1
|
Dutta S, Srivatsan SG. Enzymatic Functionalization of RNA Oligonucleotides by Terminal Uridylyl Transferase Using Fluorescent and Clickable Nucleotide Analogs. Chem Asian J 2024; 19:e202400475. [PMID: 38949615 DOI: 10.1002/asia.202400475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
We report a systematic study on controlling the enzyme activity of a terminal uridylyl transferase (TUTase) called SpCID1, which provides methods to effect site-specific incorporation of a single modified nucleotide analog at the 3'-end of an RNA oligonucleotide (ON). Responsive heterocycle-modified fluorescent UTP probes that are useful in analyzing non-canonical nucleic acid structures and azide- and alkyne-modified UTP analogs that are compatible for chemoenzymatic functionalization were used as study systems. In the first strategy, we balanced the concentration of essential metal ion cofactors (Mg2+ and Mn2+ ions) to restrict the processivity of the enzyme, which gave a very good control on the incorporation of clickable nucleotide analogs. In the second approach, borate that complexes with 2' and 3' oxygen atoms of a ribose sugar was used as a reversibly binding chelator to block repeated addition of nucleotide analogs. Notably, in the presence of heterocycle-modified fluorescent UTPs, we obtained single-nucleotide incorporated RNA products in reasonable yields, while with clickable nucleotides yields were very good. Further, 3'-end azide- and alkyne-labeled RNA ONs were post-enzymatically functionalized by CuAAC and SPAAC reactions with fluorescent probes. These strategies broaden the scope of TUTase in site-specifically installing modifications of different types onto RNA for various applications.
Collapse
Affiliation(s)
- Swagata Dutta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
2
|
Klimek R, Kaiser C, Murmann NS, Kaltenschnee N, Spanò T, Wachtveitl J, Schuman EM, Heckel A. RNA Probes for Visualization of Sarcin/ricin Loop Depurination without Background Fluorescence. Chem Asian J 2022; 17:e202201077. [PMID: 36321802 PMCID: PMC10098603 DOI: 10.1002/asia.202201077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Protein synthesis via ribosomes is a fundamental process in all known living organisms. However, it can be completely stalled by removing a single nucleobase (depurination) at the sarcin/ricin loop of the ribosomal RNA. In this work, we describe the preparation and optimization process of a fluorescent probe that can be used to visualize depurination. Starting from a fluorescent thiophene nucleobase analog, various RNA probes that fluoresce exclusively in the presence of a depurinated sarcin/ricin-loop RNA were designed and characterized. The main challenge in this process was to obtain a high fluorescence signal in the hybridized state with an abasic RNA strand, while keeping the background fluorescence low. With our new RNA probes, the fluorescence intensity and lifetime can be used for efficient monitoring of depurinated RNA.
Collapse
Affiliation(s)
- Robin Klimek
- Institute of Organic Chemistry and Chemical BiologyGoethe-University FrankfurtMax-von-Laue Str. 7–960438FrankfurtGermany
| | - Christoph Kaiser
- Institute of Physical and Theoretical ChemistryGoethe-University FrankfurtMax-von-Laue Str. 7–960438FrankfurtGermany
| | - Nina S. Murmann
- Institute of Organic Chemistry and Chemical BiologyGoethe-University FrankfurtMax-von-Laue Str. 7–960438FrankfurtGermany
| | - Nina Kaltenschnee
- Institute of Organic Chemistry and Chemical BiologyGoethe-University FrankfurtMax-von-Laue Str. 7–960438FrankfurtGermany
| | - Teresa Spanò
- Teresa SpanòMax Planck Institute for Brain ResearchMax-von-Laue Str. 460438FrankfurtGermany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical ChemistryGoethe-University FrankfurtMax-von-Laue Str. 7–960438FrankfurtGermany
| | - Erin M. Schuman
- Teresa SpanòMax Planck Institute for Brain ResearchMax-von-Laue Str. 460438FrankfurtGermany
| | - Alexander Heckel
- Institute of Organic Chemistry and Chemical BiologyGoethe-University FrankfurtMax-von-Laue Str. 7–960438FrankfurtGermany
| |
Collapse
|
3
|
Gupta M, Levine SR, Spitale RC. Probing Nascent RNA with Metabolic Incorporation of Modified Nucleosides. Acc Chem Res 2022; 55:2647-2659. [PMID: 36073807 DOI: 10.1021/acs.accounts.2c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The discovery of previously unknown functional roles of RNA in biological systems has led to increased interest in revealing novel RNA molecules as therapeutic targets and the development of tools to better understand the role of RNA in cells. RNA metabolic labeling broadens the scope of studying RNA by incorporating of unnatural nucleobases and nucleosides with bioorthogonal handles that can be utilized for chemical modification of newly synthesized cellular RNA. Such labeling of RNA provides access to applications including measurement of the rates of synthesis and decay of RNA, cellular imaging for RNA localization, and selective enrichment of nascent RNA from the total RNA pool. Several unnatural nucleosides and nucleobases have been shown to be incorporated into RNA by endogenous RNA synthesis machinery of the cells. RNA metabolic labeling can also be performed in a cell-specific manner, where only cells expressing an essential enzyme incorporate the unnatural nucleobase into their RNA. Although several discoveries have been enabled by the current RNA metabolic labeling methods, some key challenges still exist: (i) toxicity of unnatural analogues, (ii) lack of RNA-compatible conjugation chemistries, and (iii) background incorporation of modified analogues in cell-specific RNA metabolic labeling. In this Account, we showcase work done in our laboratory to overcome these challenges faced by RNA metabolic labeling.To begin, we discuss the cellular pathways that have been utilized to perform RNA metabolic labeling and study the interaction between nucleosides and nucleoside kinases. Then we discuss the use of vinyl nucleosides for metabolic labeling and demonstrate the low toxicity of 5-vinyluridine (5-VUrd) compared to other widely used nucleosides. Next, we discuss cell-specific RNA metabolic labeling with unnatural nucleobases, which requires the expression of a specific phosphoribosyl transferase (PRT) enzyme for incorporation of the nucleobase into RNA. In the course of this work, we discovered the enzyme uridine monophosphate synthase (UMPS), which is responsible for nonspecific labeling with modified uracil nucleobases. We were able to overcome this background labeling by discovering a mutant uracil PRT (UPRT) that demonstrates highly specific RNA metabolic labeling with 5-vinyluracil (5-VU). Furthermore, we discuss the optimization of inverse-electron-demand Diels-Alder (IEDDA) reactions for performing chemical modification of vinyl nucleosides to achieve covalent conjugation of RNA without transcript degradation. Finally, we highlight our latest endeavor: the development of mutually orthogonal chemical reactions for selective labeling of 5-VUrd and 2-vinyladenosine (2-VAdo), which allows for potential use of multiple vinyl nucleosides for simultaneous investigation of multiple cellular processes involving RNA. We hope that our methods and discoveries encourage scientists studying biological systems to include RNA metabolic labeling in their toolkit for studying RNA and its role in biological systems.
Collapse
|
4
|
Ghosh P, Kropp HM, Betz K, Ludmann S, Diederichs K, Marx A, Srivatsan SG. Microenvironment-Sensitive Fluorescent Nucleotide Probes from Benzofuran, Benzothiophene, and Selenophene as Substrates for DNA Polymerases. J Am Chem Soc 2022; 144:10556-10569. [PMID: 35666775 DOI: 10.1021/jacs.2c03454] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA polymerases can process a wide variety of structurally diverse nucleotide substrates, but the molecular basis by which the analogs are processed is not completely understood. Here, we demonstrate the utility of environment-sensitive heterocycle-modified fluorescent nucleotide substrates in probing the incorporation mechanism of DNA polymerases in real time and at the atomic level. The nucleotide analogs containing a selenophene, benzofuran, or benzothiophene moiety at the C5 position of 2'-deoxyuridine are incorporated into oligonucleotides (ONs) with varying efficiency, which depends on the size of the heterocycle modification and the DNA polymerase sequence family used. KlenTaq (A family DNA polymerase) is sensitive to the size of the modification as it incorporates only one heterobicycle-modified nucleotide into the growing polymer, whereas it efficiently incorporates the selenophene-modified nucleotide analog at multiple positions. Notably, in the single nucleotide incorporation assay, irrespective of the heterocycle size, it exclusively adds a single nucleotide at the 3'-end of a primer, which enabled devising a simple two-step site-specific ON labeling technique. KOD and Vent(exo-) DNA polymerases, belonging to the B family, tolerate all the three modified nucleotides and produce ONs with multiple labels. Importantly, the benzofuran-modified nucleotide (BFdUTP) serves as an excellent reporter by providing real-time fluorescence readouts to monitor enzyme activity and estimate the binding events in the catalytic cycle. Further, a direct comparison of the incorporation profiles, fluorescence data, and crystal structure of a ternary complex of KlenTaq DNA polymerase with BFdUTP poised for catalysis provides a detailed understanding of the mechanism of incorporation of heterocycle-modified nucleotides.
Collapse
Affiliation(s)
- Pulak Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
| | - Heike M Kropp
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Karin Betz
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Samra Ludmann
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Kay Diederichs
- Department of Biology and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
5
|
Manna S, Sontakke VA, Srivatsan SG. Incorporation and Utility of a Responsive Ribonucleoside Analogue in Probing the Conformation of a Viral RNA Motif by Fluorescence and 19 F NMR Spectroscopy. Chembiochem 2021; 23:e202100601. [PMID: 34821449 DOI: 10.1002/cbic.202100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/24/2021] [Indexed: 11/09/2022]
Abstract
Development of versatile probes that can enable the study of different conformations and recognition properties of therapeutic nucleic acid motifs by complementing biophysical techniques can greatly aid nucleic acid analysis and therapy. Here, we report the design, synthesis and incorporation of an environment-sensitive ribonucleoside analogue, which serves as a two-channel biophysical platform to investigate RNA structure and recognition by fluorescence and 19 F NMR spectroscopy techniques. The nucleoside analogue is based on a 5-fluorobenzofuran-uracil core and its fluorescence and 19 F NMR chemical shifts are highly sensitive to changes in solvent polarity and viscosity. Notably, the modified ribonucleotide and phosphoramidite substrates can be efficiently incorporated into RNA oligonucleotides (ONs) by in vitro transcription and standard solid-phase ON synthesis protocol, respectively. Fluorescence and 19 F readouts of the nucleoside incorporated into model RNA ONs are sensitive to the neighbouring base environment. The responsiveness of the probe was aptly utilized in detecting and quantifying the metal ion-induced conformational change in an internal ribosome entry site RNA motif of hepatitis C virus, which is an important therapeutic target. Taken together, our probe is a good addition to the nucleic acid analysis toolbox with the advantage that it can be used to study nucleic acid conformation and recognition simultaneously by two biophysical techniques.
Collapse
Affiliation(s)
- Sudeshna Manna
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India
| | - Vyankat A Sontakke
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
6
|
Mattay J, Dittmar M, Rentmeister A. Chemoenzymatic strategies for RNA modification and labeling. Curr Opin Chem Biol 2021; 63:46-56. [PMID: 33690011 DOI: 10.1016/j.cbpa.2021.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/20/2021] [Accepted: 01/31/2021] [Indexed: 12/17/2022]
Abstract
RNA is a central molecule in numerous cellular processes, including transcription, translation, and regulation of gene expression. To reveal the numerous facets of RNA function and metabolism in cells, labeling has become indispensable and enables the visualization, isolation, characterization, and even quantification of certain RNA species. In this review, we will cover chemoenzymatic approaches for covalent RNA labeling. These approaches rely on an enzymatic step to introduce an RNA modification before conjugation with a label for detection or isolation. We start with in vitro manipulation of RNA, sorted according to the enzymatic reaction exploited. Then, metabolic approaches for co- and post-transcriptional RNA labeling will be treated. We focus on recent advances in the field and highlight the most relevant applications for cellular imaging, RNA isolation and sequencing.
Collapse
Affiliation(s)
- Johanna Mattay
- Department of Chemistry, Institute of Biochemistry, University of Münster, Correnstr. 36, 48149, Münster, Germany
| | - Maria Dittmar
- Department of Chemistry, Institute of Biochemistry, University of Münster, Correnstr. 36, 48149, Münster, Germany
| | - Andrea Rentmeister
- Department of Chemistry, Institute of Biochemistry, University of Münster, Correnstr. 36, 48149, Münster, Germany; Cells in Motion Interfaculty Center, University of Münster, 48149, Münster, Germany.
| |
Collapse
|