1
|
Shi J, Du Y, He W, Zhao G, Qin Y, Song L, Hu J, Guan Y, Zhu J, Wang C, Teng J, Xie Z. Insights into the Effect of the Adsorption Preference of Additives on the Anisotropic Growth of ZSM‐5 Zeolite. Chemistry 2022; 28:e202201781. [DOI: 10.1002/chem.202201781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Jing Shi
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis SINOPEC Shanghai Research Institute of Petrochemical Technology Shanghai 201208 P. R. China
| | - Yujue Du
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis SINOPEC Shanghai Research Institute of Petrochemical Technology Shanghai 201208 P. R. China
| | - Wanren He
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis SINOPEC Shanghai Research Institute of Petrochemical Technology Shanghai 201208 P. R. China
| | - Guoliang Zhao
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis SINOPEC Shanghai Research Institute of Petrochemical Technology Shanghai 201208 P. R. China
| | - Yucai Qin
- Key Laboratory of Petrochemical Catalytic Science and Technology Liaoning Petrochemical University Fushun 113001 P. R. China
| | - Lijuan Song
- Key Laboratory of Petrochemical Catalytic Science and Technology Liaoning Petrochemical University Fushun 113001 P. R. China
| | - Jun Hu
- National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230029 P. R. China
| | - Yong Guan
- National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230029 P. R. China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230029 P. R. China
| | - Chuanming Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis SINOPEC Shanghai Research Institute of Petrochemical Technology Shanghai 201208 P. R. China
| | - Jiawei Teng
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis SINOPEC Shanghai Research Institute of Petrochemical Technology Shanghai 201208 P. R. China
| | - Zaiku Xie
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis SINOPEC Shanghai Research Institute of Petrochemical Technology Shanghai 201208 P. R. China
| |
Collapse
|
2
|
Microstructural manipulation of MFI-type zeolite films/membranes: Current status and perspectives. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Saulat H, Song W, Yang J, Yan T, He G, Tsapatsis M. Fabrication of b-oriented MFI membranes from MFI nanosheet layers by ammonium sulfate modifier for the separation of butane isomers. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Wang G, Chen Y, Pan C, Chen H, Ding S, Chen X. Rapid synthesis of self-standing covalent organic frameworks membrane via polyethylene glycol-assisted space-confined strategy. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Zhang X, Tong Z, Liu C, Ye L, Zhou Y, Meng Q, Zhang G, Gao C. Functionalized MOF-Derived Nanoporous Carbon as Compatible Nanofiller to Fabricate Defect-Free PDMS-Based Mixed Matrix Pervaporation Membranes. ACS OMEGA 2022; 7:15786-15794. [PMID: 35571851 PMCID: PMC9097190 DOI: 10.1021/acsomega.2c00881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Metal-organic framework (MOF)-based polydimethylsiloxane mixed matrix membranes applied for alcohol recovery with high permeability and selectivity are drawing more and more attention. However, the design and fabrication of high-quality and stable MOF-based mixed matrix membrane for pervaporation are still a big challenge. Herein, PDMS functionalized MOF-derived nanoporous carbon (P-ZNC) was first explored as compatible nanofiller to mutually blend with polydimethylsiloxane on PVDF substrate to fabricate defect-free mixed matrix membranes via dip-coating and thermal cross-linkng. Induced by UV illumination, hydrophobic modification of MOF-derived nanoporous carbon was successfully realized under mild conditions within one step, simplifying the operation step. By using this facile strategy, we can not only solve the existing problem of agglomeration, but also covalently cross-link MOF derivative with polymeric matrix and effectively eliminate the interface defect between polymer and nanoparticles without any extra steps. The method also gives a good level of generality for the synthesis of versatile stable nanoporous MOF-derived carbon-based mixed matrix membranes on various supports. The prepared PDMS/P-ZNC with commendable structures possessed excellent separation performance in low concentration n-butanol recovery and had a good balance between permeance, selectivity, and stability.
Collapse
Affiliation(s)
- Xu Zhang
- Center
for Membrane and Water Science & Technology, Institute of Oceanic
and Environmental Chemical Engineering, State Key Lab Breeding Base
of Green Chemical Synthesis Technology, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Zhaowei Tong
- Center
for Membrane and Water Science & Technology, Institute of Oceanic
and Environmental Chemical Engineering, State Key Lab Breeding Base
of Green Chemical Synthesis Technology, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Chao Liu
- Center
for Membrane and Water Science & Technology, Institute of Oceanic
and Environmental Chemical Engineering, State Key Lab Breeding Base
of Green Chemical Synthesis Technology, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Lei Ye
- Center
for Membrane and Water Science & Technology, Institute of Oceanic
and Environmental Chemical Engineering, State Key Lab Breeding Base
of Green Chemical Synthesis Technology, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Yuwei Zhou
- Center
for Membrane and Water Science & Technology, Institute of Oceanic
and Environmental Chemical Engineering, State Key Lab Breeding Base
of Green Chemical Synthesis Technology, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Qin Meng
- College
of Chemical and Biological Engineering, and State Key Laboratory of
Chemical Engineering, Zhejiang University, Yugu Road 38#, 310027 Hangzhou, China
| | - Guoliang Zhang
- Center
for Membrane and Water Science & Technology, Institute of Oceanic
and Environmental Chemical Engineering, State Key Lab Breeding Base
of Green Chemical Synthesis Technology, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Congjie Gao
- Center
for Membrane and Water Science & Technology, Institute of Oceanic
and Environmental Chemical Engineering, State Key Lab Breeding Base
of Green Chemical Synthesis Technology, Zhejiang University of Technology, 310014 Hangzhou, China
| |
Collapse
|
6
|
Zhan X, Zhao X, Gao Z, Ge R, Lu J, Wang L, Li J. Breakthroughs on tailoring membrane materials for ethanol recovery by pervaporation. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Contribution of Pore-Connectivity to Permeation Performance of Silicalite-1 Membrane; Part I, Pore Volume and Effective Pore Size. MEMBRANES 2021; 11:membranes11060382. [PMID: 34073754 PMCID: PMC8225034 DOI: 10.3390/membranes11060382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022]
Abstract
The micropore volumes and effective pore sizes of two types of silicalite-1 membranes were compared with those of a typical silicalite-1 powder. The silicalite-1 membrane with fewer grain boundaries in the membrane layer showed similar micropore volume and effective pores size to those of the silicalite-1 powder. In contrast, when the silicalite-1 membrane contained many grain boundaries, relatively small micropore volume and effective pore size were observed, suggesting that narrowing and obstruction of the micropore would occur along grain boundaries due to the disconnection of the zeolite pore. The silicalite-1 membrane with fewer grain boundaries exhibited relatively high permeation properties for C6-C8 hydrocarbons. There was an over 50-fold difference in benzene permeance between these two types of membranes. We concluded that it is important to reduce grain boundaries and improve pore-connectivity to develop an effective preparation method for obtaining a highly permeable membrane.
Collapse
|
8
|
Castro-Muñoz R, Boczkaj G. Pervaporation Zeolite-Based Composite Membranes for Solvent Separations. Molecules 2021; 26:1242. [PMID: 33669135 PMCID: PMC7956589 DOI: 10.3390/molecules26051242] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/26/2022] Open
Abstract
Thanks to their well-defined molecular sieving and stability, zeolites have been proposed in selective membrane separations, such as gas separation and pervaporation. For instance, the incorporation of zeolites into polymer phases to generate composite (or mixed matrix) membranes revealed important advances in pervaporation. Therefore, the goal of this review is to compile and elucidate the latest advances (over the last 2-3 years) of zeolite applications in pervaporation membranes either combining zeolites or polymers. Here, particular emphasis has been focused on relevant insights and findings in using zeolites in pervaporative azeotropic separations and specific aided applications, together with novel concepts of membranes. A brief background of the pervaporation process is also given. According to the findings of this review, we provide future perspectives and recommendations for new researchers in the field.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland;
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
| | - Grzegorz Boczkaj
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland;
| |
Collapse
|