapse
Affiliation(s)
- Xuemin Huang
- College of Food and Bioengineering, Fujian Provice-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal University, Fuqing, 350300, People's Republic of China.
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, People's Republic of China.
| | - Haiyan Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, People's Republic of China
| | - Rui Huang
- Rehabilitation Center of Fujian Normal University Hospital, Fuzhou, 350000, Fujian, China
| | - Yuande Shi
- College of Food and Bioengineering, Fujian Provice-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal University, Fuqing, 350300, People's Republic of China
| | - Ruihong Ye
- College of Food and Bioengineering, Fujian Provice-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal University, Fuqing, 350300, People's Republic of China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, People's Republic of China.
| |
Collapse
|
4
|
Peng H, Lai M, Wang H, Weng Z, Yang Y, Huang Z, Sun W, Liu J, Chen W. Energy Level Engineering in Gold Nanoclusters for Exceptionally Bright NIR Electrochemiluminescence at a Low Trigger Potential. Anal Chem 2023; 95:11106-11112. [PMID: 37433063 DOI: 10.1021/acs.analchem.3c01945] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Electrochemiluminescence (ECL) is a widely used light output mechanism from electrochemical excitation. Understanding the intrinsic essence for ideal ECL generation remains a fundamental challenge. Here, based on the molecular orbital theory, we reported an energy level engineering strategy to regulate the ECL performance by using ligand-protected gold nanoclusters (AuNCs) as luminophores and N,N-diisopropylethylamine (DIPEA) as a coreactant. The energy level matching between the AuNCs and DIPEA effectively promoted their electron transfer reactions, thus improving the excitation efficiency and reducing the trigger potential. Simultaneously, the narrow band gap of the AuNCs further enabled enhanced emission efficiency. Using the energy level engineering theory developed here, a dual-enhanced strategy was proposed, and β-CD-AuNCs were designed to further verify this mechanism. The β-CD-AuNCs/DIPEA system resulted in highly stable near-infrared ECL with an unprecedented ECL efficiency (145-fold higher than that of the classic Ru(bpy)32+/tetra-n-butylammonium perchlorate system) and a low trigger potential of 0.48 V. A visual NIR-ECL based on this ECL system was successfully realized by an infrared camera. This work provides an original mechanistic understanding for designing efficient ECL systems, which promises to be a harbinger for broad applicability of this strategy for other ECL systems and ECL sensing platforms.
Collapse
Affiliation(s)
- Huaping Peng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Mingchun Lai
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Huijing Wang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Zhimin Weng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Yu Yang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Zhongnan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Weiming Sun
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350108, China
| |
Collapse
|
5
|
Pan Y, Han Z, Chen S, Wei K, Wei X. Metallic nanoclusters: From synthetic challenges to applications of their unique properties in food contamination detection. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Peng Y, Gao L, Pidamaimaiti G, Zhao D, Zhang L, Yin G, Wang F. Facile construction of highly luminescent and biocompatible gold nanoclusters by shell rigidification for two-photon pH-edited cytoplasmic and in vivo imaging. NANOSCALE 2022; 14:8342-8348. [PMID: 35635039 DOI: 10.1039/d2nr01078j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gold nanoclusters (AuNCs), as a novel fluorescent material, have been extensively explored and developed for bioimaging because of their attractive advantages such as ultrasmall size, low toxicity and exceptional two-photon excitation properties. However, it still remains a challenge to produce water-soluble, biocompatible and ultrabright AuNCs. Herein, we report on a novel one-pot synthesis of highly luminescent and biocompatible AuNCs by using polyvinyl pyrrolidone (PVP), a water-soluble polymer, to rigidify the primary stabilizing layer (shell) that is composed of 6-aza-2-thiothymine (ATT) ligands bound to the particle. Such shell-rigidification resulted in a significant enhancement of the fluorescence efficiency, reaching a quantum yield of 39% under the best conditions, about 35-fold increase from the intrinsically weak fluorescence of the AuNCs stabilized by only ATT. The fluorescence enhancement mechanism was systematically characterized, and the results indicate that PVP coating rigidifies the ATT ligand shell through steric hindrance and reduces the nonradiative relaxation of the excited states. The biocompatible PVP-AuNCs were further examined for two-photon cellular and sentinel lymph node (SLN) bioimaging, and we observed pH-dependent cytoplasmic images and intense green fluorescence in SLN and lymphatic vessels.
Collapse
Affiliation(s)
- Yaowei Peng
- School of Biomedical Engineering, State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lu Gao
- School of Biomedical Engineering, State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Guligena Pidamaimaiti
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
| | - Dan Zhao
- School of Biomedical Engineering, State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lumin Zhang
- Department of Chemistry and Biochemistry, The Ohio State University 151 W. Woodruff Ave., Columbus, OH 43210, USA
| | - Guowei Yin
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Fu Wang
- School of Biomedical Engineering, State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
7
|
Xiao W, Yang Z, Liu J, Chen Z, Li H. Sensitive cholesterol determination by β-cyclodextrin recognition based on fluorescence enhancement of gold nanoclusters. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Han Y, Li J, Zhang X, Xia F, Dai Y. Reversible down-regulation and up-regulation of catalytic activity of poly( N-isopropylacrylamide)-anchored gold nanoparticles. NANOTECHNOLOGY 2022; 33:165601. [PMID: 34986462 DOI: 10.1088/1361-6528/ac487b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Regulating catalytic activity plays an important role in further optimizing and developing multifunctional catalysts with high selectivity and high activity. Reversible dual regulation of catalytic activity has always been a challenging task. Here, we prepared poly(N-isopropylacrylamide)-anchored gold nanoparticles (AuNP@CDs-Azo-PNIPAM) through host-guest interaction of cyclodextrin capped gold nanoparticles (AuNP@CDs) and azobenzene-terminated poly(N-isopropylacrylamide) (Azo-PNIPAM). Azo-PNIPAM as thermal and light responsive ligand allows reversible dual regulation of catalytic activity. When the temperature is higher than the lowest critical solution temperature, the PNIPAM chain shrinks rapidly, increasing the steric hindrance around AuNPs and reducing the catalytic activity. Under ultraviolet light irradiation,cis-azobenzene disassembles from cyclodextrin and the number of surface active sites of AuNPs increases, which improves the catalytic activity. The reaction rate of UV irradiation is almost 1.3 times that of visible light irradiation. This work provides a simple and effective strategy for the construction of reversible catalysts.
Collapse
Affiliation(s)
- Yufen Han
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Jiaqian Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Xiaojin Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Fan Xia
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Yu Dai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| |
Collapse
|
9
|
Huang K, Fang Q, Sun W, He S, Yao Q, Xie J, Chen W, Deng H. Cucurbit[ n]uril Supramolecular Assemblies-Regulated Charge Transfer for Luminescence Switching of Gold Nanoclusters. J Phys Chem Lett 2022; 13:419-426. [PMID: 34989578 DOI: 10.1021/acs.jpclett.1c03917] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Host-guest molecular assemblies are highly desirable for precisely controlling the luminescence properties of nanomaterials. Unfortunately, the design of high-quality luminescent nanoswitches is still very challenging due to the low affinity of traditional macrocyclic molecules (e.g., cyclodextrin) and inherently sophisticated electronic structures of nanoemitters. The current work represents the first to fabricate a luminescent nanoswitch using cucurbit[n]uril supramolecular assemblies-regulated luminescence of gold nanoclusters (AuNCs). It is found that, similar to a small-molecule fluorophore-based system, the luminescence of fabricated AuNC-cationic quencher nanohybrids can be reversibly manipulated by cucurbit[7]uril through altering the key parameters of the charge transfer process including the reorganization energy and electronic coupling between charge-transfer reactants. This study demonstrates the crucial role of cucurbit[n]uril host-guest assemblies in modulating the luminescence of AuNCs and their application in luminescence switching, thus offering new avenues for the fabrication and development of optical devices and smart materials.
Collapse
Affiliation(s)
- Kaiyuan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Quanhui Fang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Weiming Sun
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Shaobin He
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Haohua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
10
|
Qu G, Jiang T, Liu T, Ma X. Multifunctional Host Polymers Assist Au Nanoclusters Achieve High Quantum Yield and Mitochondrial Imaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2023-2028. [PMID: 34931515 DOI: 10.1021/acsami.1c21109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The high biocompatibility and excellent photostability of Au nanoclusters (AuNCs) make them stand out in the bioimaging of nanoparticles. However, the low quantum yield and inferior targeting ability of water-soluble AuNCs greatly limit their biological applications. In this study, we designed and synthesized multifunctional host polymers PolySC4AP and FGGC@AuNCs to fabricate PolySC4AP/FGGC@AuNC assemblies via a host-guest interaction based on SC4 (sulfonatocalix[4]arene) and positively charged FGGC ligands (phenylalanine-glycine-glycine-cysteine). Owing to the host-guest assembly strategy and rigid polymer matrix, the quantum yield of FGGC@AuNCs was significantly promoted from 7.0 to 35.3%, accompanied by considerable morphological changes of FGGC@AuNCs. Moreover, PolySC4AP/FGGC@AuNCs could monitor the location of mitochondria along with R (Pearson's correlation coefficients) value for the co-localization as high as 0.9605, which provided a novel strategy for targeted bioimaging with luminophore.
Collapse
Affiliation(s)
- Guojuan Qu
- Key Laboratory for Multiphase Materials Chemical Engineering, Institute of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tao Jiang
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tao Liu
- Key Laboratory for Multiphase Materials Chemical Engineering, Institute of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiang Ma
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
11
|
Peng Y, Huang X, Wang F. Near-infrared emitting gold-silver nanoclusters with large Stokes shifts for two-photon in vivo imaging. Chem Commun (Camb) 2021; 57:13012-13015. [PMID: 34806718 DOI: 10.1039/d1cc04445a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Near-infrared emitting bi-metallic gold/silver nanoclusters with large Stokes shifts were manufactured through one-pot synthesis. The gold/silver nanoclusters exhibit strong NIR fluorescence due to the silver effect, which can be applied as a two-photon fluorescent contrast agent for in vivo bioimaging.
Collapse
Affiliation(s)
- Yaowei Peng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyu Huang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Fu Wang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
12
|
β-Cyclodextrin-Calcium Complex Intercalated Hydrotalcites as Efficient Catalyst for Transesterification of Glycerol. Catalysts 2021. [DOI: 10.3390/catal11111307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
β-cyclodextrin derivative intercalated MgAl-hydrotalcites (β-CD-Ca/LDH) was synthesized to convert glycerol into high value-added glycerol carbonate(GC) by transesterification of dimethyl carbonate (DMC) and glycerol in this paper. β-cyclodextrin-metal complexes and β-CD-Ca/LDH was characterized by XRD, FT-IR, SEM, XPS and nitrogen adsorption-desorption. The enrichment of organic reactants in the hydrophobic cavity of β-cyclodextrin improved the collision probability of reactants. The intercalation of β-cyclodextrin-calcium complex (β-CD-Ca) increased the pore size and basic strength of catalyst. The experiment results showed that the glycerol conversion was 93.7% and the GC yield was 91.8% catalyzed by β-CD-Ca/LDH when the molar ratio of DMC and glycerol was 3:1, the catalyst dosage was 4 wt.%, the reaction temperature was 75 °C and the reaction time was 100 min while the glycerol conversion was 49.4% and the GC yield was 48.6% catalyzed by MgAl-LDH under the same conditions.
Collapse
|
13
|
Zhang H, Wang X, Huang KT, Liang F, Yang YW. Green Synthesis of Leaning Tower[6]arene-Mediated Gold Nanoparticles for Label-Free Detection. Org Lett 2021; 23:4677-4682. [DOI: 10.1021/acs.orglett.1c01300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Hao Zhang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xin Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Kun-Tao Huang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Ying-Wei Yang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
14
|
|
15
|
Liu M, Chen L, Shan P, Lian C, Zhang Z, Zhang Y, Tao Z, Xiao X. Pyridine Detection Using Supramolecular Organic Frameworks Incorporating Cucurbit[10]uril. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7434-7442. [PMID: 33554601 DOI: 10.1021/acsami.0c20292] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A physical impregnation method is presented in this study, providing a facile approach to encapsulating functional guest molecules (GMs) into robust crystalline supramolecular organic frameworks incorporating cucurbit[10]uril (Q[10]-SOF). As Q[10]-SOF has high evaporated pyridine affinity under normal atmospheric pressure, pyridine molecules in this method were successfully encapsulated into the nanospace formed by GMs and Q[10]-SOF while retaining their crystal framework, morphology, and high stability. GMs@Q[10]-SOF solid materials were found to respond to pyridine, being suitable to be used as solid sensors. Notably, Q[10]-SOF loading with pyrene exhibited a unique response to pyridine along with dramatic fluorescence quenching; loading with dansyl chloride exhibited a unique response to pyridine along with significant fluorescence enhancement, having a quick response within 60 s. Our findings represent a critical advancement in the design of pyridine detection and adsorption for commercial gas identification and sensing.
Collapse
Affiliation(s)
- Ming Liu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Department of Chemistry, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Lixia Chen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Department of Chemistry, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Peihui Shan
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Department of Chemistry, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Chengjie Lian
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Department of Chemistry, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Zenghui Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Department of Chemistry, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Yunqian Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Department of Chemistry, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Department of Chemistry, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Department of Chemistry, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
16
|
Wang Y, Han Y, Tan X, Dai Y, Xia F, Zhang X. Cyclodextrin capped gold nanoparticles (AuNP@CDs): from synthesis to applications. J Mater Chem B 2021; 9:2584-2593. [DOI: 10.1039/d0tb02857f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The synthesis of AuNP@CDs is summarized according to the type and order of bonding. The applications of AuNP@CDs are also highlighted.
Collapse
Affiliation(s)
- Yichuan Wang
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Yufen Han
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Xiaoling Tan
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Yu Dai
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Fan Xia
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Xiaojin Zhang
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| |
Collapse
|
17
|
Huang X, Lan M, Wang J, Guo L, Lin Z, Sun N, Wu C, Qiu B. A fluorescence signal amplification and specific energy transfer strategy for sensitive detection of β-galactosidase based on the effects of AIE and host-guest recognition. Biosens Bioelectron 2020; 169:112655. [DOI: 10.1016/j.bios.2020.112655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022]
|
18
|
Han S, Zhao Y, Zhang Z, Xu G. Recent Advances in Electrochemiluminescence and Chemiluminescence of Metal Nanoclusters. Molecules 2020; 25:molecules25215208. [PMID: 33182342 PMCID: PMC7664927 DOI: 10.3390/molecules25215208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
Metal nanoclusters (NCs), including Au, Ag, Cu, Pt, Ni and alloy NCs, have become more and more popular sensor probes with good solubility, biocompatibility, size-dependent luminescence and catalysis. The development of electrochemiluminescent (ECL) and chemiluminescent (CL) analytical methods based on various metal NCs have become research hotspots. To improve ECL and CL performances, many strategies are proposed, from metal core to ligand, from intermolecular electron transfer to intramolecular electron transfer. Combined with a variety of amplification technology, i.e., nanostructure-based enhancement and biological signal amplification, highly sensitive ECL and CL analytical methods are developed. We have summarized the research progresses since 2016. Also, we discuss the current challenges and perspectives on the development of this area.
Collapse
Affiliation(s)
- Shuang Han
- School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (S.H.); (Y.Z.)
| | - Yuhui Zhao
- School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (S.H.); (Y.Z.)
| | - Zhichao Zhang
- School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (S.H.); (Y.Z.)
- Correspondence: (Z.Z.); (G.X.)
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Correspondence: (Z.Z.); (G.X.)
| |
Collapse
|
19
|
Noël S, Bricout H, Addad A, Sonnendecker C, Zimmermann W, Monflier E, Léger B. Catalytic reduction of 4-nitrophenol with gold nanoparticles stabilized by large-ring cyclodextrins. NEW J CHEM 2020. [DOI: 10.1039/d0nj03687k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Au NP, stabilized by large-ring cyclodextrins, proved to be efficient for the catalytic reduction of 4-nitrophenol.
Collapse
Affiliation(s)
| | | | - Ahmed Addad
- UMET
- UMR CNRS 8207
- Université de Lille
- 59655 Villeneuve d’Ascq
- France
| | | | | | | | | |
Collapse
|