1
|
Patamia V, Saccullo E, Magaletti F, Fuochi V, Furnari S, Fiorenza R, Furneri PM, Barbera V, Floresta G, Rescifina A. Nature-inspired innovation: Alginic-kojic acid material for sustainable antibacterial and carbon dioxide fixation. Int J Biol Macromol 2024; 277:134514. [PMID: 39111504 DOI: 10.1016/j.ijbiomac.2024.134514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
The current environmental consciousness of the world's population encourages researchers to work on new materials that are environmentally benign and able to display the appropriate features for the needed application. To develop high-performing, inexpensive eco-materials, scientists have frequently turned to nature, attempting to mimic its processes' excellent performance at a reasonable price. In this regard, we decided to focus on alginic acid (AA), a polysaccharide widely found in brown algae, and kojic acid (KA), a chelating agent fungi produces. This study proposes rapidly synthesizing a sustainable, biocompatible material (AK) based on AA and KA, employing chlorokojic acid (CKA). The material has a dual function: antibacterial activity on both Gram-positive and Gram-negative bacteria, without any cytotoxic action on human cells in vitro, and catalytic ability to convert CO2 into cyclic carbonates at atmospheric pressure, without solvents, with high yields, and without the use of metals. Furthermore, the material's insolubility in organic solvents allows it to be easily separated from the reaction product and reused for other catalytic cycles. Both applications have a key role in the medical and environmental fields, combating the outbreak of infections and providing an innovative methodology to fix the CO2 on specific substrates.
Collapse
Affiliation(s)
- Vincenzo Patamia
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Erika Saccullo
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Federica Magaletti
- Department of Chemistry, Materials and Chemical Engineering (Giulio Natta), Politecnico di Milano, Via Mancinelli 7, Milano, Italy
| | - Virginia Fuochi
- Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Salvatore Furnari
- Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Roberto Fiorenza
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Pio Maria Furneri
- Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Vincenzina Barbera
- Department of Chemistry, Materials and Chemical Engineering (Giulio Natta), Politecnico di Milano, Via Mancinelli 7, Milano, Italy
| | - Giuseppe Floresta
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
2
|
Wang Z, Luo W, Li ZW, Yin K, Wei M, Li L. Synthesis of Bench-stable Polycyclic Organophosphorus Heterocycles via Staudinger-type Annulations of ortho-Azidophenols. Chemistry 2023:e202302834. [PMID: 38141178 DOI: 10.1002/chem.202302834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/25/2023]
Abstract
The formation of a five- or six-membered ring is known to stabilize unstable molecular structures such as hemiacetals. This idea can also be extended to stabilize other high-coordinated p-block element species. Herein, we synthesized two novel polycyclic organophosphorus heterocycles via Staudinger-type annulations. Reactions of either ortho-phosphinoarenesulfonyl fluorides 1 or ortho-phosphinobenzoic acid methyl esters 4 with ortho-azidophenols 2 gave rise to penta-coordinated P(V) heterocycles, benzo-benzo-1,2,3-thiazaphospholo-1,3,2-oxazaphosphole (B-B-TAP-OAP) 3 and benzo-benzo-1,2-azaphospholo-1,3,2-oxazaphosphol-12-one (B-B-AP-OAP) 5 in satisfactory yields. It is remarkable that heterocycles 3 and 5 are both bench-stable and exhibit considerable stability in a 10 % aqueous tetrahydrofuran solution. Preliminary computational studies disclosed that the formation of nitrogen gas is the key driving force for the annulations. In addition, the formation of a strong Si-F bond is another contributor to the annulation of 1 and 2.
Collapse
Affiliation(s)
- Zhenguo Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Wenjun Luo
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhi-Wei Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Keshu Yin
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Mingjie Wei
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, P. R. China
| | - Le Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
3
|
Nazeri MT, Ghasemi M, Ahmadi M, Shaabani A, Notash B. Using Triazolobenzodiazepine as the Cyclic Imine in Various Types of Joullié-Ugi Reactions. J Org Chem 2023; 88:13504-13519. [PMID: 37696794 DOI: 10.1021/acs.joc.3c01013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The triazolobenzodiazepine as a cyclic imine was employed in a variety of Joullié-Ugi reactions, and three new families of unique triazolobenzodiazepine connected to carboxamide and tetrazole products were synthesized via a three-component reaction of the cyclic imine and isocyanides with each species of a carboxylic acid/water/TMSN3 under mild conditions in high yields. Furthermore, triazolobenzodiazepine imine was used in an interesting strategy based on the modified Ugi reaction (pseudo-Joullié-Ugi reaction) of cyclic imines with an isocyanide and acetylenedicarboxylates under catalyst-free conditions for the synthesis of triazolobenzodiazepine-fused pyrroles. Mechanistic investigation reveals that triazolobenzodiazepine-fused pyrroles have been generated via a surprising route. Significantly, the use of triazolobenzodiazepine in the Joullié-Ugi, azido-Joullié-Ugi, and pseudo-Joullié-Ugi reactions of a broad scope of biological scaffolds occurred under mild, simple conditions without any catalyst.
Collapse
Affiliation(s)
- Mohammad Taghi Nazeri
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard, Tehran, 1983969411, Iran
| | - Maryam Ghasemi
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard, Tehran, 1983969411, Iran
| | - Masoomeh Ahmadi
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard, Tehran, 1983969411, Iran
| | - Ahmad Shaabani
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard, Tehran, 1983969411, Iran
- Peoples' Friendship University of Russia (RUDN University), 6, Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Behrouz Notash
- Department of Inorganic Chemistry, Shahid Beheshti University, Daneshjou Boulevard, Tehran, 1983969411, Iran
| |
Collapse
|
4
|
Rosadoni E, Bombonato E, Del Vecchio A, Guariento S, Ronchi P, Bellina F. Direct Decarboxylative C-2 Alkylation of Azoles through Minisci-Type Coupling. J Org Chem 2023; 88:14236-14241. [PMID: 37729603 DOI: 10.1021/acs.joc.3c01625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
This note discusses the application of a Minisci-type reaction for the direct alkylation of azoles with carboxylic acids as radical precursors. Different reaction conditions were investigated to achieve high yield of the desired products, focusing on acid strength and solvent screening. Moreover, the reactivity of imidazoles with various carboxylic acids was investigated, showing good yield for most cases. The study reveals the potential of this approach for late-stage functionalization in drug discovery.
Collapse
Affiliation(s)
- Elisabetta Rosadoni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Elena Bombonato
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Antonio Del Vecchio
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Sara Guariento
- Chemistry Research and Drug Design, Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/A, 43122 Parma, Italy
| | - Paolo Ronchi
- Chemistry Research and Drug Design, Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/A, 43122 Parma, Italy
| | - Fabio Bellina
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
5
|
Masoumi Z, Tayebi M, Tayebi M, Masoumi Lari SA, Sewwandi N, Seo B, Lim CS, Kim HG, Kyung D. Electrocatalytic Reactions for Converting CO 2 to Value-Added Products: Recent Progress and Emerging Trends. Int J Mol Sci 2023; 24:9952. [PMID: 37373100 DOI: 10.3390/ijms24129952] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Carbon dioxide (CO2) emissions are an important environmental issue that causes greenhouse and climate change effects on the earth. Nowadays, CO2 has various conversion methods to be a potential carbon resource, such as photocatalytic, electrocatalytic, and photo-electrocatalytic. CO2 conversion into value-added products has many advantages, including facile control of the reaction rate by adjusting the applied voltage and minimal environmental pollution. The development of efficient electrocatalysts and improving their viability with appropriate reactor designs is essential for the commercialization of this environmentally friendly method. In addition, microbial electrosynthesis which utilizes an electroactive bio-film electrode as a catalyst can be considered as another option to reduce CO2. This review highlights the methods which can contribute to the increase in efficiency of carbon dioxide reduction (CO2R) processes through electrode structure with the introduction of various electrolytes such as ionic liquid, sulfate, and bicarbonate electrolytes, with the control of pH and with the control of the operating pressure and temperature of the electrolyzer. It also presents the research status, a fundamental understanding of carbon dioxide reduction reaction (CO2RR) mechanisms, the development of electrochemical CO2R technologies, and challenges and opportunities for future research.
Collapse
Affiliation(s)
- Zohreh Masoumi
- Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan 44610, Republic of Korea
| | - Meysam Tayebi
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Jonggaro 45, Ulsan 44412, Republic of Korea
| | - Mahdi Tayebi
- Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran 15875-4413, Iran
| | - S Ahmad Masoumi Lari
- Department of Biology, York University, Farquharson Life Sciences Building, Ottawa Rd, Toronto, ON M3J 1P3, Canada
| | - Nethmi Sewwandi
- Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan 44610, Republic of Korea
| | - Bongkuk Seo
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Jonggaro 45, Ulsan 44412, Republic of Korea
| | - Choong-Sun Lim
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Jonggaro 45, Ulsan 44412, Republic of Korea
| | - Hyeon-Gook Kim
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Jonggaro 45, Ulsan 44412, Republic of Korea
| | - Daeseung Kyung
- Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan 44610, Republic of Korea
| |
Collapse
|
6
|
Moshnenko N, Kazantsev A, Chupakhin E, Bakulina O, Dar'in D. Synthetic Routes to Approved Drugs Containing a Spirocycle. Molecules 2023; 28:molecules28104209. [PMID: 37241950 DOI: 10.3390/molecules28104209] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The use of spirocycles in drug discovery and medicinal chemistry has been booming in the last two decades. This has clearly translated into the landscape of approved drugs. Among two dozen clinically used medicines containing a spirocycle, 50% have been approved in the 21st century. The present review focuses on the notable synthetic routes to such drugs invented in industry and academia, and is intended to serve as a useful reference source of synthetic as well as general drug information for researchers engaging in the design of new spirocyclic scaffolds for medicinal use or embarking upon analog syntheses inspired by the existing approved drugs.
Collapse
Affiliation(s)
- Nazar Moshnenko
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Alexander Kazantsev
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Evgeny Chupakhin
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Olga Bakulina
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Dmitry Dar'in
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Saint Petersburg Research Institute of Phthisiopulmonology, 191036 Saint Petersburg, Russia
| |
Collapse
|
7
|
Labiche A, Norlöff M, Feuillastre S, Taran F, Audisio D. Continuous Flow Synthesis of Non‐Symmetrical Ureas from CO
2. ASIAN J ORG CHEM 2023. [DOI: 10.1002/ajoc.202200640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Alexandre Labiche
- Université Paris Saclay, CEA Département Médicaments et Technologies pour la Santé, SCBM 91191 Gif-sur-Yvette France
| | - Maylis Norlöff
- Université Paris Saclay, CEA Département Médicaments et Technologies pour la Santé, SCBM 91191 Gif-sur-Yvette France
| | - Sophie Feuillastre
- Université Paris Saclay, CEA Département Médicaments et Technologies pour la Santé, SCBM 91191 Gif-sur-Yvette France
| | - Frederic Taran
- Université Paris Saclay, CEA Département Médicaments et Technologies pour la Santé, SCBM 91191 Gif-sur-Yvette France
| | - Davide Audisio
- Université Paris Saclay, CEA Département Médicaments et Technologies pour la Santé, SCBM 91191 Gif-sur-Yvette France
| |
Collapse
|
8
|
Pees A, Chassé M, Lindberg A, Vasdev N. Recent Developments in Carbon-11 Chemistry and Applications for First-In-Human PET Studies. Molecules 2023; 28:931. [PMID: 36770596 PMCID: PMC9920299 DOI: 10.3390/molecules28030931] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Positron emission tomography (PET) is a molecular imaging technique that makes use of radiolabelled molecules for in vivo evaluation. Carbon-11 is a frequently used radionuclide for the labelling of small molecule PET tracers and can be incorporated into organic molecules without changing their physicochemical properties. While the short half-life of carbon-11 (11C; t½ = 20.4 min) offers other advantages for imaging including multiple PET scans in the same subject on the same day, its use is limited to facilities that have an on-site cyclotron, and the radiochemical transformations are consequently more restrictive. Many researchers have embraced this challenge by discovering novel carbon-11 radiolabelling methodologies to broaden the synthetic versatility of this radionuclide. This review presents new carbon-11 building blocks and radiochemical transformations as well as PET tracers that have advanced to first-in-human studies over the past five years.
Collapse
Affiliation(s)
- Anna Pees
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Melissa Chassé
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
9
|
Lindberg A, Vasdev N. Ring-opening of non-activated aziridines with [ 11C]CO 2 via novel ionic liquids. RSC Adv 2022; 12:21417-21421. [PMID: 35975081 PMCID: PMC9345297 DOI: 10.1039/d2ra03966d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Novel ionic liquids based on DBU and DBN halide salts were developed as a catalytic system for ring-opening of non-activated aziridines with [11C]CO2. The ability of ionic liquids to activate aziridines represents a simple methodology for the synthesis of 11C-carbamates and can be extended for CO2-fixation in organic and radiochemistry. Novel ionic liquids based on DBU and DBN halide salts were developed as a catalytic system for ring-opening of non-activated aziridines with [11C]CO2.![]()
Collapse
Affiliation(s)
- Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health Toronto ON M5T 1R8 Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health Toronto ON M5T 1R8 Canada .,Department of Psychiatry, University of Toronto Toronto ON M5T 1R8 Canada
| |
Collapse
|
10
|
Babin V, Taran F, Audisio D. Late-Stage Carbon-14 Labeling and Isotope Exchange: Emerging Opportunities and Future Challenges. JACS AU 2022; 2:1234-1251. [PMID: 35783167 PMCID: PMC9241029 DOI: 10.1021/jacsau.2c00030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 05/04/2023]
Abstract
Carbon-14 (14C) is a gold standard technology routinely utilized in pharmaceutical and agrochemical industries for tracking synthetic organic molecules and providing their metabolic and safety profiles. While the state of the art has been dominated for decades by traditional multistep synthetic approaches, the recent emergence of late-stage carbon isotope labeling has provided new avenues to rapidly access carbon-14-labeled biologically relevant compounds. In particular, the development of carbon isotope exchange has represented a fundamental paradigm change, opening the way to unexplored synthetic transformations. In this Perspective, we discuss the recent developments in the field with a critical assessment of the literature. We subsequently discuss research directions and future challenges within this rapidly evolving field.
Collapse
|
11
|
Babin V, Sallustrau A, Molins M, Labiche A, Goudet A, Taran F, Audisio D. Parallel Screening with
14
C‐Labeled Carbon Dioxide: De‐risking the Staudinger‐Aza‐Wittig Reaction**. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Victor Babin
- Université Paris Saclay CEA Service de Chimie Bio-organique et Marquage DMTS 91191 Gif-sur-Yvette France
| | - Antoine Sallustrau
- Université Paris Saclay CEA Service de Chimie Bio-organique et Marquage DMTS 91191 Gif-sur-Yvette France
| | - Maxime Molins
- Université Paris Saclay CEA Service de Chimie Bio-organique et Marquage DMTS 91191 Gif-sur-Yvette France
| | - Alexandre Labiche
- Université Paris Saclay CEA Service de Chimie Bio-organique et Marquage DMTS 91191 Gif-sur-Yvette France
| | - Amélie Goudet
- Université Paris Saclay CEA Service de Chimie Bio-organique et Marquage DMTS 91191 Gif-sur-Yvette France
| | - Frédéric Taran
- Université Paris Saclay CEA Service de Chimie Bio-organique et Marquage DMTS 91191 Gif-sur-Yvette France
| | - Davide Audisio
- Université Paris Saclay CEA Service de Chimie Bio-organique et Marquage DMTS 91191 Gif-sur-Yvette France
| |
Collapse
|
12
|
Le Vaillant F, Mateos Calbet A, González-Pelayo S, Reijerse EJ, Ni S, Busch J, Cornella J. Catalytic synthesis of phenols with nitrous oxide. Nature 2022; 604:677-683. [PMID: 35478236 PMCID: PMC9046086 DOI: 10.1038/s41586-022-04516-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/04/2022] [Indexed: 02/01/2023]
Abstract
The development of catalytic chemical processes that enable the revalorization of nitrous oxide (N2O) is an attractive strategy to alleviate the environmental threat posed by its emissions1–6. Traditionally, N2O has been considered an inert molecule, intractable for organic chemists as an oxidant or O-atom transfer reagent, owing to the harsh conditions required for its activation (>150 °C, 50‒200 bar)7–11. Here we report an insertion of N2O into a Ni‒C bond under mild conditions (room temperature, 1.5–2 bar N2O), thus delivering valuable phenols and releasing benign N2. This fundamentally distinct organometallic C‒O bond-forming step differs from the current strategies based on reductive elimination and enables an alternative catalytic approach for the conversion of aryl halides to phenols. The process was rendered catalytic by means of a bipyridine-based ligands for the Ni centre. The method is robust, mild and highly selective, able to accommodate base-sensitive functionalities as well as permitting phenol synthesis from densely functionalized aryl halides. Although this protocol does not provide a solution to the mitigation of N2O emissions, it represents a reactivity blueprint for the mild revalorization of abundant N2O as an O source. A study demonstrates that nitrous oxide can act as the source of O in a catalytic conversion of aryl halides to phenols, releasing N2 as by-product.
Collapse
Affiliation(s)
| | - Ana Mateos Calbet
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | | | - Edward J Reijerse
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr, Germany
| | - Shengyang Ni
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Julia Busch
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.
| |
Collapse
|
13
|
Bow JP, Adami V, Marasco A, Gronnevik G, Rivers D, Alvaro G, Riss PJ. A Direct Fixation of CO2 for Isotopic Labelling of Hydantoins Using Iodine-Phosphine Charge Transfer Complexes. Chem Commun (Camb) 2022; 58:7546-7549. [DOI: 10.1039/d2cc01754g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report a method for the isotopic labelling of hydantoins directly from CO2 by means of trimethyl-λ5-phosphine diiodide mediated carbonyl insertion. The method is suitable for 13C-labelling of diverse...
Collapse
|
14
|
Babin V, Sallustrau A, Loreau O, Caillé F, Goudet A, Cahuzac H, Del Vecchio A, Taran F, Audisio D. A general procedure for carbon isotope labeling of linear urea derivatives with carbon dioxide. Chem Commun (Camb) 2021; 57:6680-6683. [PMID: 34132265 DOI: 10.1039/d1cc02665h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Carbon isotope labeling is a traceless technology, which allows tracking the fate of organic compounds either in the environment or in living organisms. This article reports on a general approach to label urea derivatives with all carbon isotopes, including 14C and 11C, based on a Staudinger aza-Wittig sequence. It provides access to all aliphatic/aromatic urea combinations.
Collapse
Affiliation(s)
- Victor Babin
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Antoine Sallustrau
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Olivier Loreau
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Fabien Caillé
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | - Amélie Goudet
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Héloïse Cahuzac
- Université Paris-Saclay, Département Médicaments et Technologies pour la santé (DMTS), CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Antonio Del Vecchio
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Frédéric Taran
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Davide Audisio
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| |
Collapse
|
15
|
Ismailani US, Munch M, Mair BA, Rotstein BH. Interrupted aza-Wittig reactions using iminophosphoranes to synthesize 11C-carbonyls. Chem Commun (Camb) 2021; 57:5266-5269. [PMID: 33942043 DOI: 10.1039/d1cc01016f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A direct CO2-fixation methodology couples structurally diverse iminophosphoranes with various nucleophiles to synthesize ureas, carbamates, thiocarbamates, and amides, and is amenable for 11C radiolabeling. This methodology is practical, as demonstrated by the synthesis of >35 products and isolation of the molecular imaging radiopharmaceuticals [11C]URB694 and [11C]glibenclamide.
Collapse
Affiliation(s)
- Uzair S Ismailani
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada. and University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, Canada
| | - Maxime Munch
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada. and University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, Canada
| | - Braeden A Mair
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, Canada and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Canada
| | - Benjamin H Rotstein
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada. and University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, Canada and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Canada
| |
Collapse
|
16
|
Babin V, Talbot A, Labiche A, Destro G, Del Vecchio A, Elmore CS, Taran F, Sallustrau A, Audisio D. Photochemical Strategy for Carbon Isotope Exchange with CO2. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05344] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Victor Babin
- Service de Chimie Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| | - Alex Talbot
- Service de Chimie Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| | - Alexandre Labiche
- Service de Chimie Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| | - Gianluca Destro
- Service de Chimie Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| | - Antonio Del Vecchio
- Service de Chimie Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| | - Charles S. Elmore
- Isotope Chemistry, Pharmaceutical Science, R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Frédéric Taran
- Service de Chimie Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| | - Antoine Sallustrau
- Service de Chimie Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| | - Davide Audisio
- Service de Chimie Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
17
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2020. [DOI: 10.1039/d0np90047h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as longisglucinol A from Hypericum longistylum.
Collapse
|