1
|
Jing B, Zhu C, Song H, Li J, Cui C. Ytterbium(II) Complex-Catalyzed Selective Single and Double Hydrophosphination of 1,3-Enynes. Chemistry 2024; 30:e202401234. [PMID: 38712548 DOI: 10.1002/chem.202401234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
1,3-Enynes with conjugated alkene and alkyne moieties are attractive building blocks in synthetic chemistry. However, neither 4,1-hydrophosphination nor dihydrophosphination of 1,3-enynes has been reported. In this paper, the divalent ytterbium and calcium amide complexes supported by silaimine-functionalized cyclopentadienyl ligands (C5Me4-Si(L)=NR) were developed, which successfully catalyzed the efficient single and double hydrophosphination of 1,3-enynes with diarylphosphines. The hydrophosphination reactions selectively produced homoallenyl phosphines and (E)-propenylene diphosphines, respectively. This work demonstrated the potential of hemilabile silaimine-Cp ligands in the supporting the efficient and selective rare- and alkaline-earth catalysts.
Collapse
Affiliation(s)
- Bing Jing
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of Organic Matters, Nankai University, Tianjin, 300071, China
| | - Cheng Zhu
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of Organic Matters, Nankai University, Tianjin, 300071, China
| | - Haibin Song
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of Organic Matters, Nankai University, Tianjin, 300071, China
| | - Jianfeng Li
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of Organic Matters, Nankai University, Tianjin, 300071, China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of Organic Matters, Nankai University, Tianjin, 300071, China
| |
Collapse
|
2
|
Rina YA, Schmidt JAR. Alpha-metalated N, N-dimethylbenzylamine rare-earth metal complexes and their catalytic applications. Dalton Trans 2024. [PMID: 38757291 DOI: 10.1039/d4dt00826j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
This perspective summarizes our group's extensive research in the realm of organometallic lanthanide complexes, while also placing the catalytic reactions supported by these species within the context of known lanthanide catalysis worldwide, with a specific focus on phosphorus-based catalytic reactions such as intermolecular hydrophosphination and hydrophosphinylation. α-Metalated N,N-dimethylbenzylamine ligands have been utilized to generate homoleptic lanthanide complexes, which have subsequently proven to be highly active lanthanum-based catalysts. The main goal of our research program has been to enhance the catalytic efficiency of lanthanum-based complexes, which began with initial successes in the stoichiometric synthesis of organometallic lanthanide complexes and utilization of these species in catalytic hydrophosphination reactions. Not only have these species supported traditional lanthanide catalysis, such as the hydrophosphination of heterocumulenes like carbodiimides, isocyanates, and isothiocyanates, but they have also been effective for a plethora of catalytic reactions tested thus far, including the hydrophosphinylation and hydrophosphorylation of nitriles, hydrophosphination and hydrophosphinylation of alkynes and alkenes, and the heterodehydrocoupling of silanes and amines. Each of these catalytic transformations is meritorious in its own right, offering new synthetic routes to generate organic scaffolds with enhanced functionality while concurrently minimizing both waste generation and energy consumption. Objectives: We aim for the research summary presented herein to inspire and encourage other researchers to investigate f-element based stoichiometric and catalytic reactions. Our efforts in this field began with the recognition that potassium salts of benzyldimethylamine preferred deprotonation at the α-position, rather than the ortho-position, and we wondered if this regiochemistry would be retained in the formation of lanthanide complexes. The pursuit of this simple idea led first to a series of structurally fascinating homoleptic organometallic lanthanide complexes with surprisingly good stability. Fundamental studies of the protonolysis chemistry of these complexes ultimately revealed highly versatile lanthanide-based precatalysts that have propelled a catalytic investigation spanning more than a decade. We anticipate that this summative perspective will animate the synthetic as well as biological communities to consider La(DMBA)3-based catalytic methods in the synthesis of functionalized organic scaffolds as an atom-economic, convenient, and efficient methodology. Ultimately, we envision our work making a positive impact on the advancement of novel chemical transformations and contributing to progress in various fields of science and technology.
Collapse
Affiliation(s)
- Yesmin Akter Rina
- Department of Chemistry & Biochemistry, School of Green Chemistry and Engineering, College of Natural Sciences and Mathematics, The University of Toledo, 2801 W. Bancroft St. MS 602, Toledo, Ohio 43606-3390, USA.
| | - Joseph A R Schmidt
- Department of Chemistry & Biochemistry, School of Green Chemistry and Engineering, College of Natural Sciences and Mathematics, The University of Toledo, 2801 W. Bancroft St. MS 602, Toledo, Ohio 43606-3390, USA.
| |
Collapse
|
3
|
Belli RG, Muir V, Dyck NB, Pantazis DA, Sousa TPA, Slusar CR, Parkin HC, Rosenberg L. Exploring Electrophilic Hydrophosphination via Metal Phosphenium Intermediates. Chemistry 2024; 30:e202302924. [PMID: 38242847 DOI: 10.1002/chem.202302924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Two Mo(0) phosphenium complexes containing ancillary secondary phosphine ligands have been investigated with respect to their ability to participate in electrophilic addition at unsaturated substrates and subsequent P-H hydride transfer to "quench" the resulting carbocations. These studies provide stoichiometric "proof of concept" for a proposed new metal-catalyzed electrophilic hydrophosphination mechanism. The more strongly Lewis acidic phosphenium complex, [Mo(CO)4(PR2H)(PR2)]+ (R=Ph, Tolp), cleanly hydrophosphinates 1,1-diphenylethylene, benzophenone, and ethylene, while other substrates react rapidly to give products resulting from competing electrophilic processes. A less Lewis acidic complex, [Mo(CO)3(PR2H)2(PR2)]+, generally reacts more slowly but participates in clean hydrophosphination of a wider range of unsaturated substrates, including styrene, indene, 1-hexene, and cyclohexanone, in addition to 1,1-diphenylethylene, benzophenone, and ethylene. Mechanistic studies are described, including stoichiometric control reactions and computational and kinetic analyses, which probe whether the observed P-H addition actually does occur by the proposed electrophilic mechanism, and whether hydridic P-H transfer in this system is intra- or intermolecular. Preliminary reactivity studies indicate challenges that must be addressed to exploit these promising results in catalysis.
Collapse
Affiliation(s)
- Roman G Belli
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia, Canada, V8W 2Y2
| | - Vanessa Muir
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia, Canada, V8W 2Y2
| | - Nicholas B Dyck
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia, Canada, V8W 2Y2
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Tânia P A Sousa
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Carly R Slusar
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia, Canada, V8W 2Y2
| | - Hayley C Parkin
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia, Canada, V8W 2Y2
| | - Lisa Rosenberg
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia, Canada, V8W 2Y2
| |
Collapse
|
4
|
Hay MA, Gable RW, Boskovic C. Modulating the electronic properties of divalent lanthanoid complexes with subtle ligand tuning. Dalton Trans 2023; 52:3315-3324. [PMID: 36806851 DOI: 10.1039/d2dt03782c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Five new compounds of formula [LnII(Mentpa)2](BPh4)2 (Ln = Eu, n = 0 (1-Eu), n = 2 (2-Eu) and n = 3 (3-Eu); Ln = Yb, n = 0 (1-Yb) and n = 2 (2-Yb); tpa = tris(2-pyridylmethyl)amine, n = 0-3 corresponds to successive methylation of the 6-position of the pyridine rings of Mentpa) have been synthesized and their structural, photophysical and electrochemical properties investigated. The LnII ions in the five complexes possess cubic coordination geometry and exhibit only small structural differences, due to the lengthening of the Ln-N bonds to accommodate the additional steric bulk associated with increasing methylation of the Mentpa ligands. Photophysical studies indicate moderate shifts in absorbance, emission and excitation bands associated with the 4f7 ↔ 4f65d1 (EuII) and 4f14 ↔ 4f135d1 (YbII) transitions, while electrochemistry reveals modulation of the redox potential of the LnII to LnIII oxidation. There is a strong correlation between Ln-N bond lengths and both the photophysical transition energies and metal redox-potentials, revealing how subtle ligand changes and ligand field effects can be used to modulate the electronic properties of complexes of divalent lanthanoid ions. Utilization of these insights may ultimately afford design and property tuning strategies for future functional molecular complexes based on divalent lanthanoid metals.
Collapse
Affiliation(s)
- Moya A Hay
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Robert W Gable
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Colette Boskovic
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
5
|
Lapshin IV, Cherkasov AV, Trifonov AA. Heteroleptic Bis(amido) Ca(II) and Yb(II) NHC Pincer Complexes: Synthesis, Characterization, and Catalytic Activity in Intermolecular Hydrofunctionalization of C═C Bonds. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Ivan V. Lapshin
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina Str. 49, 603950 Nizhny Novgorod, GSP-445, Russia
| | - Anton V. Cherkasov
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina Str. 49, 603950 Nizhny Novgorod, GSP-445, Russia
| | - Alexander A. Trifonov
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina Str. 49, 603950 Nizhny Novgorod, GSP-445, Russia
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova Str. 28, 119991 Moscow, GSP-1, Russia
| |
Collapse
|
6
|
Yan J, Zhou S, Wei Y, Liu Q, Wang D, Zhang L, Yuan Q, Wang S. Ether/Thioether-Functionalized Dianionic α-Iminopyridine Rare-Earth Metal Amido Complexes and Their Catalytic Activity toward Hydrophosphination of Alkenes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jiayu Yan
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Shuangliu Zhou
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Yukun Wei
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Qian Liu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Donghan Wang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Lijun Zhang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Qingbing Yuan
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Shaowu Wang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
- Anhui Laboratory of Functional Complexes for Materials Chemistry and Application, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China
| |
Collapse
|
7
|
Synthesis of rare-earth metal bisalkyl complexes supported by [1-(2-N-morpholinoethylene)-3-(4,4-dimethyl-2-oxazolinyl)] indolyl ligand and their application in the intermolecular hydrophosphination of aryl alkenes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Synthesis, structure, and properties of the Sc chloride complex coordinated by the tridentate bis(phenolate)-tethered NHC ligand. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3412-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Belli RG, Yang J, Bahena EN, McDonald R, Rosenberg L. Mechanism and Catalyst Design in Ru-Catalyzed Alkene Hydrophosphination. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Roman G. Belli
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Jin Yang
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Erick Nuñez Bahena
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Robert McDonald
- X-ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Lisa Rosenberg
- Department of Chemistry, University of Victoria, P.O. Box 1700, STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| |
Collapse
|
10
|
Carpio-Granillo M, Zuno-Cruz FJ, Sánchez-Cabrera G, Rojo-Gómez EG, González-Ábrego DO, Coronel-Olivares C, Caviedes MF, Andrade-López N, Rosales-Hoz MJ, Leyva MA. p–nitrobenzyl-substituted N–heterocyclic carbene in Silver(I) and Gold(I) complexes and their antibacterial activities. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Primary Phosphines and Phosphine Oxides with a Stereogenic Carbon Center Adjacent to the Phosphorus Atom: Synthesis and Anti-Markovnikov Radical Addition to Alkenes. ORGANICS 2021. [DOI: 10.3390/org2040023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Organophosphorus compounds with stereogenic phosphorus and carbon atoms have received increasing attention. In this regards, primary phosphines with a stereogenic carbon atom adjacent to the phosphorus atom were synthesized by the reduction in phosphonates and phosphonoselenoates with a binaphthyl group. Their oxidized products, i.e., phosphine oxides with a stereogenic tetrasubstituted carbon atom, were found to undergo BEt3-mediated radical addition to cyclohexene to give P-stereogenic secondary phosphine oxides with a diastereoselectivity of 91:9. The products were characterized by ordinary analytical methods, such as Fourier transform infrared spectroscopy; 1H, 13C, and 31P NMR spectroscopies; and mass spectroscopy. Computational studies on the phosphorus-centered radical species and the obtained product implied that the thermodynamically stable radical and the adduct may be formed as a major diastereomer. The radical addition to a range of alkenes took place in an anti-Markovnikov fashion to give P-stereogenic secondary phosphine oxides. A variety of functional groups in the alkenes were tolerated under the reaction conditions to afford secondary phosphine oxides in moderate yields. Primary phosphines with an alkenyl group, which were generated in situ, underwent intramolecular cyclization to give five- and six-membered cyclic phosphines in high yields after protection by BH3.
Collapse
|
12
|
Pan Z, Zhang J, Guo L, Yang H, Li J, Cui C. Cyclic (Alkyl)(amino)carbene Lanthanide Amides: Synthesis, Structure, and Catalytic Selective Hydrosilylation of Alkenes. Inorg Chem 2021; 60:12696-12702. [PMID: 34424672 DOI: 10.1021/acs.inorgchem.1c01780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The first examples of cyclic (alkyl)(amino)carbene (CAAC) lanthanide (Ln) complexes were synthesized from the reaction of CAAC with Yb[N(SiMe3)2]2 and Eu[N(SiMe3)2]2(THF)2 (THF = tetrahydrofuran). The structures of (CAAC)Yb[N(SiMe3)2]2 (2) and (CAAC)Eu[N(SiMe3)2]2(THF) (3) were determined by X-ray diffraction analysis. Density functional theory calculations of 2 revealed the predominantly ionic bond between the Ln ion and CAAC. Complex 3 enabled catalytic hydrosilylation of aryl- and silylalkenes with primary and secondary silanes in high yields and Markovnikov selectivity.
Collapse
Affiliation(s)
- Zexiong Pan
- State Key Laboratory of Elemento-organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jianying Zhang
- State Key Laboratory of Elemento-organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lulu Guo
- State Key Laboratory of Elemento-organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao Yang
- State Key Laboratory of Elemento-organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jianfeng Li
- State Key Laboratory of Elemento-organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chunming Cui
- State Key Laboratory of Elemento-organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
13
|
Selikhov AN, Lapshin IV, Cherkasov AV, Fukin GK, Trifonov AA. Sandwich and Half-Sandwich Ln(II) (Ln = Sm, Yb) Complexes with Bulky Fluorenyl Ligands. Competitive Abstraction of H or SiMe3 from 2,7-tBu2-9-SiMe3-Fluorene by an Amido Anion. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alexander N. Selikhov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, GSP-445, 603950 Nizhny Novgorod, Russia
- Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova Street 28, 119334 Moscow, Russia
| | - Ivan V. Lapshin
- Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, GSP-445, 603950 Nizhny Novgorod, Russia
| | - Anton V. Cherkasov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, GSP-445, 603950 Nizhny Novgorod, Russia
| | - Georgy K. Fukin
- Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, GSP-445, 603950 Nizhny Novgorod, Russia
| | - Alexander A. Trifonov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, GSP-445, 603950 Nizhny Novgorod, Russia
- Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova Street 28, 119334 Moscow, Russia
| |
Collapse
|
14
|
Tarlton ML, Yang Y, Kelley SP, Maron L, Walensky JR. Formation and Reactivity with tBuCN of a Thorium Phosphinidiide through a Combined Experimental and Computational Analysis. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Michael L. Tarlton
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Yan Yang
- Université de Toulouse and CNRS, INSA, UPS, CNRS, UMR, UMR 5215, LPCNO, Toulouse 31077, France
| | - Steven P. Kelley
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Laurent Maron
- Université de Toulouse and CNRS, INSA, UPS, CNRS, UMR, UMR 5215, LPCNO, Toulouse 31077, France
| | - Justin R. Walensky
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
15
|
Banerjee I, Panda TK. Recent advances in the carbon-phosphorus (C-P) bond formation from unsaturated compounds by s- and p-block metals. Org Biomol Chem 2021; 19:6571-6587. [PMID: 34231617 DOI: 10.1039/d1ob01019k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Researchers around the globe have witnessed several breakthroughs in s- and p-block metal chemistry. Over the past few years, several applications in catalysis associated with these main group metals have been established, and owing to their abundance and low cost and they have proved to be essential alternatives to transition metal catalysts. In this review, we present a detailed discussion on the catalytic addition of P-H bonds from various phosphine reagents to multiple bonds of unsaturated substrates for the synthesis of organophosphorus compounds with C-P bonds promoted by various s- and p-block metal catalysts, as published in the last decade.
Collapse
Affiliation(s)
- Indrani Banerjee
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi - 502 285, Sangareddy, Telangana, India. and School of Basic and Applied Sciences, Raffles University, Neemrana - 301705, Alwar, Rajasthan, India
| | - Tarun K Panda
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi - 502 285, Sangareddy, Telangana, India.
| |
Collapse
|
16
|
Pan Z, Gao D, Zhang C, Guo L, Li J, Cui C. Synthesis and Reactivity of N-heterocyclic Carbene Stabilized Lanthanide(II) Bis(amido) Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00207] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zexiong Pan
- State Key Laboratory of Elemento-organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Dongjing Gao
- State Key Laboratory of Elemento-organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Chunqi Zhang
- State Key Laboratory of Elemento-organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Lulu Guo
- State Key Laboratory of Elemento-organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Jianfeng Li
- State Key Laboratory of Elemento-organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Chunming Cui
- State Key Laboratory of Elemento-organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
17
|
Kulakova AN, Nigoghossian K, Félix G, Khrustalev VN, Shubina ES, Long J, Guari Y, Carlos LD, Bilyachenko AN, Larionova J. New Magnetic and Luminescent Dy(III) and Dy(III)/Y(III) Based Tetranuclear Silsesquioxane Cages. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Alena N. Kulakova
- Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilova str., 28 Moscow 119991 Russia
- Peoples' Friendship University of Russia RUDN University) Miklukho-Maklay Str., 6 117198 Moscow Russia
- ICGM Univ. Montpellier CNRS, ENSCM Montpellier France
| | | | - Gautier Félix
- ICGM Univ. Montpellier CNRS, ENSCM Montpellier France
| | - Victor N. Khrustalev
- Peoples' Friendship University of Russia RUDN University) Miklukho-Maklay Str., 6 117198 Moscow Russia
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| | - Elena S. Shubina
- Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilova str., 28 Moscow 119991 Russia
| | - Jérôme Long
- ICGM Univ. Montpellier CNRS, ENSCM Montpellier France
| | - Yannick Guari
- ICGM Univ. Montpellier CNRS, ENSCM Montpellier France
| | - Luis D. Carlos
- Phantom-g Physics Department and CICECO – Aveiro Institute of Materials University of Aveiro 3810-193 Aveiro Portugal
| | - Alexey N. Bilyachenko
- Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilova str., 28 Moscow 119991 Russia
- Peoples' Friendship University of Russia RUDN University) Miklukho-Maklay Str., 6 117198 Moscow Russia
| | | |
Collapse
|
18
|
Varela-Izquierdo V, Geer AM, Navarro J, López JA, Ciriano MA, Tejel C. Rhodium Complexes in P-C Bond Formation: Key Role of a Hydrido Ligand. J Am Chem Soc 2021; 143:349-358. [PMID: 33356217 DOI: 10.1021/jacs.0c11010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Olefin hydrophosphanation is an attractive route for the atom-economical synthesis of functionalized phosphanes. This reaction involves the formation of P-C and H-C bonds. Thus, complexes that contain both hydrido and phosphanido functionalities are of great interest for the development of effective and fast catalysts. Herein, we showcase the excellent activity of one of them, [Rh(Tp)H(PMe3)(PPh2)] (1), in the hydrophosphanation of a wide range of olefins. In addition to the required nucleophilicity of the phosphanido moiety to accomplish the P-C bond formation, the key role of the hydride ligand in 1 has been disclosed by both experimental results and DFT calculations. An additional Rh-H···C stabilization in some intermediates or transition states favors the hydrogen transfer reaction from rhodium to carbon to form the H-C bond. Further support for our proposal arises from the poor activity exhibited by the related chloride complex [Rh(Tp)Cl(PMe3)(PPh2)] as well as from stoichiometric and kinetic studies.
Collapse
Affiliation(s)
- Víctor Varela-Izquierdo
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Ana M Geer
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Janeth Navarro
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - José A López
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Miguel A Ciriano
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Cristina Tejel
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
19
|
Dannenberg SG, Waterman R. A bench-stable copper photocatalyst for the rapid hydrophosphination of activated and unactivated alkenes. Chem Commun (Camb) 2020; 56:14219-14222. [PMID: 33112298 DOI: 10.1039/d0cc06570f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cu(acac)2 (1) is a highly active catalyst for the hydrophosphination of alkenes. Photocatalytic conditions are critical, and provide high conversions with unactivated substrates that have never before been reported with an air-stable catalyst or at ambient temperature. The commercial availability, ease of use, and broad substrate scope of compound 1 make hydrophosphination more available to synthetic chemists.
Collapse
Affiliation(s)
- Steven G Dannenberg
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405-0125, USA.
| | | |
Collapse
|