1
|
Tang R, Wang C, Zhou X, Feng M, Li Z, Wang Y, Chen G. An aggregation induced emission chalcone fluorescent probe with large Stokes shift for biothiols detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122870. [PMID: 37216722 DOI: 10.1016/j.saa.2023.122870] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/21/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
The homeostasis of biothiols is closely related to the health of organisms. In view of the important role of biothiols, a fluorescent probe (7HIN-D) for the detection of intracellular biothiols was developed based on a simple chalcone fluorophore 7HIN with "ESIPT + AIE" characteristics. The probe 7HIN-D was obtained by introducing a biothiols specific DNBS (2,4-dinitrobenzenesulfonyl) unit as a fluorescence quencher to the fluorophore 7HIN. The nucleophilic substitution reaction between biothiols and probe 7HIN-D will release the DNBS unit and the fluorophore 7HIN, which exhibits a "turn on" AIE fluorescence with a large Stokes shift of 113 nm. The probe 7HIN-D displays high sensitivity and good selectivity to biothiols, and the detection limits value of probe 7HIN-D for GSH, Cys and Hcy were 0.384 μmol/L, 0.471 μmol/L and 0.638 μmol/L, respectively. In addition, the probe has been successfully used for fluorescence detection of endogenous biothiols in living cells due to its excellent performance, good biocompatibility and low cytotoxicity.
Collapse
Affiliation(s)
- Rong Tang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chao Wang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Xuan Zhou
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Mengxiang Feng
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zefei Li
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yihan Wang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guang Chen
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
2
|
Liu S, Ye H, Yi L, Xi Z. A unique reaction of diphenylcyclopropenone and 1,2-aminothiol with the release of thiol for multiple bioconjugation. Chem Commun (Camb) 2023; 59:1497-1500. [PMID: 36655850 DOI: 10.1039/d2cc06419g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Selective reaction of diphenylcyclopropenone (DPCP) and 1,2-aminothiol in water at pH 7.4 produces an amide conjugate with the release of thiol. In addition, structural modifications of DPCP enable the coupling rate to be tuned with a reaction constant of +3.68. Based on this chemistry, triple labelling was demonstrated by treating an N-terminal cysteine peptide with DPCP-Cl followed by thiol-maleimide and tyrosine-diazonium couplings in one pot. We anticipate that the DPCP motif will be a useful toolkit for multiple bioconjugation.
Collapse
Affiliation(s)
- Shanshan Liu
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Haishun Ye
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Zhang Y, Wang Y, Uslu S, Venkatachalapathy S, Rashidian M, Schaefer JV, Plückthun A, Distefano MD. Enzymatic Construction of DARPin-Based Targeted Delivery Systems Using Protein Farnesyltransferase and a Capture and Release Strategy. Int J Mol Sci 2022; 23:11537. [PMID: 36232839 PMCID: PMC9569580 DOI: 10.3390/ijms231911537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Protein-based conjugates have been extensively utilized in various biotechnological and therapeutic applications. In order to prepare homogeneous conjugates, site-specific modification methods and efficient purification strategies are both critical factors to be considered. The development of general and facile conjugation and purification strategies is therefore highly desirable. Here, we apply a capture and release strategy to create protein conjugates based on Designed Ankyrin Repeat Proteins (DARPins), which are engineered antigen-binding proteins with prominent affinity and selectivity. In this case, DARPins that target the epithelial cell adhesion molecule (EpCAM), a diagnostic cell surface marker for many types of cancer, were employed. The DARPins were first genetically modified with a C-terminal CVIA sequence to install an enzyme recognition site and then labeled with an aldehyde functional group employing protein farnesyltransferase. Using a capture and release strategy, conjugation of the labeled DARPins to a TAMRA fluorophore was achieved with either purified proteins or directly from crude E. coli lysate and used in subsequent flow cytometry and confocal imaging analysis. DARPin-MMAE conjugates were also prepared yielding a construct manifesting an IC50 of 1.3 nM for cell killing of EpCAM positive MCF-7 cells. The method described here is broadly applicable to enable the streamlined one-step preparation of protein-based conjugates.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yiao Wang
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Safak Uslu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jonas V. Schaefer
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
A NIR fluorescence probe for monitoring Cys upregulation induced by balsam pear polysaccharide and imaging in zebrafish. Anal Bioanal Chem 2022; 414:6871-6880. [PMID: 35930008 DOI: 10.1007/s00216-022-04252-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/10/2022] [Accepted: 07/25/2022] [Indexed: 11/01/2022]
Abstract
In this work, we introduced the acrylate recognition group into dicyanoisophorone derivative DCI-C-OH to construct the NIR fluorescent probe DCI-C-Cys with a large Stokes shift (240 nm). DCI-C-Cys could specifically respond to Cys, resulting in a 22-fold increase in fluorescence intensity at 702 nm. Meanwhile, the probe has the advantages of good water solubility, high sensitivity (93 nM), and excellent biocompatibility. Moreover, DCI-C-Cys successfully monitored endogenous and exogenous Cys in HepG2 cells and zebrafish. Most importantly, we found that balsam pear polysaccharide could lead to the increase of intracellular Cys levels, which might be conducive to the further study of the antioxidant mechanism of balsam pear polysaccharide.
Collapse
|
5
|
Chen J, Chen X, Wang P, Liu S, Chi Z. Aggregation-induced emission luminogen@manganese dioxide core-shell nanomaterial-based paper analytical device for equipment-free and visual detection of organophosphorus pesticide. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125306. [PMID: 33588332 DOI: 10.1016/j.jhazmat.2021.125306] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/18/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Organophosphorus pesticide (OP) residues have gathered considerable attention because of their significant threat to society development and healthy life. Developing a sensitive and practical OPs sensor is highly urgent, whereas remains a huge challenge. To this end, we fabricated a high-performance fluorescence paper analytical device (PAD) for apparatus-free and visual sensing of OPs based on aggregation-induced emission (AIE) luminogen's bright emission in aggregated state, unique response of MnO2 to thiol compounds, and difference of MnO2 and Mn2+ in quenching fluorescence. AIE nanoparticles PTDNPs-0.10 and MnO2 respectively acted as core and shell to prepare PTDNPs@MnO2, which possessed high stability and were dripped on cellulose paper's surface to fabricate AIE-PAD. The sensing mechanism is that OPs-treated acetylcholinesterase (AChE) prevents the formation of thiocholine, thereby minimizing the reduction of MnO2 into Mn2+ and changing the output signal. As a result, equipment-free and visual sensing of OPs was acquired with limit of detection of 1.60 ng/mL. This work justifies the feasibility of applying core-shell material to develop high-performance sensor and substituting complex/expensive solution-phase sensor with PAD, providing a new avenue to bring OPs analysis out of the lab and into the world.
Collapse
Affiliation(s)
- Jianling Chen
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaojie Chen
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Po Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Siwei Liu
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zhenguo Chi
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
6
|
Yang Y, Zhang L, Zhang X, Liu S, Wang Y, Zhang L, Ma Z, You H, Chen L. A cysteine-selective fluorescent probe for monitoring stress response cysteine fluctuations. Chem Commun (Camb) 2021; 57:5810-5813. [PMID: 33999987 DOI: 10.1039/d1cc01110c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rare studies provided evidence for the real-time monitoring of stress response cysteine fluctuations. Here, we have successfully designed and synthesized a cysteine-selective fluorescent probe 1 to monitor stress response Cys fluctuations, providing visual evidence of Hg2+ regulated cysteine fluctuations for the first time, which may open a new way to help researchers to reveal the mechanism of heavy metal ion poisoning.
Collapse
Affiliation(s)
- Yang Yang
- College of Environment and Chemical Engineering, Dalian University, Dalian 116622, China. and CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Liangwei Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Xia Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Shudi Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yue Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Li Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Zhuo Ma
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Huiyan You
- College of Environment and Chemical Engineering, Dalian University, Dalian 116622, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China. and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
7
|
Integrating gold nanoclusters, folic acid and reduced graphene oxide for nanosensing of glutathione based on "turn-off" fluorescence. Sci Rep 2021; 11:2375. [PMID: 33504892 PMCID: PMC7841173 DOI: 10.1038/s41598-021-81677-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Glutathione (GSH) is a useful biomarker in the development, diagnosis and treatment of cancer. However, most of the reported GSH biosensors are expensive, time-consuming and often require complex sample treatment, which limit its biological applications. Herein, a nanobiosensor for the detection of GSH using folic acid-functionalized reduced graphene oxide-modified BSA gold nanoclusters (FA-rGO-BSA/AuNCs) based on the fluorescence quenching interactions is presented. Firstly, a facile and optimized protocol for the fabrication of BSA/AuNCs is developed. Functionalization of rGO with folic acid is performed using EDC/NHS cross-linking reagents, and their interaction after loading with BSA/AuNCs is demonstrated. The formation of FA-rGO, BSA/AuNCs and FA-rGO-BSA/AuNCs are confirmed by the state-of-art characterization techniques. Finally, a fluorescence turn-off sensing strategy is developed using the as-synthesized FA-rGO-BSA/AuNCs for the detection of GSH. The nanobiosensor revealed an excellent sensing performance for the detection of GSH with high sensitivity and desirable selectivity over other potential interfering species. The fluorescence quenching is linearly proportional to the concentration of GSH between 0 and 1.75 µM, with a limit of detection of 0.1 µM under the physiological pH conditions (pH 7.4). Such a sensitive nanobiosensor paves the way to fabricate a "turn-on" or "turn-off" fluorescent sensor for important biomarkers in cancer cells, presenting potential nanotheranostic applications in biological detection and clinical diagnosis.
Collapse
|