1
|
Talukdar D, Gole B. Foldamer-Based Mechanoresponsive Materials: Molecular Nanoarchitectonics to Advanced Functions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18791-18805. [PMID: 39051976 DOI: 10.1021/acs.langmuir.4c01252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Artificial molecules that respond to external stimuli such as light, heat, chemical signals, and mechanical force have garnered significant interest due to their tunable functions, variable optical properties, and mechanical responses. Particularly, mechanoresponsive materials featuring molecules that respond to mechanical stress or show force-induced optical changes have been intriguing due to their extraordinary functions. Despite the promising potential of many such materials reported in the past, practical applications have remained limited, primarily because their functions often depend on irreversible covalent bond rupture. Foldamers, oligomers that fold into well-defined secondary structures, offer an alternative class of mechanoactive motifs. These molecules can reversibly sustain mechanical stress and efficiently dissipate energy by transitioning between folded and unfolded states. This review focuses on the emerging properties of foldamer-based mechanoresponsive materials. We begin by highlighting the mechanical responses of foldamers in their molecular form, which have been primarily investigated using single-molecule force spectroscopy and other analytical methods. Following this, we provide a detailed survey of the current trends in foldamer-appended polymers, emphasizing their emerging mechanical and mechanochromic properties. Subsequently, we present an overview of the state-of-the-art advancements in foldamer-appended polymers, showcasing significant reports in this field. This review covers some of the most recent advances in this direction and draws a perspective for further development.
Collapse
Affiliation(s)
- Dhrubajyoti Talukdar
- Biomimetic Supramolecular Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Greater Noida, Uttar Pradesh 201314, India
| | - Bappaditya Gole
- Biomimetic Supramolecular Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
2
|
Xia Y, Wang G, He C, Chen H. A Strong Supramolecular Mechanophore with Controlled Mechanical Strength. Angew Chem Int Ed Engl 2024; 63:e202406738. [PMID: 38869842 DOI: 10.1002/anie.202406738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/14/2024]
Abstract
Supramolecular mechanophores typically exhibit much lower mechanical strengths than covalent counterparts, with strengths usually around 100 pN, which is significantly lower than the nN-scale strength of covalent bonds. Inspired by the slow dissociation kinetics of the cucurbit[7]uril (CB[7])-hexanoate-isoquinoline (HIQ) complex, we discovered that charge-dipole repulsion can be utilized to create strong supramolecular mechanophores. When activated at its -COO- state, the CB[7]-HIQ complex exhibits a high mechanical strength of ~700 pN, comparable to weak covalent bonds such as Au-S bonds or thiol-maleimide adducts. The strength of the CB[7]-HIQ complex can also be tuned with pH in a gradual manner, with a minimum value of ~150 pN at its -COOH state, similar to an ordinary supramolecular conjugate. This research may pave the way for the development of supramolecular architectures that combine the advantages of covalent and supramolecular systems.
Collapse
Affiliation(s)
- Yu Xia
- School of Chemistry and Chemical Engineering, The Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan, 250100, P. R. China
| | - Guannan Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijng, 100029, P. R. China
| | - Chengzhi He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijng, 100029, P. R. China
| | - Hao Chen
- School of Chemistry and Chemical Engineering, The Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
3
|
Yekta R, Xiong X, Li J, Heater BS, Lee MM, Chan MK. Mechanoresponsive Protein Crystals for NADH Recycling in Multicycle Enzyme Reactions. J Am Chem Soc 2024; 146:18817-18822. [PMID: 38968608 PMCID: PMC11258682 DOI: 10.1021/jacs.4c04725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024]
Abstract
NAD(H)-dependent enzymes play a crucial role in the biosynthesis of pharmaceuticals and fine chemicals, but the limited recyclability of the NAD(H) cofactor hinders its more general application. Here, we report the generation of mechano-responsive PEI-modified Cry3Aa protein crystals and their use for NADH recycling over multiple reaction cycles. For demonstration of its practical utility, a complementary Cry3Aa protein particle containing genetically encoded and co-immobilized formate dehydrogenase for NADH regeneration and leucine dehydrogenase for catalyzing the NADH-dependent l-tert-leucine (l-tert-Leu) biosynthesis has been produced. When combined with the PEI-modified Cry3Aa crystal, the resultant reaction system could be used for the efficient biosynthesis of l-tert-Leu for up to 21 days with a 10.5-fold improvement in the NADH turnover number.
Collapse
Affiliation(s)
- Reza Yekta
- School of Life Sciences & Center
of Novel Biomaterials, The Chinese University
of Hong Kong, Shatin, Hong Kong S.A.R. 999077
| | - Xu Xiong
- School of Life Sciences & Center
of Novel Biomaterials, The Chinese University
of Hong Kong, Shatin, Hong Kong S.A.R. 999077
| | - Jiaxin Li
- School of Life Sciences & Center
of Novel Biomaterials, The Chinese University
of Hong Kong, Shatin, Hong Kong S.A.R. 999077
| | - Bradley S. Heater
- School of Life Sciences & Center
of Novel Biomaterials, The Chinese University
of Hong Kong, Shatin, Hong Kong S.A.R. 999077
| | - Marianne M. Lee
- School of Life Sciences & Center
of Novel Biomaterials, The Chinese University
of Hong Kong, Shatin, Hong Kong S.A.R. 999077
| | - Michael K. Chan
- School of Life Sciences & Center
of Novel Biomaterials, The Chinese University
of Hong Kong, Shatin, Hong Kong S.A.R. 999077
| |
Collapse
|
4
|
Li Y, Xue B, Yang J, Jiang J, Liu J, Zhou Y, Zhang J, Wu M, Yuan Y, Zhu Z, Wang ZJ, Chen Y, Harabuchi Y, Nakajima T, Wang W, Maeda S, Gong JP, Cao Y. Azobenzene as a photoswitchable mechanophore. Nat Chem 2024; 16:446-455. [PMID: 38052946 DOI: 10.1038/s41557-023-01389-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/27/2023] [Indexed: 12/07/2023]
Abstract
Azobenzene has been widely explored as a photoresponsive element in materials science. Although some studies have investigated the force-induced isomerization of azobenzene, the effect of force on the rupture of azobenzene has not been explored. Here we show that the light-induced structural change of azobenzene can also alter its rupture forces, making it an ideal light-responsive mechanophore. Using single-molecule force spectroscopy and ultrasonication, we found that cis and trans para-azobenzene isomers possess contrasting mechanical properties. Dynamic force spectroscopy experiments and quantum-chemical calculations in which azobenzene regioisomers were pulled from different directions revealed that the distinct rupture forces of the two isomers are due to the pulling direction rather than the energetic difference between the two isomers. These mechanical features of azobenzene can be used to rationally control the macroscopic fracture behaviours of polymer networks by photoillumination. The use of light-induced conformational changes to alter the mechanical response of mechanophores provides an attractive way to engineer polymer networks of light-regulatable mechanical properties.
Collapse
Affiliation(s)
- Yiran Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, China
- Medical School, Nanjing University, Nanjing, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, China
| | - Jiahui Yang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, China
| | | | - Jing Liu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, China
| | - Yanyan Zhou
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, China
| | - Junsheng Zhang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, China
| | - Mengjiao Wu
- College of Chemistry, Jilin University, Changchun, China
| | - Yuan Yuan
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin, China
| | - Zhenshu Zhu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, China
| | - Zhi Jian Wang
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Yulan Chen
- College of Chemistry, Jilin University, Changchun, China
| | - Yu Harabuchi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Tasuku Nakajima
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, China.
| | - Satoshi Maeda
- Hokkaido University, Sapporo, Japan.
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Nanjing University, Nanjing, China.
| |
Collapse
|
5
|
Imato K, Ishii A, Kaneda N, Hidaka T, Sasaki A, Imae I, Ooyama Y. Thermally Stable Photomechanical Molecular Hinge: Sterically Hindered Stiff-Stilbene Photoswitch Mechanically Isomerizes. JACS AU 2023; 3:2458-2466. [PMID: 37772185 PMCID: PMC10523368 DOI: 10.1021/jacsau.3c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 09/30/2023]
Abstract
Molecular photoswitches are extensively used as molecular machines because of the small structures, simple motions, and advantages of light including high spatiotemporal resolution. Applications of photoswitches depend on the mechanical responses, in other words, whether they can generate motions against mechanical forces as actuators or can be activated and controlled by mechanical forces as mechanophores. Sterically hindered stiff stilbene (HSS) is a promising photoswitch offering large hinge-like motions in the E/Z isomerization, high thermal stability of the Z isomer, which is relatively unstable compared to the E isomer, with a half-life of ca. 1000 years at room temperature, and near-quantitative two-way photoisomerization. However, its mechanical response is entirely unexplored. Here, we elucidate the mechanochemical reactivity of HSS by incorporating one Z or E isomer into the center of polymer chains, ultrasonicating the polymer solutions, and stretching the polymer films to apply elongational forces to the embedded HSS. The present study demonstrated that HSS mechanically isomerizes only in the Z to E direction and reversibly isomerizes in combination with UV light, i.e., works as a photomechanical hinge. The photomechanically inducible but thermally irreversible hinge-like motions render HSS unique and promise unconventional applications differently from existing photoswitches, mechanophores, and hinges.
Collapse
Affiliation(s)
- Keiichi Imato
- Applied Chemistry
Program,
Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Akira Ishii
- Applied Chemistry
Program,
Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Naoki Kaneda
- Applied Chemistry
Program,
Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Taichi Hidaka
- Applied Chemistry
Program,
Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Ayane Sasaki
- Applied Chemistry
Program,
Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Ichiro Imae
- Applied Chemistry
Program,
Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Yousuke Ooyama
- Applied Chemistry
Program,
Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| |
Collapse
|
6
|
Traeger H, Kiebala D, Calvino C, Sagara Y, Schrettl S, Weder C, Clough JM. Microscopic strain mapping in polymers equipped with non-covalent mechanochromic motifs. MATERIALS HORIZONS 2023; 10:3467-3475. [PMID: 37350289 PMCID: PMC10463555 DOI: 10.1039/d3mh00650f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
The mechanical failure of polymers remains challenging to understand and predict, as it often involves highly localised phenomena that cannot be probed with bulk characterisation techniques. Here, we present a generalisable protocol based on optical microscopy, tensile testing, and image processing that permits the spatially resolved interrogation of mechanical deformation at the molecular level around defects in mechanophore-containing polymers. The approach can be applied to a broad range of polymeric materials, mechanophores, and deformation scenarios.
Collapse
Affiliation(s)
- Hanna Traeger
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Derek Kiebala
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Céline Calvino
- Cluster of Excellence livMatS, University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Yoshimitsu Sagara
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Stephen Schrettl
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
- Technical University of Munich, TUM School of Life Sciences, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Jess M Clough
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| |
Collapse
|
7
|
Willis-Fox N, Watchorn-Rokutan E, Rognin E, Daly R. Technology pull: scale-up of polymeric mechanochemical force sensors. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
8
|
Zhu G, Yu T, Chen J, Hu R, Yang G, Zeng Y, Li Y. Dipyrene-Terminated Oligosilanes Enable Ratiometric Fluorescence Response in Polymers toward Mechano- and Thermo-Stimuli. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11033-11041. [PMID: 36802470 DOI: 10.1021/acsami.2c21560] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Developing fluorescent motifs capable of displaying mechano- and thermo-stimuli reversibly and ratiometrically is appealing for monitoring the deformation or temperature to which polymers are subjected. Here, a series of excimer-type chromophores Sin-Py (n = 1-3) consisting of two pyrenes linked with oligosilanes of one to three silicon atoms is developed as the fluorescent motif incorporated in a polymer. The fluorescence of Sin-Py is steered with the linker length where Si2-Py and Si3-Py with disilane and trisilane linkers display prominent excimer emission accompanied by pyrene monomer emission. Covalent incorporation of Si2-Py and Si3-Py in polyurethane gives fluorescent polymers PU-Si2-Py and PU-Si3-Py, respectively, where intramolecular pyrene excimers and corresponding combined emission of excimer and monomer are obtained. Polymer films of PU-Si2-Py and PU-Si3-Py display instant and reversible ratiometric fluorescence change during the uniaxial tensile test. The mechanochromic response arises from the reversible suppression of excimer formation during the mechanically induced separation of the pyrene moieties and relaxation. Furthermore, PU-Si2-Py and PU-Si3-Py show thermochromic response toward temperature, and the inflection point from the ratiometric emission as a function of temperature gives an indication of the glass transition temperature (Tg) of the polymers. The design of the excimer-based mechanophore with oligosilane provides a generally implementable way to develop mechano- and thermo-dual-responsive polymers.
Collapse
Affiliation(s)
- Guohua Zhu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Tianjun Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Jinping Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Rui Hu
- University of Chinese Academy of Science, Beijing 100049, China
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Guoqiang Yang
- University of Chinese Academy of Science, Beijing 100049, China
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi Zeng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Yi Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| |
Collapse
|
9
|
Thazhathethil S, Muramatsu T, Tamaoki N, Weder C, Sagara Y. Excited State Charge-Transfer Complexes Enable Fluorescence Color Changes in a Supramolecular Cyclophane Mechanophore. Angew Chem Int Ed Engl 2022; 61:e202209225. [PMID: 35950260 PMCID: PMC9804172 DOI: 10.1002/anie.202209225] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Indexed: 01/05/2023]
Abstract
Mechanochromic mechanophores are reporter molecules that indicate mechanical events through changes of their photophysical properties. Supramolecular mechanophores in which the activation is based on the rearrangement of luminophores and/or quenchers without any covalent bond scission, remain less well investigated. Here, we report a cyclophane-based supramolecular mechanophore that contains a 1,6-bis(phenylethynyl)pyrene luminophore and a pyromellitic diimide quencher. In solution, the blue monomer emission of the luminophore is largely quenched and a faint reddish-orange emission originating from a charge-transfer (CT) complex is observed. A polyurethane elastomer containing the mechanophore displays orange emission in the absence of force, which is dominated by the CT-emission. Mechanical deformation causes a decrease of the CT-emission and an increase of blue monomer emission, due to the spatial separation between the luminophore and quencher. The ratio of the two emission intensities correlates with the applied stress.
Collapse
Affiliation(s)
- Shakkeeb Thazhathethil
- Department of Materials Science and EngineeringTokyo Institute of Technology2-12-1 OokayamaMeguro-ku, Tokyo152-8552Japan
- Research Institute for Electronic ScienceHokkaido UniversityN20, W10SapporoHokkaido001-0020Japan
| | - Tatsuya Muramatsu
- Department of Materials Science and EngineeringTokyo Institute of Technology2-12-1 OokayamaMeguro-ku, Tokyo152-8552Japan
| | - Nobuyuki Tamaoki
- Research Institute for Electronic ScienceHokkaido UniversityN20, W10SapporoHokkaido001-0020Japan
| | - Christoph Weder
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| | - Yoshimitsu Sagara
- Department of Materials Science and EngineeringTokyo Institute of Technology2-12-1 OokayamaMeguro-ku, Tokyo152-8552Japan
| |
Collapse
|
10
|
Thazhathethil S, Muramatsu T, Tamaoki N, Weder C, Sagara Y. Excited State Charge‐Transfer Complexes Enable Fluorescence Color Changes in a Supramolecular Cyclophane Mechanophore. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shakkeeb Thazhathethil
- Hokkaido University Graduate School of Life Science: Hokkaido Daigaku Daigakuin Seimei Kagakuin Division of Life Science JAPAN
| | - Tatsuya Muramatsu
- Tokyo Institute of Technology: Tokyo Kogyo Daigaku Department of Materials Science and Engineering JAPAN
| | - Nobuyuki Tamaoki
- Hokkaido University Graduate School of Life Science: Hokkaido Daigaku Daigakuin Seimei Kagakuin Division of Life Science JAPAN
| | - Christoph Weder
- University of Fribourg: Universite de Fribourg Adolphe Merkle Institute JAPAN
| | - Yoshimitsu Sagara
- Tokyo Institute of Technology Department of Chemical Science and Engineering 2-12-1 Ookayama, Meguro-ku 152-8552 Tokyo JAPAN
| |
Collapse
|
11
|
Xuan M, Schumacher C, Bolm C, Göstl R, Herrmann A. The Mechanochemical Synthesis and Activation of Carbon-Rich π-Conjugated Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105497. [PMID: 35048569 PMCID: PMC9259731 DOI: 10.1002/advs.202105497] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/21/2021] [Indexed: 05/14/2023]
Abstract
Mechanochemistry uses mechanical force to break, form, and manipulate chemical bonds to achieve functional transformations and syntheses. Over the last years, many innovative applications of mechanochemistry have been developed. Specifically for the synthesis and activation of carbon-rich π-conjugated materials, mechanochemistry offers reaction pathways that either are inaccessible with other stimuli, such as light and heat, or improve reaction yields, energy consumption, and substrate scope. Therefore, this review summarizes the recent advances in this research field combining the viewpoints of polymer and trituration mechanochemistry. The highlighted mechanochemical transformations include π-conjugated materials as optical force probes, the force-induced release of small dye molecules, and the mechanochemical synthesis of polyacetylene, carbon allotropes, and other π-conjugated materials.
Collapse
Affiliation(s)
- Mingjun Xuan
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 50Aachen52056Germany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 1Aachen52074Germany
| | - Christian Schumacher
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 1Aachen52074Germany
| | - Carsten Bolm
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 1Aachen52074Germany
| | - Robert Göstl
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 50Aachen52056Germany
| | - Andreas Herrmann
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 50Aachen52056Germany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 1Aachen52074Germany
| |
Collapse
|
12
|
Supramolecular Rings as Building Blocks for Stimuli-Responsive Materials. Gels 2022; 8:gels8060350. [PMID: 35735694 PMCID: PMC9222365 DOI: 10.3390/gels8060350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/24/2022] Open
Abstract
Stimuli-responsive polymers are of great interest due to their ability to translate changing environmental conditions into responses in defined materials. One possibility to impart such behavior is the incorporation of optically active molecules into a polymer host. Here, we describe how sensor molecules that consist of a π-extended benzothiadiazole emitter and a naphthalene diimide quencher can be exploited in this context. The two optically active entities were connected via different spacers and, thanks to attractive intramolecular interactions between them, the new sensor molecules assembled into cyclic structures in which the fluorescence was quenched by up to 43% when compared to solutions of the individual dyes. Detailed spectroscopic investigations of the sensor molecules in solution show that the extent of donor/acceptor interactions is influenced by various factors, including solvent polarity and ion concentration. The new sensor molecule was covalently incorporated into a polyurethane; the investigation of the optical characteristics in both the solid and solvent-swollen states indicates that a stimulus-induced formation of associated dye pairs is possible in polymeric materials. Indeed, a solvatochromic quenching effect similar to the behavior in solution was observed for solvent-swollen polymer samples, leading to an effective change of the green emission color of the dye to a yellow color.
Collapse
|
13
|
Hu H, Cheng X, Ma Z, Sijbesma RP, Ma Z. Polymer Mechanochromism from Force-Tuned Excited-State Intramolecular Proton Transfer. J Am Chem Soc 2022; 144:9971-9979. [PMID: 35617457 DOI: 10.1021/jacs.2c03056] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Real-time monitoring of strain/stress in polymers is a big challenge to date. Herein, we for the first time report an ESIPT (excited-state intramolecular proton transfer)-based mechanochromic mechanophore (MM). The synthesis of target MM PhMz-4OH [(2-hydroxyphenyl)benzimidazole with four aliphatic hydroxyls] is quite facile. PhMz-4OH possesses characteristic dual emissions, and its ESIPT activity is greatly affected by steric hindrance. Then, PhMz-4OH was covalently linked into polyurethane chains (PhMz-4OH@PU). Upon stretching, the PhMz-4OH@PU films showed fluorescence color change and spectral variation with the increase in enol emission and blueshift of keto emission due to the force-induced torsion of the dihedral angle between the proton donor and the proton acceptor. The PhMz-4OH@PU films with high mechanophore concentrations (>0.36 mol %) might undergo a two-stage force-responsive process, including torsion of the dihedral angle via force-induced disaggregation and direct chain-transduced force-induced torsion of the dihedral angle. The intensity ratio of enol emission to keto emission (IE/IK) shows a quantitative correlation with elongation, and real-time strain sensing is achieved. PhMz-4OH is a successful type II MM (without covalent bond scission) and displays high sensitivity and excellent reversibility to stress. Two control structures PhMz-NH2 and PhMz-2OH were also embedded into PU but no spectral or color changes were detected, further confirming that mechanochromism of PhMz-4OH@PU films arises from the chain-transduced force. Density function theory (DFT) calculation was performed to study the force-tuned ESIPT process theoretically and rationalize the experimental results. This study might lay the foundation for real-time stress/strain sensing in practical applications.
Collapse
Affiliation(s)
- Huan Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Cheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhimin Ma
- College of Engineering, Peking University, Beijing 100871, China
| | - Rint P Sijbesma
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Zhiyong Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.,State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| |
Collapse
|
14
|
Karimata A, Khusnutdinova JR. Photo- and triboluminescent pyridinophane Cu complexes: New organometallic tools for mechanoresponsive materials. Dalton Trans 2022; 51:3411-3420. [DOI: 10.1039/d1dt04305f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of mechanoresponsive polymers has emerged as a new, attractive area of research in which changes at the molecular level exert macrolevel effects in the bulk material, and vice...
Collapse
|
15
|
Traeger H, Sagara Y, Berrocal JA, Schrettl S, Weder C. Strain-correlated mechanochromism in different polyurethanes featuring a supramolecular mechanophore. Polym Chem 2022. [DOI: 10.1039/d2py00218c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A previously reported, supramolecular, loop-forming mechanophore comprised of two covalently connected perylene diimide (PDI) dyes was equipped with hydroxy groups and covalently incorporated into different polyurethanes (PUs). Four PUs with...
Collapse
|
16
|
Wang T, Wang H, Shen L, Zhang N. Force-induced strengthening of a mechanochromic polymer based on a naphthalene-fused cyclobutane mechanophore. Chem Commun (Camb) 2021; 57:12675-12678. [PMID: 34779466 DOI: 10.1039/d1cc05305a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discovered a force-induced strengthening of a mechanochromic polymer based on a naphthalene-fused cyclobutane mechanophore (NCD). Our results revealed that mechanically induced retro-cycloaddition of the NCD and subsequent crosslinking reactions between CC bonds were responsible for this peculiar strenghthening, and demonstrated the good possibility that the NCD can be applied in smart materials fields.
Collapse
Affiliation(s)
- Taisheng Wang
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China. .,Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing, 211167, P. R. China
| | - Haoxiang Wang
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China.
| | - Lei Shen
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China.
| | - Na Zhang
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China. .,Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing, 211167, P. R. China
| |
Collapse
|
17
|
|
18
|
Muramatsu T, Okado Y, Traeger H, Schrettl S, Tamaoki N, Weder C, Sagara Y. Rotaxane-Based Dual Function Mechanophores Exhibiting Reversible and Irreversible Responses. J Am Chem Soc 2021; 143:9884-9892. [PMID: 34162206 DOI: 10.1021/jacs.1c03790] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mechanochromic mechanophores permit the design of polymers that indicate mechanical events through optical signals. Here we report rotaxane-based supramolecular mechanophores that display both reversible and irreversible fluorescence changes. These responses are triggered by different forces and are achieved by exploiting the molecular shuttling function and force-induced dethreading of rotaxanes. The new rotaxane mechanophores are composed of a ring featuring a luminophore, which is threaded onto an axle with a matching quencher and two stoppers. In the stress-free state, the luminophore is preferentially located in the proximity of the quencher, and the emission is quenched. The luminophore slides away from the quencher when a force is applied and the fluorescence is switched on. This effect is reversible, unless the force is so high that the luminophore-carrying ring slips past the stopper and dethreading occurs. We show that the combination of judiciously selected ring and stopper moieties is crucial to attain interlocked structures that display such a dual response. PU elastomers that contain such doubly responsive rotaxanes exhibit reversible fluorescence changes over multiple loading-unloading cycles due to the shuttling function, whereas permanent changes are observed upon repeated deformations to high strains due to breakage of the mechanical bond upon dethreading of the ring from the axle. This response allows one, at least conceptually, to monitor the actual deformation of polymer materials and examine mechanical damage that was inflicted in the past on the basis of an optical signal.
Collapse
Affiliation(s)
- Tatsuya Muramatsu
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yuji Okado
- Research Institute for Electronic Science, Hokkaido University, N20, W10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Hanna Traeger
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Stephen Schrettl
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Nobuyuki Tamaoki
- Research Institute for Electronic Science, Hokkaido University, N20, W10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Yoshimitsu Sagara
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
19
|
Traeger H, Sagara Y, Kiebala DJ, Schrettl S, Weder C. Folded Perylene Diimide Loops as Mechanoresponsive Motifs. Angew Chem Int Ed Engl 2021; 60:16191-16199. [PMID: 33961723 DOI: 10.1002/anie.202105219] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Indexed: 01/09/2023]
Abstract
A supramolecular mechanophore that can be integrated into polymers and indicates deformation by a fluorescence color change is reported. Two perylene diimides (PDIs) were connected by a short spacer and equipped with peripheral atom transfer polymerization initiators. In the idle state, the motif folds into a loop and its emission is excimer dominated. Poly(methyl acrylate) (PMA) chains were grown from the motif and the mechanophore-containing polymer was blended with unmodified PMA to afford materials that display a visually discernible fluorescence color change upon deformation, which causes the loops to unfold. The response is instant, and correlates linearly with the applied strain. Experiments with a reference polymer containing only one PDI moiety show that looped mechanophores that display intramolecular excimer formation offer considerable advantages over intermolecular dye aggregates, including a concentration-independent response, direct signaling of mechanical processes, and a more pronounced optical change.
Collapse
Affiliation(s)
- Hanna Traeger
- Adolphe Merkle Institute (AMI), University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Yoshimitsu Sagara
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Derek J Kiebala
- Adolphe Merkle Institute (AMI), University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Stephen Schrettl
- Adolphe Merkle Institute (AMI), University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute (AMI), University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| |
Collapse
|
20
|
Sagara Y, Traeger H, Li J, Okado Y, Schrettl S, Tamaoki N, Weder C. Mechanically Responsive Luminescent Polymers Based on Supramolecular Cyclophane Mechanophores. J Am Chem Soc 2021; 143:5519-5525. [PMID: 33784073 DOI: 10.1021/jacs.1c01328] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new approach to cyclophane-based supramolecular mechanophores is presented. We report a mechanically responsive cyclic motif that contains two fluorescent 1,6-bis(phenylethynyl)pyrene moieties that are capable of forming intramolecular excimers. The emission spectra of dilute solutions of this cyclophane and a polyurethane elastomer into which a small amount of the mechanophore (0.08 wt %) had been covalently integrated are dominated by excimer emission. Films of the cyclophane-containing polyurethane also display a considerable portion of excimer emission, but upon deformation, the fluorescence becomes monomer-dominated and a perceptible change from cyan to blue is observed. The response is instant, reversible, and consistent with a mechanically induced change of the molecular conformation of the mechanophore so that the excimer-promoting interactions between the luminophores are suppressed. In-depth investigations show a correlation between the applied strain and the emission color, which can conveniently be expressed by the ratio of monomer to excimer emission intensity. The current study suggests that cyclophanes can be utilized to develop various supramolecular mechanophores that detect and visualize weak forces occurring in polymeric materials or generated by living tissues.
Collapse
Affiliation(s)
- Yoshimitsu Sagara
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
- JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hanna Traeger
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Jie Li
- Research Institute for Electronic Science, Hokkaido University, N20, W10, Kita-Ku, Sapporo, Hokkaido 001-0020, Japan
| | - Yuji Okado
- Research Institute for Electronic Science, Hokkaido University, N20, W10, Kita-Ku, Sapporo, Hokkaido 001-0020, Japan
| | - Stephen Schrettl
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Nobuyuki Tamaoki
- Research Institute for Electronic Science, Hokkaido University, N20, W10, Kita-Ku, Sapporo, Hokkaido 001-0020, Japan
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| |
Collapse
|
21
|
Chen Y, Mellot G, van Luijk D, Creton C, Sijbesma RP. Mechanochemical tools for polymer materials. Chem Soc Rev 2021; 50:4100-4140. [DOI: 10.1039/d0cs00940g] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review aims to provide a field guide for the implementation of mechanochemistry in synthetic polymers by summarizing the molecules, materials, and methods that have been developed in this field.
Collapse
Affiliation(s)
- Yinjun Chen
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Gaëlle Mellot
- Laboratoire Sciences et Ingénierie de la Matière Molle
- ESPCI Paris
- PSL University
- Sorbonne Université
- CNRS
| | - Diederik van Luijk
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Costantino Creton
- Laboratoire Sciences et Ingénierie de la Matière Molle
- ESPCI Paris
- PSL University
- Sorbonne Université
- CNRS
| | - Rint P. Sijbesma
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| |
Collapse
|
22
|
Traeger H, Kiebala DJ, Weder C, Schrettl S. From Molecules to Polymers-Harnessing Inter- and Intramolecular Interactions to Create Mechanochromic Materials. Macromol Rapid Commun 2020; 42:e2000573. [PMID: 33191595 DOI: 10.1002/marc.202000573] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/16/2020] [Indexed: 12/30/2022]
Abstract
The development of mechanophores as building blocks that serve as predefined weak linkages has enabled the creation of mechanoresponsive and mechanochromic polymer materials, which are interesting for a range of applications including the study of biological specimens or advanced security features. In typical mechanophores, covalent bonds are broken when polymers that contain these chemical motifs are exposed to mechanical forces, and changes of the optical properties upon bond scission can be harnessed as a signal that enables the detection of applied mechanical stresses and strains. Similar chromic effects upon mechanical deformation of polymers can also be achieved without relying on the scission of covalent bonds. The dissociation of motifs that feature directional noncovalent interactions, the disruption of aggregated molecules, and conformational changes in molecules or polymers constitute an attractive element for the design of mechanoresponsive and mechanochromic materials. In this article, it is reviewed how such alterations of molecules and polymers can be exploited for the development of mechanochromic materials that signal deformation without breaking covalent bonds. Recent illustrative examples are highlighted that showcase how the use of such mechanoresponsive motifs enables the visual mapping of stresses and damage in a reversible and highly sensitive manner.
Collapse
Affiliation(s)
- Hanna Traeger
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| | - Derek J Kiebala
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| | - Stephen Schrettl
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| |
Collapse
|
23
|
Imato K, Nakajima H, Yamanaka R, Takeda N. Self-healing polyurethane elastomers based on charge-transfer interactions for biomedical applications. Polym J 2020. [DOI: 10.1038/s41428-020-00432-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Aerts A, Lugger SJD, Heuts JPA, Sijbesma RP. Pyranine Based Ion‐Paired Complex as a Mechanophore in Polyurethanes. Macromol Rapid Commun 2020; 42:e2000476. [DOI: 10.1002/marc.202000476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/22/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Annelore Aerts
- DPI P.O. Box 902AX Eindhoven 5600 The Netherlands
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 MB Eindhoven Eindhoven 5600 The Netherlands
| | - Sean J. D. Lugger
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 MB Eindhoven Eindhoven 5600 The Netherlands
| | - Johan P. A. Heuts
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 MB Eindhoven Eindhoven 5600 The Netherlands
| | - Rint P. Sijbesma
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 MB Eindhoven Eindhoven 5600 The Netherlands
| |
Collapse
|