1
|
Podapangi SK, Jafarzadeh F, Mattiello S, Korukonda TB, Singh A, Beverina L, Brown TM. Green solvents, materials, and lead-free semiconductors for sustainable fabrication of perovskite solar cells. RSC Adv 2023; 13:18165-18206. [PMID: 37333793 PMCID: PMC10269851 DOI: 10.1039/d3ra01692g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
Perovskite materials research has received unprecedented recognition due to its applications in photovoltaics, LEDs, and other large area low-cost electronics. The exceptional improvement in the photovoltaic conversion efficiency of Perovskite solar cells (PSCs) achieved over the last decade has prompted efforts to develop and optimize device fabrication technologies for the industrial and commercial space. However, unstable operation in outdoor environments and toxicity of the employed materials and solvents have hindered this proposition. While their optoelectronic properties are extensively studied, the environmental impacts of the materials and manufacturing methods require further attention. This review summarizes and discusses green and environment-friendly methods for fabricating PSCs, particularly non-toxic solvents, and lead-free alternatives. Greener solvent choices are surveyed for all the solar cell films, (i.e. electron and hole transport, semiconductor, and electrode layers) and their impact on thin film quality, morphology and device performance is explored. We also discuss lead content in perovskites, its environmental impact and sequestration routes, and progress in replacing lead with greener alternatives. This review provides an analysis of sustainable green routes in perovskite solar cell fabrication, discussing the impact of each layer in the device stack, via life cycle analysis.
Collapse
Affiliation(s)
- Suresh K Podapangi
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome-Tor Vergata via del Politecnico 1 00133 Rome Italy
| | - Farshad Jafarzadeh
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome-Tor Vergata via del Politecnico 1 00133 Rome Italy
| | - Sara Mattiello
- Department of Materials Science, State University of Milano-Bicocca Via Cozzi 55 I-20126 Milano Italy
| | - Tulja Bhavani Korukonda
- Department of Centre for Energy Studies, Indian Institute of Technology Delhi Hauz Khas New Delhi-110016 India
| | - Akash Singh
- Department of Mechanical Engineering and Materials Science, Duke University Durham NC 27708 USA
| | - Luca Beverina
- Department of Materials Science, State University of Milano-Bicocca Via Cozzi 55 I-20126 Milano Italy
| | - Thomas M Brown
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome-Tor Vergata via del Politecnico 1 00133 Rome Italy
| |
Collapse
|
2
|
Dong Y, Zhang J, Wang W, Hu B, Xia D, Lin K, Geng L, Yang Y. Regulating Crystallization and Lead Leakage of Perovskite Solar Cell Via Novel Polyoxometalate-Based Metal-Organic Framework. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301824. [PMID: 37183295 DOI: 10.1002/smll.202301824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/16/2023] [Indexed: 05/16/2023]
Abstract
Despite the unprecedented progress in lead-based perovskite solar cells (PSCs), the toxicity and leakage of lead from degraded PSCs triggered by deep-level defects and poor crystallization quality increase environmental risk and become a critical challenge for eco-friendly PSCs. Here, a novel 2D polyoxometalate (POM)-based metal-organic framework (MOF) (C5 NH5 )4 (C3 N2 H5 )2 Zn3 (H8 P4 Mo6 O31 )2 ·2H2 O (POMOF) is ingeniously devised to address these issues. Note that the integration of POM endows POMOF with great advantages of electrical conductivity and charge mobility. Ordered POMOF induces the crystallization of high-quality perovskite film and eliminates lead-based defects to improve internal stability. The resultant PSCs achieve a superior power conversion efficiency (23.3%) accompanied by improved stability that maintains ≈90% of its original efficiency after 1600 h. Meanwhile, POMOF with phosphate groups effectively prevents lead leakage through in situ chemical anchoring and adsorption methods to reduce environmental risk. This work provides an effective strategy to minimize lead-based defects and leakage in sustainable PSCs through multi-functional POM-based MOF material.
Collapse
Affiliation(s)
- Yayu Dong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Jian Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Wei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Boyuan Hu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Debin Xia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Kaifeng Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Lin Geng
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Yulin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| |
Collapse
|
3
|
Zhang H, Lee JW, Nasti G, Handy R, Abate A, Grätzel M, Park NG. Lead immobilization for environmentally sustainable perovskite solar cells. Nature 2023; 617:687-695. [PMID: 37225881 DOI: 10.1038/s41586-023-05938-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 03/10/2023] [Indexed: 05/26/2023]
Abstract
Lead halide perovskites are promising semiconducting materials for solar energy harvesting. However, the presence of heavy-metal lead ions is problematic when considering potential harmful leakage into the environment from broken cells and also from a public acceptance point of view. Moreover, strict legislation on the use of lead around the world has driven innovation in the development of strategies for recycling end-of-life products by means of environmentally friendly and cost-effective routes. Lead immobilization is a strategy to transform water-soluble lead ions into insoluble, nonbioavailable and nontransportable forms over large pH and temperature ranges and to suppress lead leakage if the devices are damaged. An ideal methodology should ensure sufficient lead-chelating capability without substantially influencing the device performance, production cost and recycling. Here we analyse chemical approaches to immobilize Pb2+ from perovskite solar cells, such as grain isolation, lead complexation, structure integration and adsorption of leaked lead, based on their feasibility to suppress lead leakage to a minimal level. We highlight the need for a standard lead-leakage test and related mathematical model to be established for the reliable evaluation of the potential environmental risk of perovskite optoelectronics.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, China
- School of Chemical Engineering and Center for Antibonding Regulated Crystals, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jin-Wook Lee
- Department of Nano Engineering and Department of Nano Science and Technology, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon, Republic of Korea
| | - Giuseppe Nasti
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
| | | | - Antonio Abate
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy.
| | - Michael Grätzel
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon, Republic of Korea.
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Nam-Gyu Park
- School of Chemical Engineering and Center for Antibonding Regulated Crystals, Sungkyunkwan University, Suwon, Republic of Korea.
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
4
|
Chen Y, Zhou Q, He D, Zhang C, Zhuang Q, Gong C, Wang K, Liu B, He P, He Y, Li Y, Xu ZX, Lu S, Zhao P, Zang Z, Chen J. Application of Natural Molecules in Efficient and Stable Perovskite Solar Cells. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2163. [PMID: 36984043 PMCID: PMC10055777 DOI: 10.3390/ma16062163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Perovskite solar cells (PSCs), one of the most promising photovoltaic technologies, have been widely studied due to their high power conversion efficiency (PCE), low cost, and solution processability. The architecture of PSCs determines that high PCE and stability are highly dependent on each layer and the related interface, where nonradiative recombination occurs. Conventional synthetic chemical materials as modifiers have disadvantages of being toxic and costly. Natural molecules with advantages of low cost, biocompatibility, and being eco-friendly, and have improved PCE and stability by modifying both functional layers and interface. In this review, we discuss the roles of natural molecules on PSCs devices in terms of the perovskite active layer, interface, carrier transport layers (CTLs), and substrate. Finally, the summary and outlook for the future development of natural molecule-modified PSCs are also addressed.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Qian Zhou
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Dongmei He
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Cong Zhang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Qixin Zhuang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Cheng Gong
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Ke Wang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Baibai Liu
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Peng He
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Yong He
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Yuelong Li
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Solar Energy Research Center of Nankai University, Tianjin 300350, China
| | - Zong-Xiang Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shirong Lu
- Department of Material Science and Technology, Taizhou University, Taizhou 318000, China
| | - Pengjun Zhao
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Zhigang Zang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Jiangzhao Chen
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
5
|
Lanzetta L, Webb T, Marin‐Beloqui JM, Macdonald TJ, Haque SA. Halide Chemistry in Tin Perovskite Optoelectronics: Bottlenecks and Opportunities. Angew Chem Int Ed Engl 2023; 62:e202213966. [PMID: 36369761 PMCID: PMC10107305 DOI: 10.1002/anie.202213966] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Tin halide perovskites (Sn HaPs) are the top lead-free choice for perovskite optoelectronics, but the oxidation of perovskite Sn2+ to Sn4+ remains a key challenge. However, the role of inconspicuous chemical processes remains underexplored. Specifically, the halide component in Sn HaPs (typically iodide) has been shown to play a key role in dictating device performance and stability due to its high reactivity. Here we describe the impact of native halide chemistry on Sn HaPs. Specifically, molecular halogen formation in Sn HaPs and its influence on degradation is reviewed, emphasising the benefits of iodide substitution for improving stability. Next, the ecological impact of halide products of Sn HaP degradation and its mitigation are considered. The development of visible Sn HaP emitters via halide tuning is also summarised. Lastly, halide defect management and interfacial engineering for Sn HaP devices are discussed. These insights will inspire efficient and robust Sn HaP optoelectronics.
Collapse
Affiliation(s)
- Luis Lanzetta
- Physical Science and Engineering DivisionKAUST Solar Center (KSC)King Abdullah University of Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Thomas Webb
- Department of Chemistry and Centre for Processable ElectronicsMolecular Sciences Research HubImperial College LondonLondonW12 0BZUK
| | - Jose Manuel Marin‐Beloqui
- Department of Physical ChemistryUniversity of MálagaAndalucia-Tech Campus de Teatinos s/n29071MálagaSpain
| | - Thomas J. Macdonald
- Department of Chemistry and Centre for Processable ElectronicsMolecular Sciences Research HubImperial College LondonLondonW12 0BZUK
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Saif A. Haque
- Department of Chemistry and Centre for Processable ElectronicsMolecular Sciences Research HubImperial College LondonLondonW12 0BZUK
| |
Collapse
|
6
|
Macdonald TJ, Lanzetta L, Liang X, Ding D, Haque SA. Engineering Stable Lead-Free Tin Halide Perovskite Solar Cells: Lessons from Materials Chemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2206684. [PMID: 36458662 DOI: 10.1002/adma.202206684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Substituting toxic lead with tin (Sn) in perovskite solar cells (PSCs) is the most promising route toward the development of high-efficiency lead-free devices. Despite the encouraging efficiencies of Sn-PSCs, they are still yet to surpass 15% and suffer detrimental oxidation of Sn(II) to Sn(IV). Since their first application in 2014, investigations into the properties of Sn-PSCs have contributed to a growing understanding of the mechanisms, both detrimental and complementary to their stability. This review summarizes the evolution of Sn-PSCs, including early developments to the latest state-of-the-art approaches benefitting the stability of devices. The degradation pathways associated with Sn-PSCs are first outlined, followed by describing how composition engineering (A, B site modifications), additive engineering (oxidation prevention), and interface engineering (passivation strategies) can be employed as different avenues to improve the stability of devices. The knowledge about these properties is also not limited to PSCs and also applicable to other types of devices now employing Sn-based perovskite absorber layers. A detailed analysis of the properties and materials chemistry reveals a clear set of design rules for the development of stable Sn-PSCs. Applying the design strategies highlighted in this review will be essential to further improve both the efficiency and stability of Sn-PSCs.
Collapse
Affiliation(s)
- Thomas J Macdonald
- Department of Chemistry, Imperial College London, Wood Lane, W12 0BZ, UK
- Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Luis Lanzetta
- Department of Chemistry, Imperial College London, Wood Lane, W12 0BZ, UK
- Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Xinxing Liang
- Department of Chemistry, Imperial College London, Wood Lane, W12 0BZ, UK
- Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Dong Ding
- Department of Chemistry, Imperial College London, Wood Lane, W12 0BZ, UK
- Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| | - Saif A Haque
- Department of Chemistry, Imperial College London, Wood Lane, W12 0BZ, UK
- Centre for Processable Electronics, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|