1
|
Tian H, Wu J, Hu Y, Chen X, Cai X, Wen Y, Chen H, Huang J, Wang S. Recent advances on enhancing 3D printing quality of protein-based inks: A review. Compr Rev Food Sci Food Saf 2024; 23:e13349. [PMID: 38638060 DOI: 10.1111/1541-4337.13349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/26/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024]
Abstract
3D printing is an additive manufacturing technology that locates constructed models with computer-controlled printing equipment. To achieve high-quality printing, the requirements on rheological properties of raw materials are extremely restrictive. Given the special structure and high modifiability under external physicochemical factors, the rheological properties of proteins can be easily adjusted to suitable properties for 3D printing. Although protein has great potential as a printing material, there are many challenges in the actual printing process. This review summarizes the technical considerations for protein-based ink 3D printing. The physicochemical factors used to enhance the printing adaptability of protein inks are discussed. The post-processing methods for improving the quality of 3D structures are described, and the application and problems of fourth dimension (4D) printing are illustrated. The prospects of 3D printing in protein manufacturing are presented to support its application in food and cultured meat. The native structure and physicochemical factors of proteins are closely related to their rheological properties, which directly link with their adaptability for 3D printing. Printing parameters include extrusion pressure, printing speed, printing temperature, nozzle diameter, filling mode, and density, which significantly affect the precision and stability of the 3D structure. Post-processing can improve the stability and quality of 3D structures. 4D design can enrich the sensory quality of the structure. 3D-printed protein products can meet consumer needs for nutritional or cultured meat alternatives.
Collapse
Affiliation(s)
- Han Tian
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Jiajie Wu
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Yanyu Hu
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Xu Chen
- Qingyuan Innovation Laboratory, Quanzhou, China
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Xixi Cai
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
- Marine Green Processing Research Center, Fuzhou Institute of Oceanography, Fuzhou, China
| | - Yaxin Wen
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Huimin Chen
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Jianlian Huang
- Fujian Provincial Key Laboratory of Frozen Processed Aquatic Products, Xiamen, China
- Anjoy Food Group Co. Ltd., Xiamen, China
| | - Shaoyun Wang
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
- Marine Green Processing Research Center, Fuzhou Institute of Oceanography, Fuzhou, China
| |
Collapse
|
2
|
Murphy AC, Oldenkamp HF, Peppas NA. A highly tuneable inverse emulsion polymerization for the synthesis of stimuli-responsive nanoparticles for biomedical applications. Biomater Sci 2024; 12:1707-1715. [PMID: 38334980 DOI: 10.1039/d3bm01765f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Polymeric nanomaterials have seen widespread use in biomedical applications as they are highly tuneable to achieve the desired stimuli-responsiveness, targeting, biocompatibility, and degradation needed for fields such as drug delivery and biosensing. However, adjustments to composition and the introduction of new monomers often necessitate reoptimization of the polymer synthesis to achieve the target parameters. In this study, we explored the use of inverse emulsion polymerization to prepare a library of polymeric nanoparticles with variations in pH and temperature response and examined the impact of overall batch volume and the volume of the aqueous phase on nanoparticle size and composition. We were able to prepare copolymeric nanoparticles using three different nonionic and three different anionic comonomers. Varying the non-ionizable comonomers, acrylamide (AAm), 2-hydroxyethyl methacrylate, and N-isopropylacrylamide (NIPAM), was found to alter the mass percentage of methacrylic acid (MAA) incorporated (from 26.7 ± 3.5 to 45.8 ± 1.8 mass%), the critical swelling pH (from 5.687 ± 0.194 to 6.637 ± 0.318), and the volume swelling ratio (from 1.389 ± 0.064 to 2.148 ± 0.037). Additionally, the use of NIPAM was found to allow for temperature-responsive behavior. Varying the ionizable comonomers, MAA, itaconic acid, and 2-acrylamido-2-methylpropane sulfonic acid (AMPSA), was found to significantly alter the critical swelling pH and, in the case of AMPSA, remove the pH-responsive behavior entirely. Finally, we found that for the base P(AAm-co-MAA) formulation, the pH-responsive swelling behavior was independent of the scale of the reaction; however, variations in the aqueous volume relative to the volume of the continuous phase significantly affected both the nanoparticle size and the critical swelling pH.
Collapse
Affiliation(s)
- Andrew C Murphy
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Heidi F Oldenkamp
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
3
|
Mantooth SM, Hancock AM, Thompson PM, Varghese P J G, Meritet DM, Vrabel MR, Hu J, Zaharoff DA. Characterization of an Injectable Chitosan Hydrogel for the Tunable, Localized Delivery of Immunotherapeutics. ACS Biomater Sci Eng 2024; 10:905-920. [PMID: 38240491 DOI: 10.1021/acsbiomaterials.3c01580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Localized delivery of immunotherapeutics within a tumor has the potential to reduce systemic toxicities and improve treatment outcomes in cancer patients. Unfortunately, local retention of therapeutics following intratumoral injection is problematic and is insufficiently considered. Dense tumor architectures and high interstitial pressures rapidly exclude injections of saline and other low-viscosity solutions. Hydrogel-based delivery systems, on the other hand, can resist shear forces that cause tumor leakage and thus stand to improve the local retention of coformulated therapeutics. The goal of the present work was to construct a novel, injectable hydrogel that could be tuned for localized immunotherapy delivery. A chitosan-based hydrogel, called XCSgel, was developed and subsequently characterized. Nuclear magnetic resonance studies were performed to describe the chemical properties of the new entity, while cryo-scanning electron microscopy allowed for visualization of the hydrogel's cross-linked network. Rheology experiments demonstrated that XCSgel was shear-thinning and self-healing. Biocompatibility studies, both in vitro and in vivo, showed that XCSgel was nontoxic and induced transient mild-to-moderate inflammation. Release studies revealed that coformulated immunotherapeutics were released over days to weeks in a charge-dependent manner. Overall, XCSgel displayed several clinically important features, including injectability, biocompatibility, and imageability. Furthermore, the properties of XCSgel could also be controlled to tune the release of coformulated immunotherapeutics.
Collapse
Affiliation(s)
- Siena M Mantooth
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Asher M Hancock
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Peter M Thompson
- Molecular Education, Technology and Research Innovation Center, North Carolina State University, Raleigh, North Carolina 27606, United States
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - George Varghese P J
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Danielle M Meritet
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Maura R Vrabel
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Jingjie Hu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - David A Zaharoff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
4
|
Duan QY, Zhu YX, Jia HR, Wang SH, Wu FG. Nanogels: Synthesis, properties, and recent biomedical applications. PROGRESS IN MATERIALS SCIENCE 2023; 139:101167. [DOI: 10.1016/j.pmatsci.2023.101167] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Clegg JR, Peppas NA. Design of Synthetic Hydrogel Compositions for Noncovalent Protein Recognition. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36912849 DOI: 10.1021/acsami.2c20857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Multifunctional hydrogels composed of segments with ionizable, hydrophilic, and hydrophobic monomers have been optimized for sensing, bioseparation, and therapeutic applications. While the "biological identity" of bound proteins from biofluids underlies device performance in each context, design rules that predict protein binding outcomes from hydrogel design parameters are lacking. Uniquely, hydrogel designs that influence protein affinity (e.g., ionizable monomers, hydrophobic moieties, conjugated ligands, cross-linking) also affect physical properties (e.g., matrix stiffness, volumetric swelling). Here, we evaluated the influence of hydrophobic comonomer steric bulk and quantity on the protein recognition characteristics of ionizable microscale hydrogels (microgels) while controlling for swelling. Using a library synthesis approach, we identified compositions that balance the practical balance between protein-microgel affinity and the loaded mass at saturation. Intermediate quantities (10-30 mol %) of hydrophobic comonomer increased the equilibrium binding of certain model proteins (lysozyme, lactoferrin) in buffer conditions that favored complementary electrostatic interactions. Solvent-accessible surface area analysis of model proteins identified arginine content as highly predictive of model proteins' binding to our library of hydrogels containing acidic and hydrophobic comonomers. Taken together, we established an empirical framework for characterizing the molecular recognition properties of multifunctional hydrogels. Our study is the first to identify solvent-accessible arginine as an important predictor for protein binding to hydrogels containing both acidic and hydrophobic subunits.
Collapse
Affiliation(s)
- John R Clegg
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, Texas 78712, United States
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Surgery and Perioperative Care and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Nangia S, Katyal D, Warkar SG. Thermodynamics, kinetics and isotherm studies on the removal of anionic Azo-dye (Congo red) using synthesized Chitosan/ Moringa oleifera gum hydrogel composites. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2104731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Sakshi Nangia
- University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Deeksha Katyal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Sudhir G. Warkar
- Department of Applied Chemistry, Delhi Technological University, New Delhi, India
| |
Collapse
|
7
|
Application of Protein in Extrusion-Based 3D Food Printing: Current Status and Prospectus. Foods 2022; 11:foods11131902. [PMID: 35804718 PMCID: PMC9265415 DOI: 10.3390/foods11131902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
Extrusion-based 3D food printing is one of the most common ways to manufacture complex shapes and personalized food. A wide variety of food raw materials have been documented in the last two decades for the fabrication of personalized food for various groups of people. This review aims to highlight the most relevant and current information on the use of protein raw materials as functional 3D food printing ink. The functional properties of protein raw materials, influencing factors, and application of different types of protein in 3D food printing were also discussed. This article also clarified that the effective and reasonable utilization of protein is a vital part of the future 3D food printing ink development process. The challenges of achieving comprehensive nutrition and customization, enhancing printing precision and accuracy, and paying attention to product appearance, texture, and shelf life remain significant.
Collapse
|
8
|
Li Z, Jiang Y, Zhao H, Liu L. Ca 2+-Chelation-Induced Fabrication of Multistimuli-Responsive Charged Nanogels from Phospholipid-Polymer Conjugates and Use for Drug/Protein Loading. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6612-6622. [PMID: 35578744 DOI: 10.1021/acs.langmuir.2c00464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Thermoresponsive phospholipid-poly(N-isopropylacrylamide) (PL-PNIPAM) conjugates were synthesized via reversible addition fragmentation chain transfer polymerization mediated by a phospholipid-modified trithiocarbonate. Temperature triggered the micellization of the PL-PNIPAM conjugate to form phosphate group-decorated micelles in the aqueous solution. Driven by the chelation of phospholipids and Ca2+, the PL-PNIPAM conjugate and Ca2+ ions formed size-tunable nanoclusters at a temperature beyond the lower critical solution temperature. To fabricate cross-linked nanogels, NIPAM was copolymerized with N-succinimidyl acrylate (NSA) to obtain the PL-P(NIPAM-co-NSA) conjugate bearing pendent cross-linkable functionalities. Subsequently, the size-controllable nanogels containing disulfide linkages were generated at 37 °C by cross-linking the PL-P(NIPAM-co-NSA)/Ca2+ nanoclusters with cystamine through modulation of Ca2+ concentrations. These negatively charged nanogels demonstrate temperature/pH/reduction triple responsiveness. The nanogels can be efficiently loaded with doxorubicin (DOX) and proteins with various isoelectric points. The DOX-loaded nanogels exhibited a temperature/pH/reduction triple-responsive release profile. The immobilized RNase A, BSA, and GOx retained the protein bioactivity. The release of RNase A-loaded nanogels possesses a temperature-responsive profile. The immobilization of Lys and cytochrome C in nanogels inhibited protein bioactivity. However, the addition of NaCl triggered the recovery of bioactivity. These multistimuli-responsive nanogels can provide a versatile platform applicable in biotechnology and drug/protein delivery.
Collapse
Affiliation(s)
- Zhen Li
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Yanfen Jiang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, P.R. China
| | - Li Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
9
|
Wechsler ME, Jocelyn Dang HKH, Simmonds SP, Bahrami K, Wyse JM, Dahlhauser SD, Reuther JF, VandeWalle AN, Anslyn EV, Peppas NA. Electrostatic and Covalent Assemblies of Anionic Hydrogel-Coated Gold Nanoshells for Detection of Dry Eye Biomarkers in Human Tears. NANO LETTERS 2021; 21:8734-8740. [PMID: 34623161 PMCID: PMC8588787 DOI: 10.1021/acs.nanolett.1c02941] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Although dry eye is highly prevalent, many challenges exist in diagnosing the symptom and related diseases. For this reason, anionic hydrogel-coated gold nanoshells (AuNSs) were used in the development of a label-free biosensor for detection of high isoelectric point tear biomarkers associated with dry eye. A custom, aldehyde-functionalized oligo(ethylene glycol)acrylate (Al-OEGA) was included in the hydrogel coating to enhance protein recognition through the formation of dynamic covalent (DC) imine bonds with solvent-accessible lysine residues present on the surface of select tear proteins. Our results demonstrated that hydrogel-coated AuNSs, composed of monomers that form ionic and DC bonds with select tear proteins, greatly enhance protein recognition due to changes in the maximum localized surface plasmon resonance wavelength exhibited by AuNSs in noncompetitive and competitive environments. Validation of the developed biosensor in commercially available pooled human tears revealed the potential for clinical translation to establish a method for dry eye diagnosis.
Collapse
Affiliation(s)
- Marissa E Wechsler
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - H K H Jocelyn Dang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Susana P Simmonds
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kiana Bahrami
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jordyn M Wyse
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Samuel D Dahlhauser
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James F Reuther
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Abigail N VandeWalle
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nicholas A Peppas
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
10
|
Macdougall LJ, Wechsler ME, Culver HR, Benke EH, Broerman A, Bowman CN, Anseth KS. Charged Poly( N-isopropylacrylamide) Nanogels for the Stabilization of High Isoelectric Point Proteins. ACS Biomater Sci Eng 2021; 7:4282-4292. [PMID: 33560107 DOI: 10.1021/acsbiomaterials.0c01690] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Storage and transportation of protein therapeutics using refrigeration is a costly process; a reliable electrical supply is vital, expensive equipment is needed, and unique transportation is required. Reducing the reliance on the cold chain would enable low-cost transportation and storage of biologics, ultimately improving accessibility of this class of therapeutics to patients in remote locations. Herein, we report on the synthesis of charged poly(N-isopropylacrylamide) nanogels that efficiently adsorb a range of different proteins of varying isoelectric points and molecular weights (e.g., adsorption capacity (Q) = 4.7 ± 0.2 mg/mg at 6 mg/mL initial IgG concentration), provide protection from external environmental factors (i.e., temperature), and subsequently release the proteins in an efficient manner (e.g., 100 ± 1% at 2 mg/mL initial IgG concentration). Both cationic and anionic nanogels were synthesized and selectively chosen based on the ability to form electrostatic interactions with adsorbed proteins (e.g., cationic nanogels adsorb low isoelectric point proteins whereas anionic nanogels adsorb high isoelectric point proteins). The nanogel-protein complex formed upon adsorption increases the stabilization of the protein's tertiary structure, providing protection against denaturation at elevated temperatures (e.g., 84 ± 4% of the protected IgG was stabilized when exposed to 65 °C). The addition of a high molar salt solution (e.g., 40 mM CaCl2 solution) to protein-laden nanogels disrupts the electrostatic interactions and collapses the nanogel, ultimately releasing the protein. The versatile materials utilized, in addition to the protein loading and release mechanisms described, provide a simple and efficient strategy to protect fragile biologics for their transport to remote areas without necessitating costly storage equipment.
Collapse
|
11
|
Brotherton EE, Jesson CP, Warren NJ, Smallridge MJ, Armes SP. New Aldehyde‐Functional Methacrylic Water‐Soluble Polymers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Emma E. Brotherton
- Chemistry The University of Sheffield Dainton Building, Brook Hill Sheffield S3 7HF UK
| | - Craig P. Jesson
- Chemistry The University of Sheffield Dainton Building, Brook Hill Sheffield S3 7HF UK
| | - Nicholas J. Warren
- Chemistry The University of Sheffield Dainton Building, Brook Hill Sheffield S3 7HF UK
| | - Mark J. Smallridge
- GEO Specialty Chemicals Charleston Road, Hardley, Hythe Southampton SO45 3ZG UK
| | - Steven P. Armes
- Chemistry The University of Sheffield Dainton Building, Brook Hill Sheffield S3 7HF UK
| |
Collapse
|
12
|
Brotherton EE, Jesson CP, Warren NJ, Smallridge MJ, Armes SP. New Aldehyde-Functional Methacrylic Water-Soluble Polymers. Angew Chem Int Ed Engl 2021; 60:12032-12037. [PMID: 33617018 PMCID: PMC8252606 DOI: 10.1002/anie.202015298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/15/2021] [Indexed: 12/18/2022]
Abstract
Aldehyde groups enable facile conjugation to proteins, enzymes, oligonucleotides or fluorescent dyes, yet there are no literature examples of water-soluble aldehyde-functional vinyl monomers. We report the synthesis of a new hydrophilic cis-diol-based methacrylic monomer (GEO5MA) by transesterification of isopropylideneglycerol penta(ethylene glycol) using methyl methacrylate followed by acetone deprotection via acid hydrolysis. The corresponding water-soluble aldehyde monomer, AGEO5MA, is prepared by aqueous periodate oxidation of GEO5MA at 22 °C. RAFT polymerization of GEO5MA yields the water-soluble homopolymer, PGEO5MA. Aqueous periodate oxidation of the terminal cis-diol units on PGEO5MA at 22 °C affords a water-soluble aldehyde-functional homopolymer (PAGEO5MA). Moreover, a library of hydrophilic statistical copolymers bearing cis-diol and aldehyde groups was prepared using sub-stoichiometric periodate/cis-diol molar ratios. The aldehyde groups on PAGEO5MA homopolymer were reacted in turn with three amino acids to demonstrate synthetic utility.
Collapse
Affiliation(s)
- Emma E Brotherton
- Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK
| | - Craig P Jesson
- Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK
| | - Nicholas J Warren
- Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK
| | - Mark J Smallridge
- GEO Specialty Chemicals, Charleston Road, Hardley, Hythe, Southampton, SO45 3ZG, UK
| | - Steven P Armes
- Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK
| |
Collapse
|
13
|
Honda R, Gyobu T, Shimahara H, Miura Y, Hoshino Y. Electrostatic Interactions between Acid-/Base-Containing Polymer Nanoparticles and Proteins: Impact of Polymerization pH. ACS APPLIED BIO MATERIALS 2020; 3:3827-3834. [DOI: 10.1021/acsabm.0c00390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ryutaro Honda
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomohiro Gyobu
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hideto Shimahara
- Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1211, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yu Hoshino
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|