1
|
Zeng XX, Zeng JB. Systems Medicine as a Strategy to Deal with Alzheimer's Disease. J Alzheimers Dis 2023; 96:1411-1426. [PMID: 37980671 DOI: 10.3233/jad-230739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The traits of Alzheimer's disease (AD) include amyloid plaques made of Aβ1-40 and Aβ1-42, and neurofibrillary tangles by the hyperphosphorylation of tau protein. AD is a complex disorder that is heterogenous in genetical, neuropathological, and clinical contexts. Current available therapeutics are unable to cure AD. Systems medicine is a strategy by viewing the body as a whole system, taking into account each individual's unique health profile, provide treatment and associated nursing care clinically for the patient, aiming for precision. Since the onset of AD can lead towards cognitive impairment, it is vital to intervene and diagnose early and prevent further progressive loss of neurons. Moreover, as the individual's brain functions are impaired due to neurodegeneration in AD, it is essential to reconstruct the neurons or brain cells to enable normal brain functions. Although there are different subtypes of AD due to varied pathological lesions, in the majority cases of AD, neurodegeneration and severe brain atrophy develop at the chronic stage. Novel approaches including RNA based gene therapy, stem cell based technology, bioprinting technology, synthetic biology for brain tissue reconstruction are researched in recent decades in the hope to decrease neuroinflammation and restore normal brain function in individuals of AD. Systems medicine include the prevention of disease, diagnosis and treatment by viewing the individual's body as a whole system, along with systems medicine based nursing as a strategy against AD that should be researched further.
Collapse
Affiliation(s)
- Xiao Xue Zeng
- Department of Health Management, Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, Lishui Town, Nanhai District, Foshan City, Guangdong Province, P.R. China
| | - Jie Bangzhe Zeng
- Benjoe Institute of Systems Bio-Engineering, High Technology Park, Xinbei District, Changzhou City, Jiangsu Province, P.R. China
| |
Collapse
|
2
|
Abdelrahman SA, Gabr MT. Emerging small-molecule therapeutic approaches for Alzheimer's disease and Parkinson's disease based on targeting microRNAs. Neural Regen Res 2022; 17:336-337. [PMID: 34269206 PMCID: PMC8463985 DOI: 10.4103/1673-5374.317977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Somaya A Abdelrahman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Moustafa T Gabr
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
3
|
Gao Z, Zhang R, Jiang L, Zhou H, Wang Q, Ma Y, Zhang D, Qin Y, Tian P, Zhang N, Shi Z, Xu S. Administration of miR-195 Inhibitor Enhances Memory Function Through Improving Synaptic Degradation and Mitochondrial Dysfunction of the Hippocampal Neurons in SAMP8 Mice. J Alzheimers Dis 2021; 85:1495-1509. [PMID: 34924391 DOI: 10.3233/jad-215301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mitochondrial dysfunction is an early feature of Alzheimer's disease (AD) and miR-195 is involved in mitochondrial disorder through targeting MFN-2 protein in hippocampal neurons of AD. OBJECTIVE To clarify if administration of miR-195 inhibitor could enhance the memory deficits through improving hippocampal neuron mitochondrial dysfunction in SAMP8 mice. METHODS The expression of miR-195 was detected by RT-qPCR in primary hippocampal neurons and HT-22 cells treated with Aβ 1-42. Morris water maze (MWM) was used to assess the learning and memory function in SAMP8 mice administrated with antagomir-195. Transmission electron microscopy was employed to determine the morphological changes of synapses and mitochondria of hippocampus in SAMP8 mice. Mitochondrial respiration was measured using a high-resolution oxygraph. RESULTS The expression of miR-195 were upregulated in the primary hippocampal neurons and HT-22 cells induced by Aβ 1-42. Inhibition of miR-195 ameliorated the mitochondrial dysfunction in HT-22 cells induced by Aβ 1-42, including mitochondrial morphologic damages, mitochondrial membrane potential, respiration function, and ATP production. Administration of antagomir-195 by the third ventricle injection markedly ameliorated the cognitive function, postsynaptic density thickness, length of synaptic active area, mitochondrial aspect ratio, and area in hippocampus of SAMP8 mice. Finally, antagomir-195 was able to promote an increase in the activity of respiratory chain complex CI and II in SAMP8 mice. CONCLUSION This study demonstrated that miR-195 inhibitor ameliorated the cognitive impairment of AD mice by improving mitochondrial structure damages and dysfunction in the hippocampal neurons, which provide an experimental basis for further exploring the treatment strategy of AD.
Collapse
Affiliation(s)
- Zhaoyu Gao
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Rui Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Lei Jiang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Huimin Zhou
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China.,Department of Endocrinology, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Qian Wang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Yingxin Ma
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Di Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Yushi Qin
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Pei Tian
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Nan Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Zhongli Shi
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Shunjiang Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| |
Collapse
|
4
|
Duan N, Song M, Mi W, Wang Z, Wu S. Effectively Selecting Aptamers for Targeting Aromatic Biogenic Amines and Their Application in Aptasensing Establishment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14671-14679. [PMID: 34809428 DOI: 10.1021/acs.jafc.1c05934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is necessary to detect the biogenic amine (BA) content in food due to their toxicological effects and their role as an index of freshness for protein-rich foods. Aptamer-based techniques have the potential to provide alternative methods for sensitive and efficient monitoring of BAs. Herein, we described the selection and characterization of DNA aptamers for tyramine (TYR) and β-phenethylamine (PHE) using a one-pot coupled with separate selection strategy. During the selection process, melting curve analysis was developed to monitor the enrichment of the aptamer species, and a saturation of the selection was found at the 14th round. Based on the fluorescence assay, aptamers TYR-2 and PHE-2 showed high affinity to TYR and PHE with the dissociation constant values of 64.28 ± 10.4 and 71.64 ± 11.47 nM, respectively. The circular dichromatic and molecular docking technologies were employed for the preliminary binding mechanism analysis. The obtained aptamers TYR-2 and PHE-2 were used in a fluorescence method for the TYR and PHE determination with limits of detection of 0.34 and 0.39 ng/mL, respectively. In addition, the developed aptasensor was further applied to the TYR and PHE detection in pork and beer samples, and the recovery rate was between 95.6 and 104.2%. It was demonstrated that the selected aptamers had enormous potential as a molecular probe for the identification and determination of BAs.
Collapse
Affiliation(s)
- Nuo Duan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Mingqian Song
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Weiyu Mi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
5
|
Lo CH. Recent advances in cellular biosensor technology to investigate tau oligomerization. Bioeng Transl Med 2021; 6:e10231. [PMID: 34589603 PMCID: PMC8459642 DOI: 10.1002/btm2.10231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Tau is a microtubule binding protein which plays an important role in physiological functions but it is also involved in the pathogenesis of Alzheimer's disease and related tauopathies. While insoluble and β-sheet containing tau neurofibrillary tangles have been the histopathological hallmark of these diseases, recent studies suggest that soluble tau oligomers, which are formed prior to fibrils, are the primary toxic species. Substantial efforts have been made to generate tau oligomers using purified recombinant protein strategies to study oligomer conformations as well as their toxicity. However, no specific toxic tau species has been identified to date, potentially due to the lack of cellular environment. Hence, there is a need for cell-based models for direct monitoring of tau oligomerization and aggregation. This review will summarize the recent advances in the cellular biosensor technology, with a focus on fluorescence resonance energy transfer, bimolecular fluorescence complementation, and split luciferase complementation approaches, to monitor formation of tau oligomers and aggregates in living cells. We will discuss the applications of the cellular biosensors in examining the heterogeneous tau conformational ensembles and factors affecting tau self-assembly, as well as detecting cell-to-cell propagation of tau pathology. We will also compare the advantages and limitations of each type of tau biosensors, and highlight their translational applications in biomarker development and therapeutic discovery.
Collapse
Affiliation(s)
- Chih Hung Lo
- Department of Neurology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
6
|
Araujo-Rocha M, Piro B, Noël V, Barbault F. Computational Studies of a DNA-Based Aptasensor: toward Theory-Driven Transduction Improvement. J Phys Chem B 2021; 125:9499-9506. [PMID: 34403245 DOI: 10.1021/acs.jpcb.1c05341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aptamers are a class of bioreceptors intensively used in current analytical tools dedicated to molecular diagnostics due to their ability to perform large structural reorganization upon target binding. However, there is a lack of methodologies allowing us to rationalize their structure in order to improve the transduction efficiency in aptamer sensors. We choose here, as a model system, a three-strand DNA structure as the probe, composed of two DNA strands anchored on a gold surface and partially hybridized with an aptamer sequence sensitive to ampicillin (AMP). The DNA structure has been designed to show strong structural change upon AMP binding to its aptamer. Using a set of computational techniques including molecular dynamics simulations, we deeply investigated the structure change upon analyte binding, taking into account the grafting on the surface. Original analyses of ion distributions along the trajectories unveil a distinct pattern between both states which can be related to changes in capacitance of the interface between these states. To our knowledge, this work demonstrates the ability of computational investigations for the first time to drive, in silico, the design of aptasensors.
Collapse
Affiliation(s)
| | - Benoît Piro
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France
| | - Vincent Noël
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France
| | | |
Collapse
|
7
|
Aslani M, Mortazavi-Jahromi SS, Mirshafiey A. Efficient roles of miR-146a in cellular and molecular mechanisms of neuroinflammatory disorders: An effectual review in neuroimmunology. Immunol Lett 2021; 238:1-20. [PMID: 34293378 DOI: 10.1016/j.imlet.2021.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/03/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022]
Abstract
Known as one of the most sophisticated systems of the human body, the nervous system consists of neural cells and controls all parts of the body. It is closely related to the immune system. The effects of inflammation and immune reactions have been observed in the pathogenesis of some neurological disorders. Defined as the gene expression regulators, miRNAs participate in cellular processes. miR-146a is a mediator in the neuroimmune system, leaving substantial effects on the homeostasis of immune and brain cells, neuronal identities acquisition, and immune responses regulation in the nervous system. Its positive efficiency has been proven in modulating inflammatory reactions, hemorrhagic complications, and pain. Moreover, the miR-146a targets play a key role in the pathogenesis of these illnesses. Based on the performance of its targets, miR-146a can have various effects on the disease progress. The abnormal expression/function of miR-146a has been reported in neuroinflammatory disorders. There is research evidence that this molecule qualifies as a desirable biomarker for some disorders and can even be a therapeutic target. This study aims to provide a meticulous review regarding the roles of miR-146a in the pathogenesis and progression of several neuroinflammatory disorders such as multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's disease, temporal lobe epilepsy, ischemic stroke, etc. The study also considers its eligibility for use as an ideal biomarker and therapeutic target in these diseases. The awareness of these mechanisms can facilitate the disease management/treatment, lead to patients' amelioration, improve the quality of life, and mitigate the risk of death.
Collapse
Affiliation(s)
- Mona Aslani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Zhu L, Zhang X, Chang Y, Xu S, Yuan R, Chai Y. Co-catalytic Fc/HGQs/Fe 3O 4 nanocomposite mediated enzyme-free electrochemical biosensor for ultrasensitive detection of MicroRNA. Chem Commun (Camb) 2021; 57:5179-5182. [PMID: 33908488 DOI: 10.1039/d1cc01106e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, a novel co-catalytic ferrocene/hemin/G-quadruplexes/Fe3O4 nanoparticles (Fc/HGQs/Fe3O4) nanocomposite was synthesized to significantly magnify the electrochemical signal of ferrocene (Fc) using the synergistic catalysis of hemin/G-quadruplexes (HGQs) and Fe3O4 nanoparticles as hydrogen peroxide enzyme mimics for the construction of ultrasensitive electrochemical biosensors. The fabricated electrochemical biosensor can achieve ultrasensitive detection of miRNA-155 ranging from 0.1 fM to 1 nM, as well as a limit of detection of 74.8 aM. This strategy provides a new route to exploring efficient signal labels for signal amplification and provides an impetus to find novel methods for the construction of biosensors for biological detection and the early clinic diagnosis of diseases.
Collapse
Affiliation(s)
- Liang Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Xiaolong Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yuanyuan Chang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Sai Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|