1
|
Tang J, Zhang Y, Qi C, Li B, Wu Y, Ma S, Ma Y, Yu Q, Yang W, Xi P, Yu B, Zhou F. Robust and Lubricating Interface Semi-Interpenetrating Network on Inert Polymer Substrates Enabled by Subsurface-Initiated Polymerization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403303. [PMID: 39031810 DOI: 10.1002/smll.202403303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/30/2024] [Indexed: 07/22/2024]
Abstract
Lubricating hydrogel coatings on inert rubber and plastic surfaces significantly reduce friction and wear, thus enhancing material durability and lifespan. However, achieving optimal hydration lubrication typically requires a porous polymer network, which unfortunately reduces their mechanical strength and limits their applicability where robust durability and wear-resistance are essential. In the research, a hydrogel coating with remarkable wear resistance and surface stability is developed by forming a semi-interpenetrating polymer network with polymer substrate at the interface. By employing a good solvent swelling method, monomers, and photoinitiators are embedded within the substrates' subsurface, followed by in situ polymerization under ultraviolet light, creating a robust semi-interpenetrating and entangled network structure. This approach, offering a thicker energy-dissipating layer, outperforms traditional surface modifications in wear resistance while preserving anti-fatigue, hydrophilicity, oleophobicity, and other properties. Adaptable to various rubber and plastic substrates by using suitable solvents, this method provides an efficient solution for creating durable, lubricating surfaces, broadening the potential applications in multiple industries.
Collapse
Affiliation(s)
- Jie Tang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunlei Zhang
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Changmin Qi
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yang Wu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yanfei Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Qiangliang Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wufang Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Pinxian Xi
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Bo Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
2
|
Liu Y, Wu Y, Zhou F. Shear-Stable Polymer Brush Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:37-44. [PMID: 36546609 DOI: 10.1021/acs.langmuir.2c03012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Research on polymer brushes (PBs) has aroused great interest due to their wide range of applications in lubrication, antifogging, antifouling, self-cleaning, antiadhesion, antibacterial effects, and so forth. However, the weak mechanical strength, especially the low bond strength between the PBs and the substrate surface, is a long-standing challenge for its practical applications, which is directly related to the service life of the PB surface. Fortunately, the imperfection of the PB surface was gradually solved by researchers by combining the action of the chemical and physical anchoring strength, and many shear-stable PB surfaces were developed. In this Perspective, we present recent developments in the studies of shear-stable PBs. Conventional strategies that altered the structure of PB chain methods, including increasing grafted density, cross-linking of PBs, cyclic PBs, and so forth, are introduced briefly. The systematic subsurface grafting of the polymer brush (SSPB) strategy was introduced emphatically. The SSPB method grafted PB into the subsurface with considerable depth and gave a robust and reusable PB layer, which provided an approach for tackling the shear-resistance issue. Besides, the robust hydrophobic poly(dimethylsiloxane) (PDMS) brush surface that lubricated itself in air was also introduced. Finally, we provide a synopsis and discuss the outlook of the shear-stable PB surface.
Collapse
Affiliation(s)
- Yizhe Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Gansu, Lanzhou 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Gansu, Lanzhou 730000, China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264006, China
- Qingdao Centre of Resource Chemistry and New Materials, Shandong Qingdao 266100, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Gansu, Lanzhou 730000, China
| |
Collapse
|
3
|
Zhang D, Zhao S, Rong Z, Zhang K, Gao C, Wu Y, Liu Y. Silicone low surface energy antifouling coating modified by zwitterionic side chains with strong substrate adhesion. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Yu X, Yang Y, Yang W, Wang X, Liu X, Zhou F, Zhao Y. One-step zwitterionization and quaternization of thick PDMAEMA layer grafted through subsurface-initiated ATRP for robust antibiofouling and antibacterial coating on PDMS. J Colloid Interface Sci 2021; 610:234-245. [PMID: 34923265 DOI: 10.1016/j.jcis.2021.12.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/08/2021] [Accepted: 12/05/2021] [Indexed: 12/31/2022]
Abstract
In this work, we demonstrate the grafting of thick poly((2-dimethylamino) ethyl methacrylate) (PDMAEMA) layer on PDMS via subsurface-initiated atom transfer radical polymerization (SSI-ATRP). The self-migration of DMAEMA monomers into the subsurface of PDMS is proven to be the dominant factor for the success of SSI-ATRP. The as-prepared thick microscale graft layer on PDMS shows much better abrasion resistance than nanoscale graft layer obtained by conventional surface-initiated atom transfer radical polymerization (SI-ATRP) under identical condition. Taking advantage of the tertiary amines of PDMAEMA, the simultaneous zwitterionization and quaternization of the PDMAEMA thick layer is realized through a facile one-step process. The effect of zwitterionization and quaternization degree on the antibiofouling and antibacterial properties is investigated. The results show that a relatively high zwitterionization degree (75 mol%) and a low quaternization degree (25 mol%) exhibit a good well-balanced effect on both fouling repellence and bactericidal activity. This work may lead to the development of robust bifunctional antibiofouling and antibacterial surfaces via SSI-ATRP strategy.
Collapse
Affiliation(s)
- Xin Yu
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia; School of Engineering, Westlake University, Hangzhou 310024, China
| | - Yang Yang
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Wufang Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xungai Wang
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Xin Liu
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yan Zhao
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| |
Collapse
|
5
|
Xie Z, Gan T, Fang L, Zhou X. Recent progress in creating complex and multiplexed surface-grafted macromolecular architectures. SOFT MATTER 2020; 16:8736-8759. [PMID: 32969442 DOI: 10.1039/d0sm01043j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface-grafted macromolecules, including polymers, DNA, peptides, etc., are versatile modifications to tailor the interfacial functions in a wide range of fields. In this review, we aim to provide an overview of the most recent progress in engineering surface-grafted chains for the creation of complex and multiplexed surface architectures over micro- to macro-scopic areas. A brief introduction to surface grafting is given first. Then the fabrication of complex surface architectures is summarized with a focus on controlled chain conformations, grafting densities and three-dimensional structures. Furthermore, recent advances are highlighted for the generation of multiplexed arrays with designed chemical composition in both horizontal and vertical dimensions. The applications of such complicated macromolecular architectures are then briefly discussed. Finally, some perspective outlooks for future studies and challenges are suggested. We hope that this review will be helpful to those just entering this field and those in the field requiring quick access to useful reference information about the progress in the properties, processing, performance, and applications of functional surface-grafted architectures.
Collapse
Affiliation(s)
- Zhuang Xie
- School of Materials Science and Engineering, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Xingangxi Road No. 135, Guangzhou, Guangdong Province 510275, P. R. China.
| | - Tiansheng Gan
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Shenzhen, Guangdong Province 518055, P. R. China.
| | - Lvye Fang
- School of Materials Science and Engineering, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Xingangxi Road No. 135, Guangzhou, Guangdong Province 510275, P. R. China.
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Shenzhen, Guangdong Province 518055, P. R. China.
| |
Collapse
|
6
|
Huang Z, Ghasemi H. Hydrophilic polymer-based anti-biofouling coatings: Preparation, mechanism, and durability. Adv Colloid Interface Sci 2020; 284:102264. [PMID: 32947152 DOI: 10.1016/j.cis.2020.102264] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/16/2023]
Abstract
Anti-biofouling materials that combat microorganism attachment have been intensively studied due to the ever-growing demand on smart and durable coatings. Although various hydrophilic polymer surfaces demonstrated superior anti-biofouling properties, their practical application was hampered by the undesired mechanical vulnerability and complicated fabrication process. In this review, we summarized the mechanically and chemically robust anti-biofouling coatings into six strategies namely (i) 3D-grafted coatings, (ii) hierarchical spheres-based coatings, (iii) inorganic nanomaterials-reinforced coatings, (iv) hydrolysis-based coating, (v) semi-interpenetrating structure-based coatings, and (vi) layer-by-layer (LbL) assembled coatings. The anti-biofouling efficacy and durability of these coatings over a series of challenges were also comprehensively presented. The purpose of this review is to inspire researchers to develop novel anti-biofouling coatings for future practical applications.
Collapse
|