1
|
Deng C, Wang Y, Sun Y, Lü C. A near-infrared fluorescent probe with thiadiazole unit as key skeleton for ICT and ESIPT mechanism and effective detection of Cu 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124465. [PMID: 38788501 DOI: 10.1016/j.saa.2024.124465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/28/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024]
Abstract
Fluorescent probe L-I was synthesized to demonstrate that 1,3,4-thiadiazole is an attractive moiety and could be utilized as positive hydrogen bond acceptor for excited state intramolecular proton transfer (ESIPT) processes, guider of electrons movement for intramolecular charge transfer (ICT) process and identify group for mental ions. Furthermore, dicyanoisophorone framework was employed to improve the fluorescence characteristics and near-infrared (NIR) fluorescent emission at 695 nm accompanied by a Stoke's shift as large as 260 nm was obtained. L-I could selectively detect Cu2+ over other analytes taking advantages of high sensitivity, fast response within 30 s and low detection limit (0.026 μM). More important, L-I exhibited good performance for detection of Cu2+ in actual water samples, food products, traditional Chinese medicine and for cell imaging which demonstrates practical significance in the fields of environmental monitor, food safety and biotechnology.
Collapse
Affiliation(s)
- Changyue Deng
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian 116029, P.R. China
| | - Yongchen Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian 116029, P.R. China
| | - Yu Sun
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian 116029, P.R. China
| | - Chengwei Lü
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian 116029, P.R. China.
| |
Collapse
|
2
|
Tamrakar A, Asthana S, Kumar P, Garg N, Pandey MD. Design of C2-symmetric pseudopeptides for in vivo detection of Cu(II) through controlled supramolecular nano-assembly. Org Biomol Chem 2024; 22:6409-6418. [PMID: 39069889 DOI: 10.1039/d4ob01011f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Pseudopeptides are emerging next-generation soft bioinspired materials for biological applications. Therefore, a new class of C2-symmetric L-valine-derived pseudopeptides has been designed and developed. The newly developed pseudopeptides exhibit intracellular Cu(II) ion detection in live-cell fluorescence studies on RAW264.7 cells. We find that the changes in the amino acid side chain in desired pseudopeptidic moieties lead to a drastic change in their selectivity towards different metal ions. The L-valine-derived pseudopeptides exhibit selectivity towards Cu(II) ions through turn-off fluorescence, and the L-phenylalanine-derived pseudopeptides exhibit selectivity towards Zn(II) ions through turn-on fluorescence. In addition, the L-valine-derived pseudopeptides show an increase in spherical-shaped structures upon incubation with Cu(II) ions during supramolecular nano-assembly formation. In contrast, the L-phenylalanine-derived pseudopeptides show a decrease in spherical-shaped structures upon adding Zn(II) ions. The judiciously designed L-valine-derived and L-phenylalanine-derived bioinspired pseudopeptides are promising for exploring similar effects in various peptidomimetics in advanced biological applications.
Collapse
Affiliation(s)
- Arpna Tamrakar
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi-221005, India.
| | - Surabhi Asthana
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi-221005, India.
| | - Praveen Kumar
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Neha Garg
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Mrituanjay D Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi-221005, India.
| |
Collapse
|
3
|
Zhu J, Graziotto ME, Cottam V, Hawtrey T, Adair LD, Trist BG, Pham NTH, Rouaen JRC, Ohno C, Heisler M, Vittorio O, Double KL, New EJ. Near-Infrared Ratiometric Fluorescent Probe for Detecting Endogenous Cu 2+ in the Brain. ACS Sens 2024; 9:2858-2868. [PMID: 38787339 DOI: 10.1021/acssensors.3c02549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Copper participates in a range of critical functions in the nervous system and human brain. Disturbances in brain copper content is strongly associated with neurological diseases. For example, changes in the level and distribution of copper are reported in neuroblastoma, Alzheimer's disease, and Lewy body disorders, such as Parkinson disease and dementia with Lewy bodies (DLB). There is a need for more sensitive techniques to measure intracellular copper levels to have a better understanding of the role of copper homeostasis in neuronal disorders. Here, we report a reaction-based near-infrared (NIR) ratiometric fluorescent probe CyCu1 for imaging Cu2+ in biological samples. High stability and selectivity of CyCu1 enabled the probe to be deployed as a sensor in a range of systems, including SH-SY5Y cells and neuroblastoma tumors. Furthermore, it can be used in plant cells, reporting on copper added to Arabidopsis roots. We also used CyCu1 to explore Cu2+ levels and distribution in post-mortem brain tissues from patients with DLB. We found significant decreases in Cu2+ content in the cytoplasm, neurons, and extraneuronal space in the degenerating substantia nigra in DLB compared with healthy age-matched control tissues. These findings enhance our understanding of Cu2+ dysregulation in Lewy body disorders. Our probe also shows promise as a photoacoustic imaging agent, with potential for applications in bimodal imaging.
Collapse
Affiliation(s)
- Jianping Zhu
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Marcus E Graziotto
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Veronica Cottam
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), The University of Sydney, Sydney, NSW 2006, Australia
| | - Tom Hawtrey
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Liam D Adair
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Benjamin G Trist
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), The University of Sydney, Sydney, NSW 2006, Australia
| | - Nguyen T H Pham
- Sydney Imaging, Core Research Facility, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jourdin R C Rouaen
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, Randwick, NSW 2052, Australia
| | - Carolyn Ohno
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Marcus Heisler
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, Randwick, NSW 2052, Australia
- School of Biomedical Sciences, University of New South Wales, Kensington, NSW 2031, Australia
| | - Kay L Double
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), The University of Sydney, Sydney, NSW 2006, Australia
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Liu L, Zhang H, Gao Y, Zhu H, Yang H, Zhang R, Yang Y, Gao H. Pyrene-acylhydrazone-based Turn-on Fluorescent Probe for Highly Sensitive Detection Cu 2+ and Application in Bioimaging. J Fluoresc 2023:10.1007/s10895-023-03465-z. [PMID: 37851213 DOI: 10.1007/s10895-023-03465-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
The development of highly selective and sensitive, low detection limits, and biocompatible turn-on copper ion fluorescent probes is of great significance for the environment and life sciences. In this study, a novel turn-on fluorescent probe T based on pyrene-acylhydrazone was synthesized via an efficient one-step condensation reaction and characterized by 1H NMR, 13C NMR and HRMS. The probe T exhibited high selectivity with a low detection limit of 0.304 nM towards Cu2+ in DMSO/H2O (v/v = 1 : 1) medium by a PET-TICT dual interplaying sensing mechanisms. Job's plot analysis and HRMS data confirmed the 1 : 1 binding stoichiometry between T and Cu2+ with an association constant of 5.7×103 M-1. Additionally, the binding model was investigated by 1H NMR titration and FT-IR spectra. Furthermore, probe T exhibits low cellular toxicity and excellent membrane permeability, and has been successfully applied for fluorescent imaging of copper ions in live HT-22 cells.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| | - Hanshu Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| | - Yun Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| | - He Zhu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| | - Hanyan Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| | - Ruilin Zhang
- School of Forensic Medicine, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, P. R. China.
| | - Yu Yang
- National Center for International Research on Photoelectric and Energy, Materials School of Materials and Energy, Yunnan University, Kunming, 650500, P. R. China.
| | - Hongfei Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China.
| |
Collapse
|
5
|
Sun H, Xu Q, Xu C, Zhang Y, Ai J, Ren M, Liu K, Kong F. Construction of a water-soluble fluorescent probe for copper (II) ion detection in live cells and food products. Food Chem 2023; 418:135994. [PMID: 36989639 DOI: 10.1016/j.foodchem.2023.135994] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023]
Abstract
The quality of wine can be affected by excess Cu2+ due to the occurrence of oxidation reactions or precipitation. Therefore, it is essential to use simple and effective testing methods to ensure the Cu2+ content in wine. In this work, we designed and synthesized a rhodamine polymer fluorescent probe (PEG-R). The water solubility of PEG-R was improved by the introduction of polyethylene glycol, which improved the performance and broadened its application in the food field. The PEG-R was characterized by high sensitivity, selectivity and fast response to Cu2+ and was able to complete the response process within 30 s, with approximately 29-fold fluorescence enhancement of the probe after exposure to Cu2+, the limit of detection (LOD) was 1.295 × 10-6 M. The probe can be used for the determination of Cu2+ in living cells, zebrafish, white wine and food products, and it was made into practical gels and test strips.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Qingyu Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Chen Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Yukun Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Jindong Ai
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Mingguang Ren
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Keyin Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| |
Collapse
|
6
|
Chen Y, Zheng S, Kim MH, Chen X, Yoon J. Recent progress of TP/NIR fluorescent probes for metal ions. Curr Opin Chem Biol 2023; 75:102321. [PMID: 37196449 DOI: 10.1016/j.cbpa.2023.102321] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/07/2023] [Accepted: 04/17/2023] [Indexed: 05/19/2023]
Abstract
Metal ions are of significance in various pathological and physiological processes. As such, it is crucial to monitor their levels in organisms. Two-photon (TP) and near-infrared (NIR) fluorescence imaging has been utilized to monitor metal ions because of minimal background interference, deeper tissue depth penetration, lower tissue self-absorption, and reduced photodamage. In this review, we briefly summarize recent progress from 2020 to 2022 of TP/NIR organic fluorescent probes and inorganic sensors in the detection of metal ions. Additionally, we present an outlook for the development of TP/NIR probes for bio-imaging, diagnosis of diseases, imaging-guided therapy, and activatable phototherapy.
Collapse
Affiliation(s)
- Yahui Chen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea; New and Renewable Energy Research Center, Ewha Womans University, Seoul, 03760, South Korea
| | - Shiyue Zheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, China
| | - Myung Hwa Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea; New and Renewable Energy Research Center, Ewha Womans University, Seoul, 03760, South Korea
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea.
| |
Collapse
|
7
|
Fan Y, Wu Y, Hou J, Wang P, Peng X, Ge G. Coumarin-based near-infrared fluorogenic probes: Recent advances, challenges and future perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
8
|
Cao R, Zhang M, Tang W, Wu J, Wang M, Niu X, Liu Z, Hao F, Xu H. A Novel D-π-A Type Fluorescent Probe for Cu 2+ Based on Styryl-Pyridinium Salts Conjugating Di-(2-picolyl)amine (DPA) Units. J Fluoresc 2023:10.1007/s10895-023-03151-0. [PMID: 36787040 DOI: 10.1007/s10895-023-03151-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
A novel D-π-A type fluorescent probe L(NO3) for Cu (II) sensing was designed and fully characterized. The probe consists of a styryl-pyridine cation fluorescent group and a di-(2-picolyl)amine (DPA) receptor unit, which are linked by a phenyl group to form an electron donor-π-acceptor (D-π-A) conjugate system, especially the introduction of a nitrate counter anion for significantly enhanced water solubility of the probe. Fluorescence titration studies of the probe L(NO3) showed a higher selectivity for Cu2+ than other metal ions, and the emission spectrum was strongly quenched upon binding. The competitive binding assay and the low detection limit (0.932 µM) showed that the probe L(NO3) had strong anti-interference ability and excellent Cu2+ detection performance. The binding ratio of probe L(NO3) and Cu2+ was determined from Job's plot to be 1:1, which is consistent with the results obtained from X-ray crystal structures. Meanwhile, the probe showed instantaneous chemical reversibility when titrated with EDTA solution, indicating potential recycling properties of the probe. In addition, the design of inexpensive fluorescent test strips can perform the on-site and real-time detection Cu2+ with a color recognition application.
Collapse
Affiliation(s)
- Rui Cao
- School of Chemistry and Materials Engineering, Fuyang Normal University, Anhui, 236037, Fuyang, People's Republic of China
| | - Mengyu Zhang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Anhui, 236037, Fuyang, People's Republic of China
| | - Wen Tang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Anhui, 236037, Fuyang, People's Republic of China
| | - Jing Wu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Anhui, 236037, Fuyang, People's Republic of China
| | - Meixiang Wang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Anhui, 236037, Fuyang, People's Republic of China
| | - Xiaoxiao Niu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Anhui, 236037, Fuyang, People's Republic of China
| | - Zhaodi Liu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Anhui, 236037, Fuyang, People's Republic of China.
| | - Fuying Hao
- School of Chemistry and Materials Engineering, Fuyang Normal University, Anhui, 236037, Fuyang, People's Republic of China
| | - Huajie Xu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Anhui, 236037, Fuyang, People's Republic of China.
| |
Collapse
|
9
|
Nur Çenet E, Aydin Z, Keleş M, Bayrakci M. A highly sensitive fluorescent sensor for fenamiphos detection in vegetable samples and living cells based-on an enzyme free system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121798. [PMID: 36054953 DOI: 10.1016/j.saa.2022.121798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Fenamiphos (Fena), an organophosphorous pesticide, is widely used in agricultural soils to control nematodes and thrips. This nematicide is harmful to fish, birds and humans and, causes several diseases. Therefore, the determination of the nematicide is crucial. Fena has been generally detected by enzyme-based systems which require specific conditions. Herein, we integrated a xanthene moiety and a pyrimidine moiety to obtain an enzyme-free detection system for Fena and, a fluorescent sensor (N-(6-(diethylamino)-9-(pyrimidin-5-yl)-3H-xanthen-3-ylidene)-N-ethylethanaminium hexafluorophosphate(V)) (RosPm) was easily prepared. The colorimetric and spectroscopic properties of RosPm were investigated using the UV-vis and fluorescence spectroscopy. RosPm exhibited a high selectivity and sensitivity to Fena over all the metal ions, the anions and pesticides tested in acetonitrile (ACN)/water (H2O) (v:v, 1:1) solution. RosPm showed a clear visual change from purple to light-purple resulting fluorescent quenching with Fena. This sensor could be preferred for detecting Fena in vegetable samples such as tomato, pepper, and cucumber, and visualizing Fena in living MFC-7 cells.
Collapse
Affiliation(s)
- Esma Nur Çenet
- Department of Bioengineering, Faculty of Engineering, Karamanoğlu Mehmetbey University, 70200 Karaman, Turkey
| | - Ziya Aydin
- Vocational School of Technical Sciences, Karamanoğlu Mehmetbey University, 70100 Karaman, Turkey; Scientific and Technological Research & Application Center, Karamanoğlu Mehmetbey University, 70100 Karaman, Turkey.
| | - Mustafa Keleş
- Department of Chemistry, Faculty of Arts and Sciences, Osmaniye Korkut Ata University, Osmaniye, Turkey
| | - Mevlut Bayrakci
- Department of Bioengineering, Faculty of Engineering, Karamanoğlu Mehmetbey University, 70200 Karaman, Turkey.
| |
Collapse
|
10
|
Li Z, Hou JT, Wang S, Zhu L, He X, Shen J. Recent advances of luminescent sensors for iron and copper: Platforms, mechanisms, and bio-applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
11
|
Mei H, Yang C, Yang X, Huang Z, Cheng P, Xu K. A novel reversible oxazole-based NIR fluorescent probe for Cu2+ and S2− ions detection. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Xie M, Zhao J, Mai X, Chen Y, Zhao W, Sun M, Yu L, Yu HJ. A dual-function luminescent probe for copper(II) ions and pH detection based on ruthenium(II) complex. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 277:121265. [PMID: 35439674 DOI: 10.1016/j.saa.2022.121265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/05/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
A new ruthenium complex-based luminescent probe Ru-impa for Cu2+ and pH detection has been synthesized and characterized. Ru-impa could rapidly and selectively detect Cu2+ in aqueous solutions and the working pH ranges from weakly acidic to alkaline. The detection limit calculated using the S/N and S/B ratio was 24.7 nM and 3.4 μM, respectively. The test strips for practical detecting application were also prepared and the actual detection limit in drinking water was found to be 3 μM, which is lower than the WHO-guided drinking water limit (30 µM) and the upper limit of human serum free copper content (1.7-3.9 μM). Luminescence imaging study showed that Ru-impa could monitor Cu2+ level fluctuation in the cells. In addition, Ru-impa also shows a sensitive on-off luminescence response when pH > 10, indicating that it can also be used as a pH sensor under extremely alkaline conditions.
Collapse
Affiliation(s)
- Mengting Xie
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jiecheng Zhao
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xufeng Mai
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yan Chen
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Wei Zhao
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Ming Sun
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Lin Yu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Hui-Juan Yu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
13
|
Ai Y, Zhu Z, Ding H, Fan C, Liu G, Pu S. A dual-responsive fluorescent probe for detection of H2S and Cu2+ based on rhodamine-naphthalimide and cell imaging. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Alhawsah B, Yan B, Aydin Z, Niu X, Guo M. Highly Selective Fluorescent Probe With an Ideal pH Profile for the Rapid and Unambiguous Determination of Subcellular Labile Iron (III) Pools in Human Cells. ANAL LETT 2022; 55:1954-1970. [DOI: 10.1080/00032719.2022.2039932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Bayan Alhawsah
- Department of Chemistry and Biochemistry and UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Bing Yan
- Department of Chemistry and Biochemistry and UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Ziya Aydin
- Department of Chemistry and Biochemistry and UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, Dartmouth, MA, USA
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
- Vocational School of Technical Sciences, Karamanoğlu Mehmetbey University, Karaman, Turkey
| | - Xiangyu Niu
- Department of Chemistry and Biochemistry and UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Maolin Guo
- Department of Chemistry and Biochemistry and UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, Dartmouth, MA, USA
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
15
|
Ali M, Memon N, Ali M, Chana AS, Gaur R, Jiahai Y. Recent development in fluorescent probes for copper ion detection. Curr Top Med Chem 2022; 22:835-854. [DOI: 10.2174/1568026622666220225153703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Copper is the third most common heavy metal and an indispensable component of life. Variations of body copper levels, both structural and cellular, are related to a number of disorders; consequently, pathophysiological importance of copper ions demands the development of sensitivity and selective for detecting these organisms in biological systems. In recent years, the area of fluorescent sensors for detecting copper metal ions has seen revolutionary advances. Consequently, closely related fields have raised awareness of several diseases linked to copper fluctuations. Further developments in this field of analysis could pave the way for new and innovative treatments to combat these diseases. This review reports on recent progress in the advancement of three fields of fluorescent probes; chemodosimeters, near IR fluorescent probes, and ratiometric fluorescent probes. Methods used to develop these fluorescent probes and the mechanisms that govern their reaction to specific analytes and their applications in studying biological systems, are also given.
Collapse
Affiliation(s)
- Mukhtiar Ali
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing China
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering Science and Technology, Pakistan
| | - Najma Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Manthar Ali
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Abdul Sami Chana
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering Science and Technology, Pakistan
| | - Rashmi Gaur
- Natural Products Laboratory, International Joint Laboratory of tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Ye Jiahai
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing China
| |
Collapse
|
16
|
Zhao J, Wang YY, Chen WL, Hao GS, Sun JP, Shi QF, Tian F, Ma RT. A salicylaldehyde benzoyl hydrazone based near-infrared probe for copper(ii) and its bioimaging applications. RSC Adv 2022; 12:3073-3080. [PMID: 35425318 PMCID: PMC8979307 DOI: 10.1039/d1ra08616b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/15/2022] [Indexed: 12/15/2022] Open
Abstract
Developing highly sensitive and selective methods for Cu2+ detection in living systems is of great significance in clinical copper-related disease diagnosis. In this work, a near infrared (NIR) fluorescent probe, CySBH, with a salicylaldehyde benzoyl hydrazone group as a selective and sensitive receptor for Cu2+ was designed and synthesized. The specific coordination of the salicylaldehyde benzoyl hydrazone group in CySBH with Cu2+ can induce a distinct quench of the fluorescence intensity, allowing for real-time tracking of Cu2+. We have demonstrated that CySBH could rapidly recognize Cu2+ with good selectivity and high sensitivity. Moreover, on the basis of low cell cytotoxicity, the probe was used to visualize Cu2+ in two cell lines by fluorescence imaging. Furthermore, CySBH can also be used to monitor Cu2+in vivo due to its NIR emission properties. These overall results illustrate that the NIR fluorescent probe CySBH provides a novel approach for the selective and sensitive monitoring of Cu2+ in living systems. A near infrared fluorescent probe utilizing the salicylaldehyde benzoyl hydrazone group as the Cu2+ receptor was developed and used to selectively and sensitively monitor Cu2+ in living systems.![]()
Collapse
Affiliation(s)
- Jie Zhao
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou 730000, Gansu Province, P. R. China
| | - Yue-yuan Wang
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou 730000, Gansu Province, P. R. China
| | - Wen-ling Chen
- College of Science, Gansu Agricultural University, Lanzhou 730000, Gansu Province, P. R. China
| | - Guang-shu Hao
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou 730000, Gansu Province, P. R. China
| | - Jian-ping Sun
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou 730000, Gansu Province, P. R. China
| | - Qing-fang Shi
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou 730000, Gansu Province, P. R. China
| | - Fang Tian
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou 730000, Gansu Province, P. R. China
| | - Run-tian Ma
- College of Science, Gansu Agricultural University, Lanzhou 730000, Gansu Province, P. R. China
| |
Collapse
|
17
|
Xiaolong Z, Yuqing L, Liangwu G, Qiyuan R, Huihui W, Zhen Z, Yingpeng S, Pengxin Z, Na Y. A Highly Selective and High-Contrast Colorimetric “Off-On” Chemosensor for Cu 2+ Based on Boron-Dipyrromethene (BODIPY) Derivatives. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Liu L, Guo C, Zhang Q, Xu P, Cui Y, Zhu W, Fang M, Li C. A hydrazone dual-functional fluorescent probe based on carbazole and coumarin groups for the detection of Cu2+ and ClO−: Application in live cell imaging and actual water samples. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113593] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Karuk Elmas SN, Arslan FN, Aydin D. A novel ratiometric fluorescent and colorimetric sensor based on a 1,8-naphthalimide derivative for nanomolar Cu 2+ sensing: smartphone and food applications. Analyst 2022; 147:2687-2695. [DOI: 10.1039/d2an00537a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel 1,8-naphthalimide-based chemical sensor with ratiometric fluorescence behavior, as well as “naked-eye” response was developed for the sensitive and specific determination of Cu2+ at nanomolar levels.
Collapse
Affiliation(s)
- Sukriye Nihan Karuk Elmas
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| | - Fatma Nur Arslan
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| | - Duygu Aydin
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| |
Collapse
|
20
|
Responsive fluorescence enhancement for in vivo Cu(II) monitoring in zebrafish larvae. Biosens Bioelectron 2021; 200:113885. [PMID: 34954569 DOI: 10.1016/j.bios.2021.113885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/29/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022]
Abstract
Several neurodegenerative diseases are ascribed to disorders caused by the secretion of Cu ions. However, a majority of the current techniques for copper ion detection are restricted to in vivo monitoring and nonspecific interactions. Their methods are limited to the systematic analysis of Cu ions in living organisms. Thus, a synthetic molecular fluorophore, 5-amino 2,3-dihydroquinolinimine (NDQI), has been developed and successfully utilized in in vivo monitoring of the distribution of Cu(II) in zebrafish larvae. The reversible formation of the NDQI-Cu complex allows its use with high metal concentrations and in oxidative stress conditions. The NDQI-directed strategy developed here can quantitatively differentiate cells with different Cu(II) concentrations. Remarkably, dynamic distribution of Cu(II) in the intestine and liver can be observed.
Collapse
|
21
|
Zhu D, Jiang S, Zhao W, Yan X, Xie W, Xiong Y, Wang S, Cai W, Gao Y, Ren A. A novel ratiometric fluorescent probe for sensitive and selective detection of Cu2+ based on Boranil derivatives. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Jiang J, Sun H, Hu Y, Lu G, Cui J, Hao J. AIE + ESIPT activity-based NIR Cu 2+ sensor with dye participated binding strategy. Chem Commun (Camb) 2021; 57:7685-7688. [PMID: 34254605 DOI: 10.1039/d1cc02233d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A novel activity-based Cu2+ fluorescent probe featuring multidentate binding sites was synthesized. It functions through chelation with Cu2+, which in turn specifically triggers hydrolysis of the probe to release a near-infrared emission with AIE + ESIPT properties. The probe was found to be capable of ratiometric imaging of Cu2+ in living HeLa cells.
Collapse
Affiliation(s)
- Jie Jiang
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China.
| | - Haifeng Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China.
| | - Yanlei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China.
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China.
| | - Jiwei Cui
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China.
| | - Jingcheng Hao
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China.
| |
Collapse
|
23
|
Zeng X, Gao S, Jiang C, Duan Q, Ma M, Liu Z, Chen J. Rhodol-derived turn-on fluorescent probe for copper ions with high selectivity and sensitivity. LUMINESCENCE 2021; 36:1761-1766. [PMID: 34250703 DOI: 10.1002/bio.4118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/30/2021] [Accepted: 07/05/2021] [Indexed: 01/08/2023]
Abstract
A new rhodol-derived fluorescent probe 1 with picolinate as the recognition receptor was designed and simply synthesized using a one-step reaction. With the concentration of added Cu2+ increases, it gradually turns pink, so the effect of naked eye detection can be achieved. The detection limit of probe 1 for Cu2+ is 42 nM, and the linear detection range was 0-2 μM. The experimental results showed that 1 was a fluorescent probe with high selectivity, good water solubility, and high sensitivity to Cu2+ . Probe 1 was successfully applied in cell imaging experiments and can detect the concentration of Cu2+ in water samples. All these indicate that probe 1 has the potential to be applied to the detection of Cu2+ concentration in the real environment.
Collapse
Affiliation(s)
- Xiaodan Zeng
- Center of Analysis and Measurement, Jilin Institute of Chemical Technology, Jilin, People's Republic of China
| | - Song Gao
- Wuchang University of Technology, Wuhan, People's Republic of China
| | - Cheng Jiang
- Calcium Carbide Factory of Jilin Petrochemical Company, Jilin, People's Republic of China
| | - Qingxia Duan
- Center of Analysis and Measurement, Jilin Institute of Chemical Technology, Jilin, People's Republic of China
| | - Mingshuo Ma
- Center of Analysis and Measurement, Jilin Institute of Chemical Technology, Jilin, People's Republic of China
| | - Zhigang Liu
- Center of Analysis and Measurement, Jilin Institute of Chemical Technology, Jilin, People's Republic of China
| | - Jie Chen
- Center of Analysis and Measurement, Jilin Institute of Chemical Technology, Jilin, People's Republic of China
| |
Collapse
|
24
|
Du J, Zhao B, Kan W, Yin H, Song T, Wang L, Sun L, Wang X, Yin G, Wang J. A phenanthrene[9,10- d]imidazole-phenol-based fluorescent probe combining ESIPT and AIE for the “turn-on” detection of Cu 2+ with green-emission and improved Stokes’ shift, and its application. NEW J CHEM 2021. [DOI: 10.1039/d1nj02177j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The “turn-on” probe PIA(OH)-Py responds to Cu2+ in living cells and can determine the concentration of Cu2+ in blood samples.
Collapse
Affiliation(s)
- Jiahui Du
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar, 161006, China
| | - Bing Zhao
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar, 161006, China
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar University, Qiqihar, 161006, China
| | - Wei Kan
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar, 161006, China
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar University, Qiqihar, 161006, China
| | - Haochun Yin
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar, 161006, China
| | - Tianshu Song
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar, 161006, China
| | - Liyan Wang
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar, 161006, China
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar University, Qiqihar, 161006, China
| | - Li Sun
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar, 161006, China
| | - Xiuwen Wang
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar, 161006, China
| | - Guangming Yin
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar, 161006, China
| | - Jianxin Wang
- College of Material Science and Engineering, Qiqihar University, Qiqihar, 161006, China
| |
Collapse
|
25
|
Gupta A, Garreffi BP, Guo M. Facile synthesis of a novel genetically encodable fluorescent α-amino acid emitting greenish blue light. Chem Commun (Camb) 2020; 56:12578-12581. [PMID: 32944728 PMCID: PMC7577945 DOI: 10.1039/d0cc03643a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report the facile synthesis and characterization of a novel fluorescent α-amino acid 4-phenanthracen-9-yl-l-phenylalanine (Phen-AA) (5) that emits greenish blue light in the visible region. This genetically encodable l-α-amino acid has excellent photostability with a 75% quantum yield. It readily gets into human cells, being clearly imaged upon 405 nm laser excitation. The synthetic procedure is resistant to racemization and only involves three simple steps which use mild conditions and generate the Phen-AA in reasonably good yield. It may find broad applications in research, biotechnology, and the pharmaceutical industry.
Collapse
Affiliation(s)
- Aakash Gupta
- Department of Chemistry and Biochemistry, UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA.
| | | | | |
Collapse
|
26
|
Zhang J, Chen MY, Bai CB, Qiao R, Wei B, Zhang L, Li RQ, Qu CQ. A Coumarin-Based Fluorescent Probe for Ratiometric Detection of Cu 2+ and Its Application in Bioimaging. Front Chem 2020; 8:800. [PMID: 33134262 PMCID: PMC7573568 DOI: 10.3389/fchem.2020.00800] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/30/2020] [Indexed: 11/22/2022] Open
Abstract
The fluorescent probe L, based on naphthalimide-modified coumarin, was designed, synthesized, and characterized, which could recognize Cu2+ from other cations selectively and sensitively in HEPES buffer (10 mM, Ph = 7. 4)/CH3CN (1:4, V/V). When the probe L interacted with Cu2+, the color and the fluorescent intensity changed obviously and it provided the naked-eye detection for Cu2+. The recognition mode between them was achieved by Job's plot, IR, MS, SEM, and 1HNMR. In addition, test strips made from L could still interact with Cu2+ in tap water effectively. The limit of detection (LOD) of L was 3.5 × 10-6 M. Additionally, the density functional theory (DFT) calculation method was used to analyze the action mechanism of L toward Cu2+. Importantly, the fluorescent probe L could demonstrate favorable selectivity toward Cu2+ in Caenorhabditis elegans. Thus, L was considered to have some potential for application in bioimaging.
Collapse
Affiliation(s)
- Jie Zhang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, China
| | - Meng-Yu Chen
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, China
| | - Cui-Bing Bai
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences (TIPC-CAS), Beijing, China
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang, China
| | - Rui Qiao
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences (TIPC-CAS), Beijing, China
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang, China
| | - Biao Wei
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, China
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang, China
| | - Lin Zhang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, China
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang, China
| | - Rui-Qian Li
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, China
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang, China
| | - Chang-Qing Qu
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Fuyang, China
| |
Collapse
|
27
|
Shen Y, Zheng W, Yao Y, Wang D, Lv G, Li C. Phenoxazine‐based Near‐infrared Fluorescent Probes for the Specific Detection of Copper (II) Ions in Living Cells. Chem Asian J 2020; 15:2864-2867. [DOI: 10.1002/asia.202000783] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/27/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Yang Shen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 P. R. China
| | - Wubin Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 P. R. China
| | - Yusi Yao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 P. R. China
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 P. R. China
| | - Guanglei Lv
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 P. R. China
| | - Chunxia Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 P. R. China
- Institute of Frontier and Interdisciplinarity Science and Institute of Molecular Sciences and Engineering Shandong University Qingdao 266237 P. R. China
| |
Collapse
|