1
|
Liu W, Liu Q, Wang D, Tang BZ. Fluorescent Porous Materials Based on Aggregation-induced Emission for Biomedical Applications. ACS NANO 2024; 18:27206-27229. [PMID: 39344127 DOI: 10.1021/acsnano.4c08882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Fluorescent porous materials based on aggregation-induced emission (AIE) are growing into a sparkling frontier in biomedical applications. Exploring those materials represents a win-win integration and has recently progressed at a rapid pace, mainly benefiting from intrinsic advantages including tunable pore size and structure, strong guest molecule encapsulation ability, superior biocompatibility, and photophysical outcomes. With the great significance and rapid progress in this area, this review provides an integrated picture on AIE luminogen-based porous materials. It encompasses inorganic, organic, and inorganic-organic porous materials, exploring fundamental concepts and the relationship between AIE performance and material design and highlighting significant breakthroughs and the latest trends in biomedical applications. In addition, some critical challenges and future perspectives in the development of AIE luminogen-based porous materials are also discussed.
Collapse
Affiliation(s)
- Wanlu Liu
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| |
Collapse
|
2
|
Qiu Z, Xiao Y, Zhang L, Miao Y, Zhang B, Zhu X, Ding L, Peng H, Fang Y. Highly sensitive and selective detection of DCP vapors using pyridine-based fluorescent nanofilms. Chem Commun (Camb) 2024; 60:9773-9776. [PMID: 39158035 DOI: 10.1039/d4cc03712j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
A novel fluorescent nanofilm DBAP-ETTA has been developed for diethyl chlorophosphate (DCP) vapor detection with high sensitivity and selectivity. Its smooth, homogeneous structure and large Stokes shift enable significant fluorescence quenching upon DCP exposure. The protonation-based sensing mechanism makes it ideal for real-time, portable DCP vapor sensing.
Collapse
Affiliation(s)
- Zebiao Qiu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Yue Xiao
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Ling Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Yupei Miao
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Bei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Xiaolin Zhu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| |
Collapse
|
3
|
Wei W, Li X, Zhang YY, Zhang JW. Rational construction of luminescent Eu-doped Y-MOF for ratiometric temperature sensing. RSC Adv 2024; 14:28340-28344. [PMID: 39239281 PMCID: PMC11375508 DOI: 10.1039/d4ra05796a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024] Open
Abstract
Introducing lanthanide(iii) ions into a MOF structure is one of the most effective strategies to construct luminescent MOFs with multiple emission centers for fluorescent applications. In this work, a functionalized Eu3+-doped Y-MOF (Eu@SNNU-325) was constructed by using a cation exchange strategy. The photoluminescence result shows that Eu@SNNU-325 exhibits a unique emission spectrum, namely, the absence of the organic ligand peak and the very strong Y3+/Eu3+ characteristic peaks. Interestingly, the smart luminescent Eu@SNNU-325 as a ratiometric thermometer for temperature sensing has good self-calibrated ability and a high maximum relative sensitivity (S m) value (1.2% K-1 at 260 K). This work presents the construction of a smart Eu3+-functionalized Y-MOF thermometer through a cation exchange strategy, providing a good idea for the future development and design of Y-MOF thermometers.
Collapse
Affiliation(s)
- Wei Wei
- School of Chemistry and Chemical Engineering, Shangqiu Normal University Shangqiu Henan 476000 P. R. China
| | - Xi Li
- School of Chemistry and Chemical Engineering, Shangqiu Normal University Shangqiu Henan 476000 P. R. China
| | - Yong-Ya Zhang
- School of Chemistry and Chemical Engineering, Shangqiu Normal University Shangqiu Henan 476000 P. R. China
| | - Jian-Wei Zhang
- School of Chemistry and Chemical Engineering, Shangqiu Normal University Shangqiu Henan 476000 P. R. China
| |
Collapse
|
4
|
Farahmand Kateshali A, Moghzi F, Soleimannejad J, Janczak J. Bacterial Cellulose-Based MOF Hybrid as a Sensitive Switch Off-On Luminescent Sensor for the Selective Recognition of l-Histidine. Inorg Chem 2024; 63:3560-3571. [PMID: 38330909 DOI: 10.1021/acs.inorgchem.3c04448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
In this study, a stable and luminescent UiO-66-NH2 (UN) and its derivative Cu2+@UN were prepared and utilized successfully as an Off-On luminescent sensing platform for effective, selective, as well as rapid (5 min) detection of l-Histidine (l-His). The UN reveals efficient quenching in the presence of Cu2+ ions through photoinduced electron transition (PET) mechanism as a dynamic quenching process (in the range of 0.01-1 mM) forming Cu2+@UN sensing platform. However, due to the remarkable affinity between l-His and Cu2+, the luminescence of Cu2+@UN is recovered in the presence of l-His indicating Turn-On behavior via a quencher detachment mechanism (QD). A good linear relationship between the l-His concentration and luminescence intensity was observed in the range of 0.01-40 μM (R2 = 0.9978) with a detection limit of 7 nM for l-His sensing. The suggested method was successfully utilized for l-His determination in real samples with good recoveries and satisfying consequences. Moreover, the result indicates that only l-His induces a significant luminescence restoration of Cu2+@UN and that the signal is significantly greater than that of the other amino acids. Also, the portable test paper based on bacterial cellulose (BC) as the Cu2+@UNBC sensing platform was developed to conveniently evaluate the effective detection of l-His.
Collapse
Affiliation(s)
| | - Faezeh Moghzi
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455 Tehran, Iran
| | - Janet Soleimannejad
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455 Tehran, Iran
| | - Jan Janczak
- Institute of Low Temperature and Structure Research, Polish Academy of Science, Okólna 2, 50-950 Wroclaw, Poland
| |
Collapse
|
5
|
Liu S, Liu W, Chen C, Sun Y, Bai S, Liu W. Construction of Highly Luminescent Lanthanide Coordination Polymers and Their Visualization for Luminescence Sensing. Inorg Chem 2024; 63:1725-1735. [PMID: 38225216 DOI: 10.1021/acs.inorgchem.3c02328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
NaH2SIP was selected as an organic ligand (NaH2SIP = 5-sulfoisophthalic acid monosodium salt). We successfully constructed a new class of lanthanide coordination polymers Ln-HS ([Ln(SIP)(DMF)(H2O)4]DMF·H2O; Ln = Eu, Tb, Sm, and Dy) by a simple solvothermal synthesis method. They exhibited excellent photoluminescence properties for Ln3+ ions, where Eu-HS and Tb-HS exhibited high quantum yields of 13.70 and 42.38%, respectively. The codoped lanthanide coordination polymers obtained by doping with different ratios of Eu3+/Tb3+ serve as excellent ratiometric thermometers with high sensitivities in the physiological temperature range, with values of 16.8, 7.0, and 14.5%·K-1, respectively. The luminescent colors of Tb0.95Eu0.05-HS and Tb0.94Eu0.06-HS exhibit variations from green to yellow to orange, achieving visualized luminescence in a narrow temperature range. The composite film material Tb0.94Eu0.06-HS@PMMA demonstrates this color variation. Next, Tb0.5Sm0.5-HS obtained by Tb3+/Sm3+ codoping was investigated. The difference in the luminescence colors visible to the naked eye at different excitation wavelengths and the change in luminescence colors occur in a very narrow temperature range. All of them show the great value of the visualized luminescence in practical anticounterfeiting, with double anticounterfeiting function and high security.
Collapse
Affiliation(s)
- Shiying Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wei Liu
- Frontiers Science Center for Rare Isotope, School of Nuclear Science and Technology, Institute of National Nuclear Industry, Lanzhou University, Lanzhou 730000, China
| | - Chunyang Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yiliang Sun
- Frontiers Science Center for Rare Isotope, School of Nuclear Science and Technology, Institute of National Nuclear Industry, Lanzhou University, Lanzhou 730000, China
| | - Shiqiang Bai
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Kouser R, Yasir Khan H, Arjmand F, Tabassum S. Synthesis and structural elucidation of a unique turn-off fluorescent sensor based on oxo-bridged tin (IV) cluster for selective detection of dopamine in biological fluids. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123152. [PMID: 37467591 DOI: 10.1016/j.saa.2023.123152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/20/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
An oxo-bridged Sn (IV) Cluster, (TOC) was synthesized and fully characterized by FT-IR, UV-vis, 1H NMR, 119Sn NMR, Mass spectrometry and single crystal X-ray diffraction studies. The single-crystal X-ray analysis revealed that the crystal crystallizes in the monoclinic crystal system possessing the P 21/c space group and exhibited a distorted trigonal bipyramidal geometry. The TOC exhibited a unique turn-off fluorescence response for the selective detection of dopamine (DA) over other analytes. The stoichiometry between the TOC and DA was calculated using Job's plot. The value of the detection limit was found to be 1.33 µM. The Hirshfeld surface analysis was carried out on the crystal structure to investigate the H-H, Cl-H, Cl-Cl, Sn-Cl and Cl-C interaction studies in the molecule. Density Functional Theory (DFT) studies further supported the sensing mechanism, which closely agreed with the experimental results. Furthermore, the TOC chemosensor was used to detect DA in human blood plasma, and molecular docking studies validated the interaction between the chemosensor and protein. Confocal fluorescence imaging studies were carried out and validated TOC sensing ability for DA in human blood plasma.
Collapse
Affiliation(s)
- Robina Kouser
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Huzaifa Yasir Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India.
| |
Collapse
|
7
|
Wang ZY, Jiang S, Lv MX, Liu ZW, Chi YX, Bai FY, Xing YH. RhB-Embedded Mn-MOF with Cyclotriphosphazene Skeleton as Dual-Emission Sensor for Putrescine as well as Smart Fluorescent Response of Aromatic Diamines and Nitrophenol. Inorg Chem 2023; 62:18414-18424. [PMID: 37917828 DOI: 10.1021/acs.inorgchem.3c02363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Luminescent metal-organic framework composites with multiple luminescence emissions have been efficient sensing platforms. Herein, a fluorescent sensor (RhB@1-0.4) with dual-emission fluorescence properties was prepared by introducing rhodamine B (RhB) into the framework of complex 1, [Mn2.5(HCPCP)(H2O)4]·(CH3CN)0.5 [HCPCP = hexa-(4-carboxyl-phenoxy)-cyclotriphosphazene and CH3CN = acetonitrile), which is a novel crystalline two-dimensional (2D) coordinated organic framework material. It is a highly desirable material, realizing a ratiometric fluorescence response to putrescine with a high signal-to-noise ratio, and the detection limit can be as low as 6.8 μM. In addition, RhB@1-0.4 exhibited a better fluorescent sensing performance for aromatic diamines and nitrophenols compared with that of complex 1. It is a potential functionalized MOF material for the application of multichannel fluorescence sensing.
Collapse
Affiliation(s)
- Zi Yang Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Shan Jiang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Mei Xin Lv
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Zi Wen Liu
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Yu Xian Chi
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Feng Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Yong Heng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| |
Collapse
|
8
|
Huo R, Zeng G, Wang C, Wang YF, Xing YH, Bai FY. Smart Stimulation Response of a Pyrene-Based Lanthanide(III) MOF: Fluorescence Enhancement to HX (F and Cl) or R-COOH and Artificial Applicable Film on HCl Vapor Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50275-50289. [PMID: 37862575 DOI: 10.1021/acsami.3c11385] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Toxic acids produced by industries are major hazards to the environment and human health, and luminescent pyrene-based crystalline metal-organic frameworks (MOFs) demonstrate promising performance in the detection of toxic acids. Herein, two novel isostructural 3D porous lanthanide MOFs, H3O·[Ln3(TBAPy)2(μ2-H2O)2(OH)2]·2DMA·2Diox·6.5H2O (Ln = Pr (1) and Ce (2); H4TBAPy (1,3,6,8-tetrakis(p-benzoic acid)pyrene); and DMA: N,N-dimethylacetamide) were synthesized, which showed alb topology. Based on the protonation and hydrogen bond mechanism, complex 1 could be used as a fluorescence recognition sensor for HX (X = F, Cl, Br, and I) acid solutions with different luminescence behaviors. It is worth noting that complex 1 exhibited high sensitivity in the fluorescence enhancement sensing of hydrofluoric acid, oxalic acid, and trichloroacetic acid. In particular, complex 1 had a low limit of detection (LOD) for OA (0.1 μM) and was applied to real monitoring of orange fruit samples. In addition, the PVA@1 film could selectively, sensitively, and quantitatively respond to hydrochloric acid (HCl) vapor through fluorescent quenching; due to its protonation and adsorption capacity, the LOD was 0.18 ppm. Therefore, the portable optical device, the PVA@1 film, can detect HCl gas in trace amounts, achieving the ultimate goal of real-time and rapid detection, which has potential application value for industrial production safety.
Collapse
Affiliation(s)
- Rong Huo
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
| | - Guang Zeng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, P. R. China
| | - Chen Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
| | - Yu Fei Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
| | - Yong Heng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
| | - Feng Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
| |
Collapse
|
9
|
Chen Y, Yin X, Chen ZK, Wang PM, Li B. Tunable White Light Emission of a Metal-Organic Framework Based on a Bisquinoxaline Derivative by Introducing Red-Green Cationic Dyes. Inorg Chem 2023. [PMID: 37379019 DOI: 10.1021/acs.inorgchem.3c00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The unique structural advantages give metal-organic frameworks (MOFs) a special use as host substrates to encapsulate organic dyes, which would result in specific host-guest composites for white-light phosphors. In this work, an anionic MOF exhibiting blue emission was constructed using bisquinoxaline derivatives as photoactive centers, which could effectively encapsulate rhodamine B (Rh B) and acriflavine (AF) to form an In-MOF ⊃ Rh B/AF composite. By simply adjusting the amount of Rh B and AF, the emitting color of the resulting composite could be easily adjusted. The formed In-MOF ⊃ Rh B/AF composite exhibits broadband white light emission with ideal Commission International ed'Eclairage (CIE) coordinates of (0.34, 0.35), a color rendering index of 80.8, and a moderately correlated color temperature value of 5193.96 K. This strategy can be easily extended to other blue-emitting MOFs and dyes, thus opening up new prospects for the development of white-light-emitting materials.
Collapse
Affiliation(s)
- Yuan Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China
| | - Xue Yin
- Hubei Changjiang New Material Research and Design Institute Co., Ltd., Wuhan 430073, Hubei, People's Republic of China
| | - Zi-Ke Chen
- Hubei Changjiang New Material Research and Design Institute Co., Ltd., Wuhan 430073, Hubei, People's Republic of China
| | - Peng-Min Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China
| | - Bao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, People's Republic of China
| |
Collapse
|
10
|
Feng X, Liu L, Wang Y, Zhang C, Liu G, Tian Y, Zhu G. Surfactant-assisted mesopores in hierarchical metal-organic frameworks for the immobilization of model protein Cyt c. Dalton Trans 2023. [PMID: 37337997 DOI: 10.1039/d3dt01087b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
A hierarchical metal-organic framework, H-mMOF-1 (representing hierarchical medi-MOF-1), was successfully synthesized by the coassembly of MOF starting reagents and a triblock copolymer surfactant F127. The obtained H-mMOF-1 retained its microporous structure but also exhibited mesopores with a size range from 3 to 10 nm. The mesopores were able to accommodate protein Cyt c with a loading capacity of 160 mg g-1. The surfactant-assisted synthesis of hierarchical MOFs provides promising applications for enzyme immobilization.
Collapse
Affiliation(s)
- Xiaodong Feng
- Research Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun 130000, China.
| | - Lihui Liu
- Research Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun 130000, China.
| | - Yeming Wang
- Research Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun 130000, China.
| | - Chaoqun Zhang
- Research Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun 130000, China.
| | - Gang Liu
- Research Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun 130000, China.
| | - Yuyang Tian
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130000, China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130000, China
| |
Collapse
|
11
|
Wang D, Du LH, Li L, Wei YM, Wang T, Cheng J, Du B, Jia Y, Yu BY. Zn(II)-Based Mixed-Ligand-Bearing Coordination Polymers as Multi-Responsive Fluorescent Sensors for Detecting Dichromate, Iodide, Nitenpyram, and Imidacloprid. Polymers (Basel) 2023; 15:polym15112570. [PMID: 37299368 DOI: 10.3390/polym15112570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Coordination polymers (CPs) are organo-inorganic porous materials consisting of metal ions or clusters and organic linkers. These compounds have attracted attention for use in the fluorescence detection of pollutants. Here, two Zn-based mixed-ligand-bearing CPs, [Zn2(DIN)2(HBTC2-)2] (CP-1) and [Zn(DIN)(HBTC2-)]·ACN·H2O (CP-2) (DIN = 1,4-di(imidazole-1-yl)naphthalene, H3BTC = 1,3,5-benzenetricarboxylic acid, and ACN = acetonitrile), were synthesized under solvothermal conditions. CP-1 and CP-2 were characterized by single-crystal X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, elemental analysis, and powder X-ray diffraction analysis. Solid-state fluorescence analysis revealed an emission peak at 350 nm upon excitation at 225 and 290 nm. Fluorescence sensing tests showed that CP-1 was highly efficient, sensitive, and selective for detecting Cr2O72- at 225 and 290 nm, whereas I- was only detected well at an excitation of 225 nm. CP-1 detected pesticides differently at excitation wavelengths of 225 and 290 nm; the highest quenching rates were for nitenpyram at 225 nm and imidacloprid at 290 nm. The quenching process may occur via the inner filter effect and fluorescence resonance energy transfer.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Urban Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Lin-Huan Du
- Key Laboratory of Urban Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Long Li
- Key Laboratory of Urban Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Yu-Meng Wei
- Key Laboratory of Urban Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Tao Wang
- Key Laboratory of Urban Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Jun Cheng
- Key Laboratory of Urban Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Bin Du
- Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Faculty of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Bao-Yi Yu
- Key Laboratory of Urban Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
12
|
Püschel D, Hédé S, Maisuls I, Höfert SP, Woschko D, Kühnemuth R, Felekyan S, Seidel CAM, Czekelius C, Weingart O, Strassert CA, Janiak C. Enhanced Solid-State Fluorescence of Flavin Derivatives by Incorporation in the Metal-Organic Frameworks MIL-53(Al) and MOF-5. Molecules 2023; 28:molecules28062877. [PMID: 36985849 PMCID: PMC10055669 DOI: 10.3390/molecules28062877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The flavin derivatives 10-methyl-isoalloxazine (MIA) and 6-fluoro-10-methyl-isoalloxazine (6F-MIA) were incorporated in two alternative metal-organic frameworks, (MOFs) MIL-53(Al) and MOF-5. We used a post-synthetic, diffusion-based incorporation into microcrystalline MIL-53 powders with one-dimensional (1D) pores and an in-situ approach during the synthesis of MOF-5 with its 3D channel network. The maximum amount of flavin dye incorporation is 3.9 wt% for MIA@MIL-53(Al) and 1.5 wt% for 6F-MIA@MIL-53(Al), 0.85 wt% for MIA@MOF-5 and 5.2 wt% for 6F-MIA@MOF-5. For the high incorporation yields the probability to have more than one dye molecule in a pore volume is significant. As compared to the flavins in solution, the fluorescence spectrum of these flavin@MOF composites is broadened at the bathocromic side especially for MIA. Time-resolved spectroscopy showed that multi-exponential fluorescence lifetimes were needed to describe the decays. The fluorescence-weighted lifetime of flavin@MOF of 4 ± 1 ns also corresponds to those in solution but is significantly prolonged compared to the solid flavin dyes with less than 1 ns, thereby confirming the concept of "solid solutions" for dye@MOF composites. The fluorescence quantum yield (ΦF) of the flavin@MOF composites is about half of the solution but is significantly higher compared to the solid flavin dyes. Both the fluorescence lifetime and quantum yield of flavin@MOF decrease with the flavin loading in MIL-53 due to the formation of various J-aggregates. Theoretical calculations using plane-wave and QM/MM methods are in good correspondence with the experimental results and explain the electronic structures as well as the photophysical properties of crystalline MIA and the flavin@MOF composites. In the solid flavins, π-stacking interactions of the molecules lead to a charge transfer state with low oscillator strength resulting in aggregation-caused quenching (ACQ) with low lifetimes and quantum yields. In the MOF pores, single flavin molecules represent a major population and the computed MIA@MOF structures do not find π-stacking interactions with the pore walls but only weak van-der-Waals contacts which reasons the enhanced fluorescence lifetime and quantum yield of the flavins in the composites compared to their neat solid state. To analyze the orientation of flavins in MOFs, we measured fluorescence anisotropy images of single flavin@MOF-5 crystals and a static ensemble flavin@MIL53 microcrystals, respectively. Based on image information, anisotropy distributions and overall curve of the time-resolved anisotropy curves combined with theoretical calculations, we can prove that all fluorescent flavins species have a defined and rather homogeneous orientation in the MOF framework. In MIL-53, the transition dipole moments of flavins are orientated along the 1D channel axis, whereas in MOF-5 we resolved an average orientation that is tilted with respect to the cubic crystal lattice. Notably, the more hydrophobic 6F-MIA exhibits a higher degree order than MIA. The flexible MOF MIL-53(Al) was optimized essentially to the experimental large-pore form in the guest-free state with QuantumEspresso (QE) and with MIA molecules in the pores the structure contracted to close to the experimental narrow-pore form which was also confirmed by PXRD. In summary, the incorporation of flavins in MOFs yields solid-state materials with enhanced rigidity, stabilized conformation, defined orientation and reduced aggregations of the flavins, leading to increased fluorescence lifetime and quantum yield as controllable photo-luminescent and photo-physical properties.
Collapse
Affiliation(s)
- Dietrich Püschel
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Simon Hédé
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Iván Maisuls
- Institut für Anorganische und Analytische Chemie, CeNTech, CiMIC, SoN, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, D-48149 Münster, Germany
| | - Simon-Patrick Höfert
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Dennis Woschko
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Ralf Kühnemuth
- Institut für Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Suren Felekyan
- Institut für Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Claus A M Seidel
- Institut für Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Constantin Czekelius
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Oliver Weingart
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, CeNTech, CiMIC, SoN, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, D-48149 Münster, Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
13
|
Zhang WS, Wang GQ, Wang YX, Yang YL, Bai X, Cui H, Lu Y, Liu SX. A multifunctional cobalt-organic framework for proton conduction and selective sensing of Fe 3+ ions. Dalton Trans 2023; 52:4407-4414. [PMID: 36916292 DOI: 10.1039/d3dt00259d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Developing multifunctional metal-organic frameworks (MOFs) is a new research trend. MOFs have shown remarkable performances in both proton conduction and fluorescence sensing, but the MOFs integrating the two performances are scarce. Herein, a Co-MOF, [Co6(oba)4(Hatz)(atz)(H2O)2(μ3-OH)2(μ2-OH)]·H2O (1, H2oba = 4,4-oxybis(benzoic acid), Hatz = 5-amino-1H tetrazole), has been assembled by Co2+ ions with H2oba and Hatz ligands, providing a unique example of multifunctional MOFs with both proton conduction and fluorescence sensing performances. The framework of 1 displays a pillar-layer structure built by the oba ligand as a pillar and a layer composed of Co-clusters and atz linkers. Because large-scale single crystals of 1 were successfully synthesized, the proton conduction ability of 1 was investigated using single crystal samples. 1 exhibits highly anisotropic conduction with conductivity values of 1.1 × 10-3 S cm-1 along the [001] direction and 9.1 × 10-6 S cm-1 along the [010] direction at 55 °C and 95% RH, respectively. Meanwhile, the fluorescence sensing of 1 towards metal ions was studied in aqueous solutions. Attractively, 1 may sensitively and selectively detect Fe3+ ions in the presence of other interfering ions by fluorescence quenching.
Collapse
Affiliation(s)
- Wen-Sha Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Guang-Qing Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Yu-Xin Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Yan-Li Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Xue Bai
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Hong Cui
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Ying Lu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Shu-Xia Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| |
Collapse
|
14
|
Xing S, Cheng S, Tan M. Multi-emitter metal-organic frameworks as ratiometric luminescent sensors for food contamination and spoilage detection. Crit Rev Food Sci Nutr 2023; 64:7028-7044. [PMID: 36794423 DOI: 10.1080/10408398.2023.2179594] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Food contamination and spoilage is a worldwide concern considering its adverse effect on public health and food security. Real time monitoring food quality can reduce the risk of foodborne disease to consumers. Particularly, the emergence of multi-emitter luminescent metal-organic frameworks (LMOFs) as ratiometric sensory materials has provided the possibility for food quality and safety detection with high sensitivity and selectivity taking advantage of specific host-guest interactions, pre-concentrating and molecule-sieving effects of MOFs. Furthermore, the excellent sensing performance of multi-emitter MOF-based ratiometric sensors including self-calibration, multi-dimensional recognition and visual signal readout is able to meet the increasing rigor requirement of food safety evaluation. Multi-emitter MOF-based ratiometric sensors have become the focus of food safety detection. This review focuses on design strategies for different multiple emission sources assembly to construct multi-emitter MOFs materials based on at least two emitting centers. The design strategies for creating multi-emitter MOFs can be mainly classified into three categories: (1) multiple emission building blocks assembly in a single MOF phase; (2) single non-luminescent MOF or LMOF phase as a matrix for chromophore guest(s); (3) heterostructured hybrids of LMOF with other luminescent materials. In addition, the sensing signal output modes of multi-emitter MOF-based ratiometric sensors have critically discussed. Next, we highlight the recent progress for the development of multi-emitter MOF as ratiometric sensors in food contamination and spoilage detection. Their future improvement and advancing direction potential for their practical application is finally discussed.
Collapse
Affiliation(s)
- Shanghua Xing
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Shasha Cheng
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
15
|
Zhu K, Xu X, Yan B. Ratio Fluorescent Detecting of Tryptophan and Its Metabolite 5-Hydroxyindole-3-acetic Acid Relevant with Depression via Tb(III) Modified HOFs Hybrids: Further Designing Recyclable Molecular Logic Gate Connected by Back Propagation Neural Network. Adv Healthc Mater 2023:e2203292. [PMID: 36772882 DOI: 10.1002/adhm.202203292] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/26/2023] [Indexed: 02/12/2023]
Abstract
Exploring intelligent fluorescent materials with high reliability and precision to diagnose diseases is significant but remains a great challenge. Herein, based on coordination post-synthetic modification, a Tb3+ functionalized ME-PA (Tb@1) is prepared, which can emit brilliant green fluorescence through ligand-to-mental charge transfer-assisted energy transfer (LMCT-ET) process from ME-PA to Tb3+ ions. Tb@1 can simultaneously distinguish Tryptophan (Try) and its metabolite 5-hydroxyindole-3-acetic acid (5-HIAA), two effective indicators for depression, in ratio and colorimetric mode. And this sensor behaves the advantages of high efficiency and sensitivity, as well as excellent reusability and anti-interference. The PET process from ME to Try and 5-HIAA, and the competitive absorption between analytes and Tb@1 may be relevant to sensing mechanism. In realistic serum or urine environment, the detection limits of Tb@1 for Try and 5-HIAA are 0.0183 and 0.0149 mg L-1 respectively. Moreover, in conjunction with back propagation neural network (BPNN), two dual-output molecular logic gates that can be calculated circularly are further designed, which realizes intelligent control of the electronic component to identify the existence of two biomarkers and judge their concentrations from fluorescence images. This work offers a novel approach to modulate logic circuits based on ML-assisted HOF fluorescent sensor, with promising application for a precise and pictorial depression diagnosis.
Collapse
Affiliation(s)
- Kai Zhu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| | - Xin Xu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| |
Collapse
|
16
|
Selective and sensitive detection of hydrogen sulphide using hydrolytically stable Cu-MOF. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Li HS, Xing SH, Xiao Y, Wang C, Guan QL, Bai FY, Xing YH, Xu F. Stimulus-Responsive Lanthanide MOF Materials Encapsulated with Viologen Derivatives: Characterization, Photophysical Properties and Sensing on Nitrophenols. Chemistry 2023; 29:e202202810. [PMID: 36259457 DOI: 10.1002/chem.202202810] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 11/05/2022]
Abstract
Viologens (1,1'-disubstituted 4,4'-bipyridyls) possessing electron-deficient properties and redox activity are a class of suitable chromophores to assemble metal-organic hybrid photochromic materials. Thus, viologen-functionalized metal-organic frameworks (MOFs) have attracted much attention for their photochromic properties; however, the syntheses of lanthanide-viologen hybrid crystalline photochromic materials still face many challenges. For example, the structures and properties of the final products are difficult to predict and are limited by molecular configurations. In this work, host-guest composite-material Ln-NH2 BDC-pbpy MOFs were constructed by encapsulating viologen derivative pbpyCl2 . The pbpy2+ moieties are uniformly embed by their π-π conjugation in the pores of the 3D structure by electrostatic interactions. Due to the encapsulation of the chromophore pbpy2+ moieties, Ln-NH2 BDC-pbpy MOFs have reversible photochromic properties: they can change color after irradiation and can return to the original color after being protected from light or heating. Interestingly, the fluorescence intensity decreases with illumination time and recovers in the dark. As a result, Ln-NH2 BDC-pbpy MOFs show both photochromic and photomodulated fluorescence. Based on the outstanding fluorescence performance of the Ln-NH2 BDC-pbpy MOFs, they also show a wonderful effect for detecting nitrophenols, especially TNP.
Collapse
Affiliation(s)
- Hui-Shu Li
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian City, 116029, P.R. China
| | - Shang-Hua Xing
- School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Dalian, 116034, P. R. China
| | - Yao Xiao
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian City, 116029, P.R. China
| | - Chen Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian City, 116029, P.R. China
| | - Qing-Lin Guan
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian City, 116029, P.R. China
| | - Feng-Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian City, 116029, P.R. China
| | - Yong-Heng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian City, 116029, P.R. China
| | - Fen Xu
- School of Material Science and Engineering, Guilin University of Electronic Technology, Jinji Road 1#, Guilin, 541004, P. R. China
| |
Collapse
|
18
|
Lu X, Tang Y, Yang G, Wang YY. Porous functional metal–organic frameworks (MOFs) constructed from different N-heterocyclic carboxylic ligands for gas adsorption/separation. CrystEngComm 2023. [DOI: 10.1039/d2ce01667b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This review mainly summarizes the recent progress of MOFs composed of N-heterocyclic carboxylate ligands in gas sorption/separation. This work may help to understand the relationship between the structures of MOFs and gas sorption/separation.
Collapse
Affiliation(s)
- Xiangmei Lu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Yue Tang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Guoping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| |
Collapse
|
19
|
Wang X, Zhu R, Wang X, Liu F, Gao Y, Guan R, Chen Y. Flexible and washable CDs@Eu-MOFs/PVDF Multifunctional thin films as highly selective sensing for nitrobenzene and 4-Nitrophenol. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Liu M, Wang YF, Xu F, Zhang N, Hou CY, Sun LX, Xing YH, Bai FY. High-Symmetry Co/Ni Triazine Polycarboxylate Diverse Frameworks Constructed by M x(COO) y Building Blocks: Characterization and Catalytic Performance Evaluation of p-Nitrophenol. Inorg Chem 2022; 61:19951-19960. [PMID: 36426639 DOI: 10.1021/acs.inorgchem.2c03233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Three new triazine compounds [Co1.5(H3TDPAT)(H2O)3]·6H2O (1), [Co2(TCPT)(μ2-H2O)2]·OH (2), and [Ni3(TCPT)]·3OH (3) were designed and synthesized via the reaction of the symmetrical triazine ligand connected by C-N-C and C-O-C bonds with triazine poly(carboxylic acid)s ligands as the side arms: H6TDPAT (H6TDPAT = 2,4,6-tris(3,5-dicarboxylphenylamino)-1,3,5-triazine) and H3TCPT (H3TCPT = 2,4,6-tris(4-carboxyphenoxy)-1,3,5-triazine) as well as the corresponding metal salts under the solvothermal condition. Three triazine polycarboxylate frameworks were characterized by elemental analysis, infrared spectroscopy, ultraviolet spectroscopy, thermogravimetric analysis, X-ray powder diffraction, and solid fluorescent spectra in detail. The structural analysis results showed that the three-dimensional porous cage framework of compound 1 was constructed by three different polyhedral cages connected with [Co(COO)4(H2O)2] building blocks. One of the compounds, 2, is formed by twin propeller Co2(μ2-H2O)(COO)3 building blocks connecting two-dimensional layers and the intermolecular π-π interactions involved the triazine rings between the layers. While the structure of compound 3 is similar to that of 2, assembly is by Ni(COO)3 building blocks and adjacent layers of the face-to-face π-π interaction between the triazine rings. In order to explore functional properties, the catalytic reduction of p-nitrophenol (PNP) of compounds 1-3 was investigated. They exhibit excellent catalytic activity of more than 95% for reduction of PNP with a dose of 2.5 mg of the compounds.
Collapse
Affiliation(s)
- Min Liu
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City116029, P. R. China
| | - Yu Fei Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City116029, P. R. China
| | - Fen Xu
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin City541004, P. R. China
| | - Na Zhang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City116029, P. R. China
| | - Chun Yu Hou
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City116029, P. R. China
| | - Li Xian Sun
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin City541004, P. R. China
| | - Yong Heng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City116029, P. R. China
| | - Feng Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City116029, P. R. China
| |
Collapse
|
21
|
Synthesis and structure of a 3D supramolecular layered Bi-MOF and its application in photocatalytic degradation of dyes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Synthesis, crystal structure of four 1D to 3D coordination polymers and potential sensor for the detection of ions, antibiotics and pesticides in water media. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
23
|
You ZX, Xiao Y, Guan QL, Xing YH, Bai FY, Xu F. Cage Bismuth Metal-Organic Framework Materials Based on a Flexible Triazine-Polycarboxylic Acid: Subgram Synthesis, Application for Sensing, and White Light Tuning. Inorg Chem 2022; 61:13893-13914. [PMID: 35998739 DOI: 10.1021/acs.inorgchem.2c01893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bismuth-based metal-organic frameworks (MOFs) have always attracted the attention of many researchers. Here, we first report a crystalline Bi-MOF (Bi-TDPAT) based on a flexible triazine-polycarboxylic linker 2,4,6-tris(3,5-dicarboxylphenylamino)-1,3,5-triazine (H6TDPAT) and bismuth nitrate; its crystallite quality is adequately good and the diffraction data can be collected directly by single crystal X-ray diffraction rather than 3D electron diffraction. The structure of Bi-TDPAT belongs to a novel topology type btt. Notably, the synthesis scale of Bi-TDPAT can be expanded, and sub-gram synthesis can be realized. At the same time, we synthesized a microcrystalline material Bi-TATAB utilizing 2,4,6-tris(4-carboxylphenylamino)-1,3,5-triazine (H3TATAB). The structures of the two materials were characterized by several microanalysis tools. Considering that Bi-TDPAT is a blue light-emitting material with a broad emission peak, we prepared a white light emitting composite material Eu/Tb@Bi-TDPAT by encapsulating Eu(III)/Tb(III) in Bi-TDPAT. In addition, the fluorescence sensing functions of Bi-TDPAT and Bi-TATAB were explored. The results showed that they could detect and recognize various nitrophenols, and the optimal limit of detection is as low as 0.21 μM, which can be reused even after five cycles. Energy competitive absorption (CA) and photo-induced electron transfer are the main sensing mechanisms. By comparing and analyzing the properties of these two bismuth-based crystalline materials, we believe that this work also provides inspiration for the synthesis and development of bismuth-based MOF in the future.
Collapse
Affiliation(s)
- Zi-Xin You
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
| | - Yao Xiao
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
| | - Qing-Lin Guan
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
| | - Yong-Heng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
| | - Feng-Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City 116029, P. R. China
| | - Fen Xu
- Guangxi Key Laboratory of Information Materials & Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| |
Collapse
|
24
|
Carbon dots@Cu metal-organic frameworks hybrids for ratiometric fluorescent determination of pesticide thiophanate-methyl. Mikrochim Acta 2022; 189:325. [PMID: 35947204 DOI: 10.1007/s00604-022-05438-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/28/2022] [Indexed: 10/15/2022]
Abstract
A dual-emission fluorescent (FL) probe was constructed by coordinating Cu2+ of copper metal-organic frameworks (Cu-MOFs) with - COO- group of carbon dots (CDs) for pesticide thiophanate-methyl (TM) determination. TM was recognized by organic ligands (H2BDC and H2BDC-NH2) of Cu-MOFs via π stacking. Due to the higher affinity of Cu2+ to TM than ligands and CDs, TM chelated with Cu2+ to form TM-Cu complex. Thus coordination of Cu-MOFs was damaged and the ligands were released resulting in the FL intensity increase of Cu-MOFs (F430). And also CDs were released from CDs@Cu-MOFs hybrids and electron transfer from CDs to CuMOFs was inhibited, leading to the FL intensity increase of CDs (F600). The FL intensity ratio (F430/F600) showed a good linear relationship with TM concentrations of 0.0307-0.769 μmol L-1 with a limit of detection (LOD) of ~ 3.67 nmol L-1. The probe was successfully applied to detect TM in spiked food samples with satisfactory recoveries of 93.1-113%. Additionally, visual detection of TM was achieved according to the fluorescence color variation from blue to carmine, indicating promising application of CDs@Cu-MOFs probe.
Collapse
|
25
|
Chai YH, Liu XY, Cui ZY, Zhao Y, Ma LF, Zhao BT. Design and syntheses of two luminescent metal-organic frameworks for detecting nitro-antibiotic, Fe3+ and Cr2O72-. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Wang C, Zeng G, You ZX, Xing YH, Bai FY, Sun LX. Stimuli-Responsive Naphthalenediimide Cd-MOFs Tuned by Different Aliphatic Dicarboxylic Acids with Extended Spacers. Inorg Chem 2022; 61:10066-10078. [PMID: 35729692 DOI: 10.1021/acs.inorgchem.2c01007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of novel Cd metal-organic frameworks (MOFs) (1-9) with different extended spacers with seven kinds of the aliphatic dicarboxylic acids as secondary building linkers based on N,N'-di(4-pyridylacylamino)-1,4,5,8-naphthalenediimide (NDI-A) have been designed and synthesized by changing the volume ratio of solvents under solvothermal conditions. In addition, the secondary building linkers of aliphatic dicarboxylic acids have different spacer lengths, resulting in different structures of complexes 1-9. So, their packing structures are affected by the degree of distortion of the NDI-A ligand, the different aliphatic dicarboxylic acids ligands, and the hydrogen-bonding patterns. Complexes 1-9 showed stimuli-responsive emission tuned by different aliphatic dicarboxylic acids with extended length spacers under UV light irradiation, accompanied by the color change from light orange to dark brown, and achieved reversible photochromic under heating, which indicates that they could serve as secret erasable inks. Moreover, complexes 1-9 exhibited selective vaporchromic behavior to methylamine (MA), and the vaporchromic sample could be recovered after washing with MeOH. It is worth noting that the preparation of poly(vinyl alcohol) (PVA)-NDI-MOF films enables the photochromic and vaporchromic properties of complexes 1-9 to apply in practice. In addition, complexes 1-9 exhibited good fluorescence properties as sensing probes toward 2,4,6-trinitrophenol (TNP) with lower limits of detection. In short, this work provides a broad field to explore the creative NDI-MOF materials with photoactive and luminescent properties.
Collapse
Affiliation(s)
- Chen Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian 116029, P. R. China
| | - Guang Zeng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, P. R. China
| | - Zi-Xin You
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian 116029, P. R. China
| | - Yong-Heng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian 116029, P. R. China
| | - Feng-Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian 116029, P. R. China
| | - Li-Xian Sun
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| |
Collapse
|
27
|
Xia QQ, Wang XH, Yu JL, Xue ZY, Chai J, Wu MX, Liu X. Tunable fluorescence emission based on multi-layered MOF-on-MOF. Dalton Trans 2022; 51:9397-9403. [PMID: 35674199 DOI: 10.1039/d2dt00714b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Luminescent metal-organic frameworks (MOFs) have garnered considerable attention in various fields. Herein, we proposed a hierarchical confinement strategy based on MOF-on-MOF to tune luminescence emission ranging from blue to red including white light in a flexible way. The easily available ZIF-8 MOF was used as a host for the confinement of two kinds of size-matching dyes (perylene and rhodamine B) to obtain a layered ZIF-8@dye@ZIF-8@dye via in situ encapsulation and seed-mediated synthesis. ZIF-8@dye@ZIF-8@dye materials with different fluorescence emission in dispersed and solid states were both obtained by tuning the initial encapsulation concentration of dye and changing the structure of the inner and outer ZIF-8@dye layers. To our delight, ZIF-8@0.125perylene@ZIF-8@25RhB with white light emission in the dispersed state was obtained; meanwhile, ZIF-8@0.125perylene + 25RhB and mechanically mixed ZIF-8@0.125perylene + ZIF-8@25RhB could not realize white light emission under the same conditions, indicating that the proposed hierarchical confinement strategy facilitated white light regulation. Similarly, the emission of ZIF-8@dye@ZIF-8@dye in the solid state has also been investigated; ZIF-8@perylene@ZIF-8@3RhB with white light emission was obtained, while white light emission could not be achieved in ZIF-8@perylene + 3RhB and ZIF-8@perylene + ZIF-8@3RhB, which further indicated the importance of the hierarchical confinement strategy based on MOF-on-MOF. The proposed hierarchical confinement strategy may also inspire the development of other functional optical MOF materials.
Collapse
Affiliation(s)
- Qing-Qing Xia
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China.
| | - Xing-Huo Wang
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China.
| | - Jia-Lin Yu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China.
| | - Zhi-Yuan Xue
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China.
| | - Juan Chai
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
| | - Ming-Xue Wu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China.
| | - Xiaomin Liu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China.
| |
Collapse
|
28
|
Xiao Y, You ZX, Xing YH, Bai FY, Shi Z. Three-pole wheel paddle luminescent metal organic frameworks (LMOFs) based on the oxygen substituted triazine tricarboxylic acid ligand: recognition and detection of small drug molecules and aromatic amine molecules. Dalton Trans 2022; 51:9336-9347. [PMID: 35670623 DOI: 10.1039/d2dt01032a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Luminescent metal organic frameworks (LMOFs) are considered to be a type of promising optical sensing material due to their designable and tunable functions, and stable pore structures. Therefore, the preparation of LMOFs has become a research hotspot in recent years. As we know, triazine carboxylic acid ligands are conducive for constructing LMOF materials due to their large π electron conjugated system. In this work, two crystalline materials [Cd3(TCPT)2]·0.5DMF·4H2O (1) and (H3O)[Zn2(TCPT)(μ2-OH)2]·0.5DMF·3H2O (2) were obtained by the reaction of the triazine carboxylic acid ligand 2,4,6-tris(4-carboxyphenoxy)-1,3,5-triazine (H3TCPT), as an extended carboxylate arm, and d10 transition metal salts. Their structures were determined by single crystal X-ray diffraction and characterized by infrared spectroscopy (IR), ultraviolet visible spectroscopy (UV-vis), fluorescence spectroscopy, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TG). The experimental results showed that complexes 1 and 2 show excellent fluorescent emission behavior. Thus, we explored their fluorescence sensing properties. To our delight, the results showed that they both had the ability to sense small organic drug molecules and aromatic amine molecules containing o-phenylenediamine (OPD), m-phenylenediamine (MPD) and p-phenylenediamine (PPD). In general, the practical applications of a MOF material are usually limited because of the relatively harsh synthesis methods. In this aspect, we studied the synthesis method in detail to obtain the optimal reaction conditions for the large-scale synthesis of 1 and 2. The preparation of the two LMOF materials only required about 3 hours of heating time and they could be prepared on a large scale, which is significant for the practical applications of LMOFs.
Collapse
Affiliation(s)
- Yao Xiao
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City, 116029, P.R. China.
| | - Zi Xin You
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City, 116029, P.R. China.
| | - Yong Heng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City, 116029, P.R. China.
| | - Feng Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City, 116029, P.R. China.
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
29
|
Zhang Z, Ma W, Yan B. Multi-step tandem functionalization assembly of MOFs-based hybrid polymeric films for color tuning luminescence and responsive sensing on organic vapors. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Li Z, Núñez R, Light ME, Ruiz E, Teixidor F, Viñas C, Ruiz-Molina D, Roscini C, Planas JG. Water-Stable Carborane-Based Eu 3+/Tb 3+ Metal-Organic Frameworks for Tunable Time-Dependent Emission Color and Their Application in Anticounterfeiting Bar-Coding. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:4795-4808. [PMID: 35637791 PMCID: PMC9136944 DOI: 10.1021/acs.chemmater.2c00323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/19/2022] [Indexed: 05/27/2023]
Abstract
Luminescent lanthanide metal-organic frameworks (Ln-MOFs) have been shown to exhibit relevant optical properties of interest for practical applications, though their implementation still remains a challenge. To be suitable for practical applications, Ln-MOFs must be not only water stable but also printable, easy to prepare, and produced in high yields. Herein, we design and synthesize a series of m CB-Eu y Tb 1-y (y = 0-1) MOFs using a highly hydrophobic ligand mCBL1: 1,7-di(4-carboxyphenyl)-1,7-dicarba-closo-dodecaborane. The new materials are stable in water and at high temperature. Tunable emission from green to red, energy transfer (ET) from Tb3+ to Eu3+, and time-dependent emission of the series of mixed-metal m CB-Eu y Tb 1-y MOFs are reported. An outstanding increase in the quantum yield (QY) of 239% of mCB-Eu (20.5%) in the mixed mCB-Eu0.1Tb0.9 (69.2%) is achieved, along with an increased and tunable lifetime luminescence (from about 0.5 to 10 000 μs), all of these promoted by a highly effective ET process. The observed time-dependent emission (and color), in addition to the high QY, provides a simple method for designing high-security anticounterfeiting materials. We report a convenient method to prepare mixed-metal Eu/Tb coordination polymers (CPs) that are printable from water inks for potential applications, among which anticounterfeiting and bar-coding have been selected as a proof-of-concept.
Collapse
Affiliation(s)
- Zhen Li
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Rosario Núñez
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Mark E. Light
- Department
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Eliseo Ruiz
- Departament
de Química Inorgànica i Orgànica and Institut
de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Francesc Teixidor
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Clara Viñas
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Daniel Ruiz-Molina
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Claudio Roscini
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - José Giner Planas
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| |
Collapse
|
31
|
Gao PF, Jiang YY, Liu H, Zhou MS, Li T, Fu HR, Ma LF, Li DS. Pillar-Layer Chiral MOFs as a Crystalline Platform for Circularly Polarized Luminescence and Single-Phase White-Light Emission. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16435-16444. [PMID: 35357115 DOI: 10.1021/acsami.2c01615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The construction of circularly polarized luminescence (CPL) materials with high porosity and high rigidity is still challenging. Herein, we propose a chiral reticular chemistry strategy to prepare the homochiral porous metal-organic frameworks (MOFs) as CPL-active materials. Two pairs of enantiomeric MOFs are synthesized through the self-assembly of chiral D/L-cam (DL-camphorates) and achiral fluorescent ligand TPB (1,2,4,5-tetra(pyridin-4-yl)benzene). The glum values of Cd-CMOF-D and Cd-CMOF-L were up to 0.010 and 0.009; the high glum values could be compared to those of the partially pure multicomponent self-assembly systems obtained by the complicated process. We further trace the generation and transfer of the hierarchical chirality from chiral molecule to 3D framework, demonstrating that the CPL was dominated by the original molecular chirality rather than the global chirality of the hierarchical structure. Moreover, the single-phase white-light materials with nearly ideal CIE coordinates (0.33, 0.33) were constructed through the introduction of dye emitters into Zn-CMOF (Zn-based chiral MOF). This work provided not only an insightful view of the chirality transfer and disappearance mechanism but also an efficient method for the preparation of the highly porous CPL materials.
Collapse
Affiliation(s)
- Peng-Fu Gao
- College of Chemistry and Chemical Engineering, Henan Province Function-oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Yu-Ying Jiang
- College of Chemistry and Chemical Engineering, Henan Province Function-oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, China
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Henan Province Function-oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, China
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
| | - Meng-Shu Zhou
- College of Chemistry and Chemical Engineering, Henan Province Function-oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Ting Li
- College of Chemistry and Chemical Engineering, Henan Province Function-oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, China
| | - Hong-Ru Fu
- College of Chemistry and Chemical Engineering, Henan Province Function-oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, China
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Henan Province Function-oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
32
|
Lozovan V, Kravtsov VC, Costriucova NV, Siminel AV, Kulikova OV, Fonari MS. Tunability in dimension, metal and ligand coordination modes and emission properties in Cd(II) and Zn(II) coordination networks based on 4,4’-(hydrazine-1,2-diyilidenebis(methanylylidene)) dibenzoic acid linker. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
33
|
Brito-Santos G, Hernández-Rodríguez C, Gil-Hernández B, González-Díaz B, Martín IR, Guerrero-Lemus R, Sanchiz J. Highly luminescent mixed-ligand bimetallic lanthanoid(III) complexes for photovoltaic applications. Dalton Trans 2022; 51:3146-3158. [PMID: 35112691 DOI: 10.1039/d1dt04248c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Six new mixed-ligand bimetallic complexes [Eu2(bz)4(tta)2(phen)2] (1), [Gd2(bz)4(tta)2(phen)2] (2), [EuTb(bz)4(tta)2(phen)2] (3), [EuGd(bz)4(tta)2(phen)2] (4), [Eu1,2Gd0,8(bz)4(tta)2(phen)2] (5) and [Eu1,6Gd0,4(bz)4(tta)2(phen)2] (6) have been prepared with the Eu3+, Gd3+ and Tb3+ ions and the benzoate (bz-), 2-thenoyltrifluoroacetonate (tta-) and the 1,10-phenanthroline (phen) ligands. The compounds combine highly efficient antennas to obtain highly luminescent complexes to enhance solar cell efficiency. The benzoate ligand has been chosen to take its advantage as a bridging ligand to end up with bimetallic complexes to study the effect of combining two metal ions in the luminescent molecule. The structure of 1 was obtained by single-crystal X-ray diffraction, and 1-6 were found to be isostructural by powder X-ray diffraction analysis. The photophysical properties were studied by the absorbance and emission spectra and emission lifetimes. The magnetic properties of 2 were studied, and we found intramolecular antiferromagnetic interactions between the Gd3+ ions. We prepared luminescent down-shifting layers (LDSL) with the 1, 3-6 complexes embedded in ethylene-vinyl-acetate and studied their effect in the external quantum efficiency (EQE) and intensity-voltage (I-V) plots of a solar mini-module. We found that LDSL containing the bimetallic complexes 3 and 6 enhance the efficiency of the solar mini-module from 11.26(3)% to 11.76(4)% (+0.52%) and to 11.44(2)% (+0.21%), respectively.
Collapse
Affiliation(s)
- Gabriela Brito-Santos
- Departamento de Química, Facultad de Ciencias, Universidad de La Laguna, Tenerife, 38206, Spain.
| | - Cecilio Hernández-Rodríguez
- Departamento de Física, Facultad de Ciencias, Universidad de La Laguna, Tenerife, 38206, Spain.,Instituto Universitario de Materiales y Nanotecnología, Universidad de La Laguna, Tenerife, 38206, Spain
| | - Beatriz Gil-Hernández
- Departamento de Química, Facultad de Ciencias, Universidad de La Laguna, Tenerife, 38206, Spain. .,Instituto Universitario de Materiales y Nanotecnología, Universidad de La Laguna, Tenerife, 38206, Spain
| | - Benjamín González-Díaz
- Departamento de Ingeniería Industrial, Escuela Superior de Ingeniería y Tecnología, Universidad de La Laguna, Tenerife, 38206, Spain
| | - Inocencio R Martín
- Departamento de Física, Facultad de Ciencias, Universidad de La Laguna, Tenerife, 38206, Spain.,Instituto Universitario de Materiales y Nanotecnología, Universidad de La Laguna, Tenerife, 38206, Spain
| | - Ricardo Guerrero-Lemus
- Departamento de Física, Facultad de Ciencias, Universidad de La Laguna, Tenerife, 38206, Spain.,Instituto Universitario de Materiales y Nanotecnología, Universidad de La Laguna, Tenerife, 38206, Spain
| | - Joaquín Sanchiz
- Departamento de Química, Facultad de Ciencias, Universidad de La Laguna, Tenerife, 38206, Spain. .,Instituto Universitario de Materiales y Nanotecnología, Universidad de La Laguna, Tenerife, 38206, Spain
| |
Collapse
|
34
|
Jin Y, Ma W, Yan B. Unearth the Luminescence Potential of Metal-Organic Frameworks: Adopting a Feasible Strategy to Fabricate One Ratiometric Fluorescence Sensor for Monitoring Both 1-Hydroxypyrene and Cu 2. Inorg Chem 2022; 61:1349-1359. [PMID: 34995465 DOI: 10.1021/acs.inorgchem.1c02794] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, a novel luminescent hybrid material with double emission centers (Eu(TTA)0.2@9-1-UMOF) is successfully prepared, adopting a feasible design strategy. Initially, the second ligand 1,2,4-benzenetricarboxylic acid (H3BTC) is encapsulated based on a solid solution approach, which effectively improves the ligand-based emission intensity of the original LMOF and provides functional sites for introducing the second luminescent center; then, Eu3+ as the red emission source is loaded into the frameworks through a coordination post-synthetic modification method; finally, to balance the emission intensity at 613 nm (Eu3+) and 465 nm (1,4-naphthalenedicarboxylic acid (H2NDC)), 2-thenoyltrifluoroacetone (TTA) as a powerful antenna is introduced. Given the outstanding luminescence properties and structural stability of Eu(TTA)0.2@9-1-UMOF, it is further developed as a ratiometric sensor for detecting 1-hydroxypyrene (1-HP, the biomarker of polycyclic aromatic hydrocarbons (PAHs)) and Cu2+, which promotes the pre-diagnosis of human health. Notably, Eu(TTA)0.2@9-1-UMOF exhibits excellent selective recognition ability for both 1-HP and Cu2+ with high sensitivity (LOD = 4.06 × 10-6 mg/mL, 3.85 × 10-7 mol/L, respectively) and fast response speed. In addition, Eu(TTA)0.2@9-1-UMOF as a fluorescent probe shows great potential for the determination of 1-HP and Cu2+ in actual samples. More importantly, this work widens the road for the development of dual/multiple LMOF-based sensors for analytical applications.
Collapse
Affiliation(s)
- Yingmin Jin
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Wanpeng Ma
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.,School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
35
|
Liu X, Liu W, Kou Y, Yang X, Ju Z, Liu W. Multifunctional lanthanide MOF luminescent sensor built by structural designing and energy level regulation of a ligand. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00859a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In order to reduce usage cost and simplify the detection process, it is necessary to develop multifunctional and multi-emitter Ln-MOF luminescent sensors.
Collapse
Affiliation(s)
- Xueguang Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special unction Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wei Liu
- Institute of National Nuclear Industry, Frontiers Science Center for Rare Isotope, School of Nuclear Science and Technology, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000, Lanzhou, China
| | - Yao Kou
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special unction Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaoshan Yang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special unction Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhenghua Ju
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special unction Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special unction Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
36
|
Bhadra BN, Ahmed I, Lee HJ, Jhung SH. Metal-organic frameworks bearing free carboxylic acids: Preparation, modification, and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214237] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Mixed component metal-organic frameworks: Heterogeneity and complexity at the service of application performances. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214273] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Zhang Z, Lou Y, Guo C, Jia Q, Song Y, Tian JY, Zhang S, Wang M, He L, Du M. Metal–organic frameworks (MOFs) based chemosensors/biosensors for analysis of food contaminants. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
A dual-responsive Ni(II) coordination polymer fluorescent sensor: Rare turn-on detection of ascorbic acid and turn-off sensing acetylacetone. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122561] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Jiang YY, Zhang K, Zhou MS, Gao PF, Fu HR. A fluorescence/phosphorescence dual-emitting metal-organic framework exhibiting two approaches for single-phase white-light emission. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
41
|
Wen GH, Chen XM, Xu K, Xie X, Bao SS, Zheng LM. Uranyl phosphonates: crystalline materials and nanosheets for temperature sensing. Dalton Trans 2021; 50:17129-17139. [PMID: 34779803 DOI: 10.1039/d1dt02977k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrathin nanosheets of luminescent metal-organic frameworks or coordination polymers have been widely used for sensing ions, solvents and biomolecules but, as far as we are aware, not yet used for temperature sensing. Herein we report two luminescent uranyl phosphonates based on 2-(phosphonomethyl)benzoic acid (2-pmbH3), namely (UO2)(2-pmbH2)2 (1) and (H3O)[(UO2)2(2-pmb)(2-pmbH)] (2). The former has a supramolecular layer structure, composed of chains of corner-sharing {UO6} octahedra and {PO3C} tetrahedra which are connected by hydrogen bonds between phosphonate and carboxylic groups. Compound 2 possesses a unique 2D anionic framework structure, where the inorganic uranyl phosphonate chains made up of {UO7} and {PO3C} polyhedra are cross-linked by 2-pmb3- ligands. The carboxylic groups of 2-pmbH2- ligands are pendant on the two sides of the layers and form hydrogen bonds between the layers. Both compounds can be exfoliated in acetone via a top-down freeze-thaw method, resulting in nanosheets of two-layer thickness. Interestingly, the photoluminescence (PL) of 1 and 2 is highly temperature sensitive. Variable temperature PL studies revealed that compounds 1 and 2 can be used as thermometers in the temperature ranges 120-300 K and 100-280 K, respectively. By doping the nanosheets into polymer matrix, 1-ns@PMMA and 2-ns@PMMA were prepared. The PL intensity of 1-ns@PMMA is insensitive to temperature, unlike that of the bulk sample. While 2-ns@PMMA exhibits similar temperature-dependent luminescence behaviour to its bulk counterpart, thereby enabling its potential application as a thermometer in the temperature range 100-280 K.
Collapse
Affiliation(s)
- Ge-Hua Wen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.
| | - Xiu-Mei Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Kui Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.
| | - Xiaoji Xie
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
42
|
Sardaru MC, Marangoci NL, Shova S, Bejan D. Novel Lanthanide (III) Complexes Derived from an Imidazole-Biphenyl-Carboxylate Ligand: Synthesis, Structure and Luminescence Properties. Molecules 2021; 26:molecules26226942. [PMID: 34834036 PMCID: PMC8625298 DOI: 10.3390/molecules26226942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
A series of neutral mononuclear lanthanide complexes [Ln(HL)2(NO3)3] (Ln = La, Ce, Nd, Eu, Gd, Dy, Ho) with rigid bidentate ligand, HL (4'-(1H-imidazol-1-yl)biphenyl-4-carboxylic acid) were synthesized under solvothermal conditions. The coordination compounds have been characterized by infrared spectroscopy, thermogravimetry, powder X-ray diffraction and elemental analysis. According to X-ray diffraction, all the complexes are a series of isostructural compounds crystallized in the P2/n monoclinic space group. Additionally, solid-state luminescence measurements of all complexes show that [Eu(HL)2(NO3)3] complex displays the characteristic emission peaks of Eu(III) ion at 593, 597, 615, and 651 nm.
Collapse
Affiliation(s)
- Monica-Cornelia Sardaru
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Gr. Ghica Voda Alley, 700487 Iasi, Romania; (M.-C.S.); (N.L.M.)
| | - Narcisa Laura Marangoci
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Gr. Ghica Voda Alley, 700487 Iasi, Romania; (M.-C.S.); (N.L.M.)
| | - Sergiu Shova
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Gr. Ghica Voda Alley, 700487 Iasi, Romania;
| | - Dana Bejan
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Gr. Ghica Voda Alley, 700487 Iasi, Romania; (M.-C.S.); (N.L.M.)
- Correspondence:
| |
Collapse
|
43
|
Fu H, Jiang Y, Wang F, Zhang J. The Synthesis and Properties of TIPA-Dominated Porous Metal-Organic Frameworks. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2791. [PMID: 34835554 PMCID: PMC8618028 DOI: 10.3390/nano11112791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022]
Abstract
Metal-Organic Frameworks (MOFs) as a class of crystalline materials are constructed using metal nodes and organic spacers. Polydentate N-donor ligands play a mainstay-type role in the construction of metal-organic frameworks, especially cationic MOFs. Highly stable cationic MOFs with high porosity and open channels exhibit distinct advantages, they can act as a powerful ion exchange platform for the capture of toxic heavy-metal oxoanions through a Single-Crystal to Single-Crystal (SC-SC) pattern. Porous luminescent MOFs can act as nano-sized containers to encapsulate guest emitters and construct multi-emitter materials for chemical sensing. This feature article reviews the synthesis and application of porous Metal-Organic Frameworks based on tridentate ligand tris (4-(1H-imidazol-1-yl) phenyl) amine (TIPA) and focuses on design strategies for the synthesis of TIPA-dominated Metal-Organic Frameworks with high porosity and stability. The design strategies are integrated into four types: small organic molecule as auxiliaries, inorganic oxyanion as auxiliaries, small organic molecule as secondary linkers, and metal clusters as nodes. The applications of ratiometric sensing, the adsorption of oxyanions contaminants from water, and small molecule gas storage are summarized. We hope to provide experience and inspiration in the design and construction of highly porous MOFs base on polydentate N-donor ligands.
Collapse
Affiliation(s)
- Hongru Fu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China;
| | - Yuying Jiang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China;
| | - Fei Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
| |
Collapse
|
44
|
Yao MS, Otake KI, Xue ZQ, Kitagawa S. Concluding remarks: current and next generation MOFs. Faraday Discuss 2021; 231:397-417. [PMID: 34596180 DOI: 10.1039/d1fd00058f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper describes the content of my "Concluding remarks" talk at the Faraday Discussion meeting on "MOFs for energy and the environment" (online, 23-25 June 2021). The panel consisted of sessions on the design of MOFs and MOF hybrids (synthetic chemistry), their applications (e.g., capture, storage, separation, electrical devices, photocatalysis), advanced characterization (e.g., transmission electron microscopy, solid-state nuclear magnetic resonance), theory and modeling, and commercialization. MOF chemistry is undergoing a significant evolution from simply network chemistry to the chemistry of synergistic integration with heterogeneous materials involving other disciplines (we call this the fourth generation type). As reflected in the papers of the invited speakers and discussions with the participants, the present and future of this field will be described in detail.
Collapse
Affiliation(s)
- Ming-Shui Yao
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Zi-Qian Xue
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
45
|
New Mn(II) coordination polymer constructed from a semi-rigid tricarboxylate acid ligand: Synthesis, structure, and fluorescence recognition of acetylacetone and dichromate anion. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
A new strategy to fabricate multifunctional luminescent MOFs, extending their application range from pH sensing to amino acid information coding. J Colloid Interface Sci 2021; 601:427-436. [PMID: 34090023 DOI: 10.1016/j.jcis.2021.05.136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 11/23/2022]
Abstract
Herein, we propose a new strategy for designing new types of wide range pH-sensitive metal-organic frameworks (MOFs) with double luminescent centers on UiO-66-2OH. The UiO-66-2OH has a ligands-based emission at 530 nm. To introduce another luminescent center, PMA (1,2,4,5-benzenetetracarboxylic acid), as the functional site, is used to substitute the initial ligand, BDC-2OH (2,5-dihydroxyterephthalic acid), of UiO-66-2OH. Eu3+ ions, another luminescent center at 613 nm, are coordinated to the free carboxyl group on PMA. Finally, TTA (2-Thenoyltrifluoroacetone) is coordinated with Eu3+ ions to balance the emission at 613 nm (Eu3+ ions) and 530 nm (BDC-2OH). For the sake of both strong emissions, we explored the loading levels of PMA. The optimized structure is Eu(TTA)@MUM5 ("MUM" is the abbreviation of "Mixed ligand UiO-66-2OH MOFs" and "5" represents the molar percentage of PMA is 50%), which exhibits strong emission at 530 nm (alkaline solution) and 613 nm (neutral solution). Remarkably, the synthesized material has an exponential relationship (R2 = 0.9973) over the pH range of 1.87 to 9.65 and a linear relationship (R2 = 0.9987) when pH = 11.01-13.35. Further experiments have proved that Eu(TTA)@MUM5 could distinguish different amino acids. Based on that, we build an information transferring circle with two coding modes on Eu(TTA)@MUM5 using aseptic acid and arginine as coding factors.
Collapse
|
47
|
Li X, Xie S, Hu Y, Xiang J, Wang L, Li R, Chen M, Wang F, Liu Q, Chen X. AIEgen modulated per-functionalized flower-like IRMOF-3 frameworks with tunable light emission and excellent sensing properties. Chem Commun (Camb) 2021; 57:2392-2395. [PMID: 33543206 DOI: 10.1039/d0cc08403d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A series of functional IRMOF-3 frameworks with solid-state luminescence and tuneable light emission (from 490 to 608 nm) have been synthesized by per-functionalizing AIE-active Schiff-bases with zinc. These precursor AIE-active ligands endowed the functional frameworks with boosted fluorescence emission efficiencies (from 0.16% to 1.03%). IRMOF-3-h revealed a flower-like morphology attributed to the formation of J-aggregates, and could be used as a fluorescent probe for sensitive detection of copper(ii) (135 pM) and thiols (subnanomole).
Collapse
Affiliation(s)
- Xujie Li
- College of Chemistry and Chemical Engineering, The Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhang Y, Wu L, Feng M, Wang D, Li C. Assembly of two-dimension LMOF materials with excellent detection of Fe3+ ion in water based on overlap mechanism. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Xie W, Jiang W, Xu GJ, Zhang SR, Xu YH, Su ZM. A luminescent metal–organic framework with tetragonal nanochannels as an efficient chemosensor for nitroaromatic explosives detection. CrystEngComm 2021. [DOI: 10.1039/d1ce00331c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A 3D MOF with nanosized channels can act as an effective fluorescence probe, showing obvious fluorescence “turn-off” for nitroaromatic explosives.
Collapse
Affiliation(s)
- Wei Xie
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Ministry of Education
- Jilin Normal University
- Changchun
- China
| | - Wei Jiang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Ministry of Education
- Jilin Normal University
- Changchun
- China
| | - Guang-Juan Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Ministry of Education
- Jilin Normal University
- Changchun
- China
| | - Shu-Ran Zhang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Ministry of Education
- Jilin Normal University
- Changchun
- China
| | - Yan-Hong Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Ministry of Education
- Jilin Normal University
- Changchun
- China
| | - Zhong-Min Su
- Institute of Functional Material Chemistry
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| |
Collapse
|
50
|
Liang YJ, Yao J, Deng M, Liu YE, Xu QQ, Li QX, Jing B, Zhu AX, Huang B. A porous anionic zinc( ii) metal–organic framework for gas adsorption, selective uptake of dyes and sensing of Fe 3+ by Tb 3+ ion encapsulation. CrystEngComm 2021. [DOI: 10.1039/d1ce01074c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A 3D anionic, porous MOF exhibits selective adsorption of cationic dyes and can be used as a fast-response fluorescence sensor for the detection of Fe3+ ions by Tb3+ ion encapsulation.
Collapse
Affiliation(s)
- Yu-Jie Liang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Jun Yao
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Min Deng
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Yan-E. Liu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Quan-Qing Xu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Qiu-Xia Li
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Bi Jing
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Ai-Xin Zhu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Bo Huang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|