1
|
Hamada Y, Ogi S, Yamaguchi S. Introducing a π-Skeleton Perpendicular to the Central Methylene Carbon in Alkanediamides: Design of Supramolecular Polymers with an Offset π-Stacking Arrangement. Angew Chem Int Ed Engl 2024; 63:e202409657. [PMID: 38837831 DOI: 10.1002/anie.202409657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
The self-assembly behavior of a heptanediamide derivative that contains a four-ring fused π-skeleton on its central methylene carbon atom has been examined. This molecule, which also contains two octyl chains, gelated the nonpolar solvent methylcyclohexane through the formation of fibrous nanostructures with hydrogen-bonding networks through a cooperative nucleation-elongation process. The supramolecular polymerization is accompanied by bathochromic shifts of both the absorption and fluorescence bands while maintaining a fluorescence quantum yield comparable to that of the monomeric state. Theoretical calculations provided an energetically stable structure, in which the π-skeletons are stacked with an offset of more than 8.0 Å, replicating the experimentally observed absorption change due to exciton coupling. Moreover, a slow transition with an inversion of the chiral arrangement of the π-conjugated moieties was induced by replacing the octyl chains with chiral alkyl chains. Our molecular-design strategy was further applied to a five-ring fused π-skeleton, which also forms an offset π-stacking arrangement and exhibits more effective chiral exciton coupling in the aggregated state.
Collapse
Affiliation(s)
- Yasuhiro Hamada
- Department of Chemistry, Graduate School of Science, Nagoya University Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Soichiro Ogi
- Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, Nagoya University Furo, Chikusa, Nagoya, 464-8602, Japan
- Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University Furo, Chikusa, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Furo, Chikusa, Nagoya, 464-8602, Japan
| |
Collapse
|
2
|
Xu Y, Meng X, Zhao Y, Jia M, Zhu H, Song J, Su Y, Qiao W, Qi J, Wang ZY. Pyrrolopyrrole Cyanine J-Aggregate Nanoparticles with High Near-Infrared Fluorescence Brightness and Photothermal Performance for Efficient Phototheranostics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39005-39020. [PMID: 39034639 DOI: 10.1021/acsami.4c06225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Advanced photosensitizers for high-performance fluorescence imaging-guided photothermal therapy demand excellent near-infrared (NIR) brightness [molar absorption coefficient (ε) × quantum yield (QY)] and exceptional photothermal performance [ε × photothermal conversion efficiency (PCE)]. However, integrating high brightness and potent photothermal performance within a single molecule faces a formidable challenge. This article proposes a method to address this issue by preparing J-aggregate nanoparticles (NPs) using molecules with high ε. J-aggregates effectively improve QY and induce molecular emission redshift, while high ε molecules play a crucial role in improving the brightness and photothermal performance. By optimizing the molecular structure based on the pyrrolopyrrole cyanine (PPCy), precise control over the QY and PCE of PPCy J-aggregates is achieved. Ultimately, PDDO NPs exhibiting superior brightness (ε × QY = 3.32 × 104 M-1 cm-1) and photothermal performance (ε × PCE = 1.21 × 105 M-1 cm-1) are identified as high-performance photosensitizers. Notably, each parameter represents one of the highest levels among the reported fluorescence or photothermal probes to date. The in vivo studies demonstrate that PDDO NPs possess exceptional NIR imaging capabilities and remarkable photothermal tumor inhibition rates. This study provides innovative insights into the development of high-performance multifunctional photosensitizers.
Collapse
Affiliation(s)
- Yingnan Xu
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xue Meng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yang Zhao
- Key Laboratory of Materials Modification By Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Mengmeng Jia
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Huaxin Zhu
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jianwen Song
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yan Su
- Key Laboratory of Materials Modification By Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Wenqiang Qiao
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhi Yuan Wang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Guo X, Sheng W, Pan H, Guo L, Zuo H, Wu Z, Ling S, Jiang X, Chen Z, Jiao L, Hao E. Tuning Shortwave-Infrared J-aggregates of Aromatic Ring-Fused Aza-BODIPYs by Peripheral Substituents for Combined Photothermal and Photodynamic Therapies at Ultralow Laser Power. Angew Chem Int Ed Engl 2024; 63:e202319875. [PMID: 38225205 DOI: 10.1002/anie.202319875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Achieving photothermal therapy (PTT) at ultralow laser power density is crucial for minimizing photo-damage and allowing for higher maximum permissible skin exposure. However, this requires photothermal agents to possess not just superior photothermal conversion efficiency (PCE), but also exceptional near-infrared (NIR) absorptivity. J-aggregates, exhibit a significant redshift and narrower absorption peak with a higher extinction coefficient. Nevertheless, achieving predictable J-aggregates through molecular design remains a challenge. In this study, we successfully induced desirable J-aggregation (λabs max : 968 nm, ϵ: 2.96×105 M-1 cm-1 , λem max : 972 nm, ΦFL : 6.2 %) by tuning electrostatic interactions between π-conjugated molecular planes through manipulating molecular surface electrostatic potential of aromatic ring-fused aza-BODIPY dyes. Notably, by controlling the preparation method for encapsulating dyes into F-127 polymer, we were able to selectively generate H-/J-aggregates, respectively. Furthermore, the J-aggregates exhibited two controllable morphologies: nanospheres and nanowires. Importantly, the shortwave-infrared J-aggregated nanoparticles with impressive PCE of 72.9 % effectively destroyed cancer cells and mice-tumors at an ultralow power density of 0.27 W cm-2 (915 nm). This phototherapeutic nano-platform, which generates predictable J-aggregation behavior, and can controllably form J-/H-aggregates and selectable J-aggregate morphology, is a valuable paradigm for developing photothermal agents for tumor-treatment at ultralow laser power density.
Collapse
Affiliation(s)
- Xing Guo
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Wanle Sheng
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Hongfei Pan
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Luying Guo
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Huiquan Zuo
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Zeyu Wu
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, China
| | - Shizhang Ling
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, China
| | - Xiaochun Jiang
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, China
| | - Zhijian Chen
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Lijuan Jiao
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Erhong Hao
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| |
Collapse
|
4
|
Manha Veedu R, Niemeyer N, Bäumer N, Kartha Kalathil K, Neugebauer J, Fernández G. Sterically Allowed H-type Supramolecular Polymerizations. Angew Chem Int Ed Engl 2023; 62:e202314211. [PMID: 37797248 DOI: 10.1002/anie.202314211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023]
Abstract
The functionalization of π-conjugated scaffolds with sterically demanding substituents is a widely used tactic to suppress cofacial (H-type) stacking interactions, which may even inhibit self-assembly. Contrary to expectations, we demonstrate herein that increasing steric effects can result in an enhanced thermodynamic stability of H-type supramolecular polymers. In our approach, we have investigated two boron dipyrromethene (BODIPY) dyes with bulky phenyl (2) and mesityl (3) meso-substituents and compared their self-assembly in nonpolar media with that of a parent meso-methyl BODIPY 1 lacking bulky groups. While the enhanced steric demand induces pathway complexity, the superior thermodynamic stability of the H-type pathways can be rationalized in terms of additional enthalpic gain arising from intermolecular C-H⋅⋅⋅F-B interactions of the orthogonally arranged aromatic substituents, which overrule their inherent steric demand. Our findings underline the importance of balancing competing non-covalent interactions in self-assembly.
Collapse
Affiliation(s)
- Rasitha Manha Veedu
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Niklas Niemeyer
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
- Universität Münster, Center for Multiscale Theory and Computation, Corrensstraße 36, 48149, Münster, Germany
| | - Nils Bäumer
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Krishnan Kartha Kalathil
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills, Kottayam, Kerala-686560, India
| | - Johannes Neugebauer
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
- Universität Münster, Center for Multiscale Theory and Computation, Corrensstraße 36, 48149, Münster, Germany
| | - Gustavo Fernández
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
5
|
Matarranz B, Díaz‐Cabrera S, Ghosh G, Carreira‐Barral I, Soberats B, García‐Valverde M, Quesada R, Fernández G. Anticooperative Supramolecular Oligomerization Mediated by V‐Shaped Monomer Design and Unconventional Hydrogen Bonds. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202218555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Beatriz Matarranz
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| | - Sandra Díaz‐Cabrera
- Departamento de Química Facultad de Ciencias Universidad de Burgos 09001 Burgos Spain
| | - Goutam Ghosh
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| | | | - Bartolome Soberats
- Department of Chemistry, Universitat de les Illes Balears Cra. Valldemossa, Km. 7.5 07122 Palma de Mallorca Spain
| | - María García‐Valverde
- Departamento de Química Facultad de Ciencias Universidad de Burgos 09001 Burgos Spain
| | - Roberto Quesada
- Departamento de Química Facultad de Ciencias Universidad de Burgos 09001 Burgos Spain
| | - Gustavo Fernández
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
6
|
Matarranz B, Díaz-Cabrera S, Ghosh G, Carreira-Barral I, Soberats B, García-Valverde M, Quesada R, Fernández G. Anticooperative Supramolecular Oligomerization Mediated by V-Shaped Monomer Design and Unconventional Hydrogen Bonds. Angew Chem Int Ed Engl 2023; 62:e202218555. [PMID: 36828774 DOI: 10.1002/anie.202218555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 02/26/2023]
Abstract
After more than three decades of extensive investigations on supramolecular polymers, strategies for self-limiting growth still remain challenging. Herein, we exploit a new V-shaped monomer design to achieve anticooperatively formed oligomers with superior robustness and high luminescence. In toluene, the monomer-oligomer equilibrium is shifted to the monomer side, enabling the elucidation of the molecular packing modes and the resulting (weak) anticooperativity. Steric effects associated with an antiparallel staircase organization of the dyes are proposed to outcompete aromatic and unconventional B-F⋅⋅⋅H-N/C interactions, restricting the growth at the stage of oligomers. In methylcyclohexane (MCH), the packing modes and the anticooperativity are preserved; however, pronounced solvophobic and chain-enwrapping effects lead to thermally ultrastable oligomers. Our results shed light on understanding anticooperative effects and restricted growth in self-assembly.
Collapse
Affiliation(s)
- Beatriz Matarranz
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Sandra Díaz-Cabrera
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Goutam Ghosh
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Israel Carreira-Barral
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Bartolome Soberats
- Department of Chemistry, Universitat de les Illes Balears Cra., Valldemossa, Km. 7.5, 07122, Palma de Mallorca, Spain
| | - María García-Valverde
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Roberto Quesada
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Gustavo Fernández
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
7
|
Lorente A, Ochoa A, Rodriguez-Lavado J, Rodriguez-Nuévalos S, Jaque P, Gil S, Sáez JA, Costero AM. Unconventional OFF-ON Response of a Mono(calix[4]arene)-Substituted BODIPY Sensor for Hg 2+ through Dimerization Reversion. ACS OMEGA 2023; 8:819-828. [PMID: 36643454 PMCID: PMC9835786 DOI: 10.1021/acsomega.2c06161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
A new selective fluorogenic chemosensor for Hg2+, which combines a calixarene derivative with a BODIPY core as a fluorescent reporter, is described. The remarkable change in its fluorogenic properties in DMSO and CHCl3 has been analyzed. A study of its spectral properties on dilution, along with molecular modeling studies, allowed us to explain that this behavior involves the formation of a J-dimer, as well as how the sensing mechanism of Hg2+ proceeds.
Collapse
Affiliation(s)
- Alejandro Lorente
- Departamento
de Química Orgánica y Fisicoquímica, Facultad
de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, 8380492 Independencia, Santiago, Chile
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Arminallee 22, 14195 Berlin, Germany
| | - Andres Ochoa
- Departamento
de Química Orgánica y Fisicoquímica, Facultad
de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, 8380492 Independencia, Santiago, Chile
| | - Julio Rodriguez-Lavado
- Departamento
de Química Orgánica y Fisicoquímica, Facultad
de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, 8380492 Independencia, Santiago, Chile
| | - Silvia Rodriguez-Nuévalos
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico, Universitat
de València-Universitat Politècnica de València, Dr. Moliner 50, Burjassot, 46100 Valencia, Spain
| | - Pablo Jaque
- Departamento
de Química Orgánica y Fisicoquímica, Facultad
de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, 8380492 Independencia, Santiago, Chile
| | - Salvador Gil
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico, Universitat
de València-Universitat Politècnica de València, Dr. Moliner 50, Burjassot, 46100 Valencia, Spain
- Departamento
de Química Orgánica, Universidad
de Valencia, Doctor Moliner
50, Burjassot, 46100 Valencia, Spain
| | - José A. Sáez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico, Universitat
de València-Universitat Politècnica de València, Dr. Moliner 50, Burjassot, 46100 Valencia, Spain
- Departamento
de Química Orgánica, Universidad
de Valencia, Doctor Moliner
50, Burjassot, 46100 Valencia, Spain
| | - Ana M. Costero
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico, Universitat
de València-Universitat Politècnica de València, Dr. Moliner 50, Burjassot, 46100 Valencia, Spain
- Departamento
de Química Orgánica, Universidad
de Valencia, Doctor Moliner
50, Burjassot, 46100 Valencia, Spain
| |
Collapse
|
8
|
Tian Y, Yin D, Yan L. J-aggregation strategy of organic dyes for near-infrared bioimaging and fluorescent image-guided phototherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1831. [PMID: 35817462 DOI: 10.1002/wnan.1831] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/22/2022] [Accepted: 06/09/2022] [Indexed: 01/31/2023]
Abstract
With the continuous development of organic materials for optoelectronic devices and biological applications, J-aggregation has attracted a great deal of interest in both dye chemistry and supramolecular chemistry. Except for the characteristic red-shifted absorption and emission, such ordered head-to-tail stacked structures may be accompanied by special properties such as enhanced absorption, narrowed spectral bandwidth, improved photothermal and photodynamic properties, aggregation-induced emission enhancement (AIEE) phenomenon, and so forth. These excellent properties add great potential to J-aggregates for optical imaging and phototherapy in the near-infrared (NIR) region. Despite decades of development, the challenge of rationally designing the molecular structure to adjust intermolecular forces to induce J-aggregation of organic dyes remains significant. In this review, we discuss the formation of J-aggregates in terms of intermolecular interactions and summarize some recent studies on J-aggregation dyes for NIR imaging and phototherapy, to provide a clear direction and reference for designing J-aggregates of near-infrared organic dyes to better enable biological applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Youliang Tian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei, China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei, China
| | - Lifeng Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei, China
| |
Collapse
|
9
|
Xu Z, Wu F, Zhu D, Fu H, Shen Z, Lei J. BODIPY-based metal-organic frameworks as efficient electrochemiluminescence emitters for telomerase detection. Chem Commun (Camb) 2022; 58:11515-11518. [PMID: 36149384 DOI: 10.1039/d2cc04722e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A boron dipyrromethene (BODIPY)-based metal-organic framework (MOF) nanoemitter was for the first time designed with enhanced electrochemiluminescence (ECL) intensity due to the suppression of non-radiative dissipation originating from the ordered arrangement of BODIPY molecules in the framework. Thus, an ECL biosensor was developed for telomerase detection with excellent performance in real samples.
Collapse
Affiliation(s)
- Zhiyuan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Fan Wu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Da Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Haomin Fu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
10
|
Kim JH, Schembri T, Bialas D, Stolte M, Würthner F. Slip-Stacked J-Aggregate Materials for Organic Solar Cells and Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104678. [PMID: 34668248 DOI: 10.1002/adma.202104678] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Dye-dye interactions affect the optical and electronic properties in organic semiconductor films of light harvesting and detecting optoelectronic applications. This review elaborates how to tailor these properties of organic semiconductors for organic solar cells (OSCs) and organic photodiodes (OPDs). While these devices rely on similar materials, the demands for their optical properties are rather different, the former requiring a broad absorption spectrum spanning from the UV over visible up to the near-infrared region and the latter an ultra-narrow absorption spectrum at a specific, targeted wavelength. In order to design organic semiconductors satisfying these demands, fundamental insights on the relationship of optical properties are provided depending on molecular packing arrangement and the resultant electronic coupling thereof. Based on recent advancements in the theoretical understanding of intermolecular interactions between slip-stacked dyes, distinguishing classical J-aggregates with predominant long-range Coulomb coupling from charge transfer (CT)-mediated or -coupled J-aggregates, whose red-shifts are primarily governed by short-range orbital interactions, is suggested. Within this framework, the relationship between aggregate structure and functional properties of representative classes of dye aggregates is analyzed for the most advanced OSCs and wavelength-selective OPDs, providing important insights into the rational design of thin-film optoelectronic materials.
Collapse
Affiliation(s)
- Jin Hong Kim
- Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Tim Schembri
- Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - David Bialas
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Matthias Stolte
- Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Frank Würthner
- Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
11
|
Helmers I, Hossain MS, Bäumer N, Wesarg P, Soberats B, Shimizu LS, Fernández G. Anti-cooperative Self-Assembly with Maintained Emission Regulated by Conformational and Steric Effects. Angew Chem Int Ed Engl 2022; 61:e202200390. [PMID: 35112463 PMCID: PMC9311066 DOI: 10.1002/anie.202200390] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Indexed: 12/28/2022]
Abstract
Herein, we present a strategy to enable a maintained emissive behavior in the self-assembled state by enforcing an anti-cooperative self-assembly involving weak intermolecular dye interactions. To achieve this goal, we designed a conformationally flexible monomer unit 1 with a central 1,3-substituted (diphenyl)urea hydrogen bonding synthon that is tethered to two BODIPY dyes featuring sterically bulky trialkoxybenzene substituents at the meso-position. The competition between attractive forces (H-bonding and aromatic interactions) and destabilizing effects (steric and competing conformational effects) limits the assembly, halting the supramolecular growth at the stage of small oligomers. Given the presence of weak dye-dye interactions, the emission properties of molecularly dissolved 1 are negligibly affected upon aggregation. Our findings contribute to broadening the scope of emissive supramolecular assemblies and controlled supramolecular polymerization.
Collapse
Affiliation(s)
- Ingo Helmers
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | | | - Nils Bäumer
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Paul Wesarg
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Bartolome Soberats
- Department of ChemistryUniversity of the Balearic IslandsCra. Valldemossa, Km. 7.507122Palma de MallorcaSpain
| | - Linda S. Shimizu
- Department of Chemistry and BiochemistryUniversity of South CarolinaColumbiaSC 29208USA
| | - Gustavo Fernández
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| |
Collapse
|
12
|
Helmers I, Hossain MS, Bäumer N, Wesarg P, Soberats B, Shimizu LS, Fernandez G. Anti‐cooperative Self‐Assembly with Maintained Emission Regulated by Conformational and Steric Effects. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ingo Helmers
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | | | - Nils Bäumer
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | - Paul Wesarg
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | - Bartolome Soberats
- Universitat de les Illes Balears Facultat de Ciencies Quimica Organica SPAIN
| | - Linda S. Shimizu
- University of South Carolina Chemistry and Biochemistry UNITED STATES
| | - Gustavo Fernandez
- WWU Münster Organisch-Chemisches Institut Correnstraße, 4ß 48149 Münster GERMANY
| |
Collapse
|
13
|
|
14
|
Tan S, Luo W, Zhang Y, Ren XK, Liu Y, Chen Z, Zeng Q. Structural and Nanotribological Properties of a BODIPY Self-Assembly. Front Chem 2021; 9:704915. [PMID: 34422764 PMCID: PMC8377353 DOI: 10.3389/fchem.2021.704915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/28/2021] [Indexed: 11/25/2022] Open
Abstract
Boron-dipyrromethenes (BODIPY) are promising functional dyes, whose exceptional optical properties are closely related to their supramolecular assembly. Herein, the self-assembly of a BODIPY derivative functionalized with uracil groups is explicitly and thoroughly investigated by using scanning tunneling microscopy (STM). Based on the simulation and calculation by density functional theory (DFT) method, it can be concluded that the construction of ordered self-assembly structure is attributed to the formation of hydrogen bonds between uracil groups. Moreover, the nanotribological property of the self-assembly on HOPG surface is measured by using atomic force microscopy (AFM). The effort on self-assembly of the BODIPY derivative could enhance the understanding of surface assembly mechanism.
Collapse
Affiliation(s)
- Shanchao Tan
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China.,CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Wendi Luo
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, China
| | - Yongjie Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiang-Kui Ren
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yuhong Liu
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Zhijian Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, China.,Center of Materials Science and Optoelectonics Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Lei B, Pan H, Zhang Y, Ren XK, Chen Z. An amphiphilic B,O-chelated aza-BODIPY dye: synthesis, pH-sensitivity, and aggregation behaviour in a H 2O/DMSO mixed solvent. Org Biomol Chem 2021; 19:6108-6114. [PMID: 34160530 DOI: 10.1039/d1ob00746g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel amphiphilic B,O-chelated azadipyrromethene (aza-BODIPY) dye, containing hydrophobic dodecyloxy groups and hydrophilic tetraethylene glycol (TEG) chains, was synthesized and characterized by NMR, HRMS, Vis/NIR absorption and fluorescence spectroscopy. The B,O-chelated dye 1 exhibited largely bathochromically shifted NIR absorption and fluorescence spectra in comparison with common BF2-chelated aza-BODIPY dyes. Upon gradual addition of trifluoroacetic acid (TFA) to the dye 1 solution, obvious spectral changes were observed in Vis/NIR absorption and fluorescence spectroscopy measurements. Meanwhile, the colour change of the dye 1 solution from pink to blue was noticeable by the naked eye, indicating the pH-sensitivity of dye 1. The pH-sensitivity of dye 1 under acidic conditions could be ascribed to the formation of dye species 2·H+. Furthermore, owing to the amphiphilic feature of dye 1, it self-assembled into J-type aggregates in a mixed solvent of water/DMSO (2/8, v/v). Temperature-dependent Vis/NIR spectroscopic studies revealed a cooperative aggregation process of dye 1 and a nanowire-like morphology of the nanoaggregates was observed by AFM.
Collapse
Affiliation(s)
- Bin Lei
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Hongfei Pan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Yongjie Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Xiang-Kui Ren
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Zhijian Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
16
|
Das G, Cherumukkil S, Padmakumar A, Banakar VB, Praveen VK, Ajayaghosh A. Tweaking a BODIPY Spherical Self‐Assembly to 2D Supramolecular Polymers Facilitates Excited‐State Cascade Energy Transfer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Gourab Das
- Photosciences and Photonics Section Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram Kerala 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
| | - Sandeep Cherumukkil
- Photosciences and Photonics Section Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram Kerala 695019 India
| | - Akhil Padmakumar
- Photosciences and Photonics Section Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram Kerala 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
| | - Vijay B. Banakar
- Photosciences and Photonics Section Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram Kerala 695019 India
| | - Vakayil K. Praveen
- Photosciences and Photonics Section Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram Kerala 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
| | - Ayyappanpillai Ajayaghosh
- Photosciences and Photonics Section Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram Kerala 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
| |
Collapse
|
17
|
Das G, Cherumukkil S, Padmakumar A, Banakar VB, Praveen VK, Ajayaghosh A. Tweaking a BODIPY Spherical Self‐Assembly to 2D Supramolecular Polymers Facilitates Excited‐State Cascade Energy Transfer. Angew Chem Int Ed Engl 2021; 60:7851-7859. [DOI: 10.1002/anie.202015390] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Indexed: 01/16/2023]
Affiliation(s)
- Gourab Das
- Photosciences and Photonics Section Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram Kerala 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
| | - Sandeep Cherumukkil
- Photosciences and Photonics Section Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram Kerala 695019 India
| | - Akhil Padmakumar
- Photosciences and Photonics Section Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram Kerala 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
| | - Vijay B. Banakar
- Photosciences and Photonics Section Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram Kerala 695019 India
| | - Vakayil K. Praveen
- Photosciences and Photonics Section Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram Kerala 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
| | - Ayyappanpillai Ajayaghosh
- Photosciences and Photonics Section Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram Kerala 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
| |
Collapse
|
18
|
Liu M, Du X, Xu K, Yan B, Fan Z, Gao Z, Ren X. A cationic quantum dot-based ratiometric fluorescent probe to visually detect berberine hydrochloride in human blood serums. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00261-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AbstractBerberine hydrochloride (BH) is an isoquinoline alkaloid normally used as drug to treat diseases. Compared with the traditional detection methods, the carbon quantum dots (CQDs) have better selectivity, high sensitivity, easy operation, and is inexpensive which could be widely utilized as fluorescent nanoprobes to detect various compounds quantificationally. And ratiometric fluorescent sensors conspicuously increase sensitivity and precision detection and improve quantification. In this work, we use water-soluble and fluorescent cationic carbon dots cetylpyridinium chloride monohydrate (CPC)-CQDs to connect with pinacyanol chloride (PC) and sodium tetraphenylborate (ST) as the ratiometric fluorescent probe to detect BH. The ratiometric fluorescent probe has high sensitivity towards alkaloids and metal ions, photochemical stability (60 min), and pH stability (from 6.0 to 8.0), with the detection range from 0 to 200 μM, and limit was as low as 57.35 nM. The accuracy of the method was verified by spiked recovery experiment in different human blood serums which were drawn from healthy adult volunteers to explore the practicability. The recoveries were in the range 94.34 to 105.48% with relative standard deviations (RSD) of 0.80 to 2.92%. In addition, we could observe that the fluorescence was gradually darkened, and the color turned yellow to realize the visual detection. It is expected that this work would open up a new strategy for detecting BH in the environment and human blood serums.
Collapse
|
19
|
Zhang Y, Yuan S, Liu P, Jing L, Pan H, Ren XK, Chen Z. J-aggregation induced emission enhancement of BODIPY dyes via H-bonding directed supramolecular polymerization: the importance of substituents at boron. Org Chem Front 2021. [DOI: 10.1039/d1qo00520k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
For uracil-functionalized BODIPY dyes 1a–c, AIEE upon H-bonding directed J-aggregation was observed for the two dyes bearing alkyne groups at boron while the BF2-chelated dye displayed ACQ, indicating the crucial role of the substituents at boron.
Collapse
Affiliation(s)
- Yongjie Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| | - Siyuan Yuan
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| | - Ping Liu
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| | - Lei Jing
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| | - Hongfei Pan
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| | - Xiang-Kui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Zhijian Chen
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| |
Collapse
|
20
|
Lv F, Guo X, Wu H, Li H, Tang B, Yu C, Hao E, Jiao L. Direct sulfonylation of BODIPY dyes with sodium sulfinates through oxidative radical hydrogen substitution at the α-position. Chem Commun (Camb) 2020; 56:15577-15580. [DOI: 10.1039/d0cc07259a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of α-sulfonated BODIPYs were efficiently synthesized from sodium sulfinates via a radical process, and were demonstrated as new fluorescent probes for selective biothiol detection.
Collapse
Affiliation(s)
- Fan Lv
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Hao Wu
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Heng Li
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Bing Tang
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| |
Collapse
|
21
|
Guo X, Li M, Wu H, Sheng W, Feng Y, Yu C, Jiao L, Hao E. Near-IR absorbing J-aggregates of a phenanthrene-fused BODIPY as a highly efficient photothermal nanoagent. Chem Commun (Camb) 2020; 56:14709-14712. [DOI: 10.1039/d0cc06014c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A phenanthrene-[b]-fused BODIPY exhibited well-defined J-aggregates in both pure hydrocarbon solution and aqueous solution, and was developed as a highly efficient photothermal nanoagent.
Collapse
Affiliation(s)
- Xing Guo
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Mao Li
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Hao Wu
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Wanle Sheng
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Yuanmei Feng
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| |
Collapse
|