1
|
Kitcatt D, Pogacar E, Mi L, Nicolle S, Lee AL. Light-Mediated Direct Decarboxylative Giese Aroylations without a Photocatalyst. J Org Chem 2024; 89:16055-16059. [PMID: 39438444 PMCID: PMC11536358 DOI: 10.1021/acs.joc.4c02163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Previous light-mediated approaches to the direct decarboxylative Giese aroylation reaction have mainly relied on the use of a photocatalyst and a reductive quenching pathway. By exploiting a mechanistically distinct oxidative protocol, we have successfully developed a photocatalyst-free, light-mediated direct Giese aroylation methodology.
Collapse
Affiliation(s)
- David
M. Kitcatt
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
| | - Eva Pogacar
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
| | - Le Mi
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
| | - Simon Nicolle
- GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Ai-Lan Lee
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
| |
Collapse
|
2
|
Sun H, Zhang Q, Tang J, Chen X, Jiang G. Visible-Light Photoredox-Catalyzed Direct Decarboxylative Functionalization of α-Keto Acids. J Org Chem 2024; 89:15225-15233. [PMID: 39377151 DOI: 10.1021/acs.joc.4c02011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
A novel and environmentally friendly photocatalytic strategy is presented for generating acyl radicals from benzoylformic acids, which are subsequently trapped by various sulfone-based SOMOphiles. This strategy provides a robust toolkit to access a variety of synthetically important functionalized aryl-ketone derivatives, which efficiently and directly construct acyl-S, acyl-Se, acyl-C, and acyl-N bonds. The broad substrate scope, excellent functional group compatibility, and mild reaction conditions make this protocol practical and attractive.
Collapse
Affiliation(s)
- Huangbin Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Qianfan Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jie Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiaowen Chen
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen 518055, P. R. China
| | - Guofang Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
3
|
Sun H, Bin X, Zhang Q, Chen X, Tang J, Jiang G. Photochemical radical decarboxylative disulfuration of α-keto acids and oxamic acids. Chem Commun (Camb) 2024; 60:8107-8110. [PMID: 38993176 DOI: 10.1039/d4cc01914h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
A visible-light-induced directed decarboxylative disulfuration of α-keto acids and oxamic acids was developed. As a result, a series of versatile mono acyl disulfide derivatives was synthesized under mild and sustainable reaction conditions. This protocol has a broad substrate scope, good functional-group tolerance, and excellent synthetic applications.
Collapse
Affiliation(s)
- Huangbin Sun
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China.
| | - Xueting Bin
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China.
| | - Qianfang Zhang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China.
| | - Xiaowen Chen
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen 518055, P. R. China.
| | - Jie Tang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China.
| | - Guofang Jiang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China.
| |
Collapse
|
4
|
Okamoto K, Ueno T, Hato Y, Kawaguchi Y, Hakogi T, Majima S, Ohara T, Hagihara M, Tanimoto N, Tsuritani T. Stereoselective Synthesis of Baloxavir Marboxil Using Diastereoselective Cyclization and Photoredox Decarboxylation of l-Serine. J Org Chem 2024; 89:9937-9948. [PMID: 38985331 DOI: 10.1021/acs.joc.4c00799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Baloxavir marboxil (1; BXM) is a potent drug used for treating influenza infections. The current synthetic route to BXM (1) is based on optical resolution; however, this method results in the loss of nearly 50% of the material. This study aimed to describe an efficient and simpler method for the synthesis of BXM. We achieved a stereoselective synthesis of BXM (1). The tricyclic triazinanone core possessing a chiral center was prepared via diastereoselective cyclization utilizing the readily available amino acid l-serine. The carboxyl moiety derived from l-serine was removed via photoredox decarboxylation under mild conditions to furnish the chiral tricyclic triazinanone core ((R)-14). The synthetic route demonstrated herein provides an efficient and atomically economical method for preparing this potent anti-influenza agent.
Collapse
Affiliation(s)
- Kazuya Okamoto
- Technology Development Division, Shionogi Pharma & Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Tatsuhiko Ueno
- Drug Discovery Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-Chome, Toyonaka, Osaka 561-0825, Japan
| | - Yoshio Hato
- Drug Discovery Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-Chome, Toyonaka, Osaka 561-0825, Japan
| | - Yasunori Kawaguchi
- Pharmaceutical Technology Research Division, Shionogi & Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Toshikazu Hakogi
- Technology Development Division, Shionogi Pharma & Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Shohei Majima
- Technology Development Division, Shionogi Pharma & Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Takafumi Ohara
- Pharmaceutical Technology Research Division, Shionogi & Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Motoyuki Hagihara
- Pharmaceutical Technology Research Division, Shionogi & Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Norihiko Tanimoto
- Pharmaceutical Technology Research Division, Shionogi & Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Takayuki Tsuritani
- Pharmaceutical Technology Research Division, Shionogi & Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| |
Collapse
|
5
|
Li JL, Li HY, Zhang SS, Shen S, Yang XL, Niu X. Photoredox/Cobalt-Catalyzed Cascade Oxidative Synthesis of 2,5-Disubstituted 1,3,4-Oxadiazoles under Oxidant-Free Conditions. J Org Chem 2023; 88:14874-14886. [PMID: 37862710 DOI: 10.1021/acs.joc.3c01078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
An efficient oxidant-free, photoredox-mediated cascade cyclization strategy for the synthesis of 1,3,4-oxadiazoles by using an organo acridinium photocatalyst and a cobaloxime catalyst has been developed. Various acylhydrazones have been transformed into the corresponding 1,3,4-oxadiazole products in up to 96% yield, and H2 is the only byproduct. Mechanistic experiments and density functional theory (DFT) calculation studies indicate carbon-centered radicals rather than oxygen-centered radicals as π-radicals produced by the oxidation of photoexcited Mes-Acr+* along with deprotonation, which is responsible for this transformation. The practical utility of this method is highlighted by the one-pot gram-scale synthesis starting directly from commercially available aldehydes and acylhydrazides.
Collapse
Affiliation(s)
- Jun-Li Li
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Hao-Yuan Li
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Shan-Shan Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Shigang Shen
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Xiu-Long Yang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Xiaoying Niu
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
- Postdoctoral Research Station of Chemistry Affiliated College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
6
|
Mondal S, Chatterjee N, Maity S. Recent Developments on Photochemical Synthesis of 1,n-Dicarbonyls. Chemistry 2023; 29:e202301147. [PMID: 37335758 DOI: 10.1002/chem.202301147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
1,n-dicarbonyls are one of the most fascinating chemical feedstocks finding abundant usage in the field of pharmaceuticals. Besides, they are utilized in a plethora of synthesis in general synthetic organic chemistry. A number of 'conventional' methods are available for their synthesis, such as the Stetter reaction, Baker-Venkatraman rearrangement, oxidation of vicinal diols, and oxidation of deoxybenzoins, synonymous with unfriendly reagents and conditions. In the last 15 years or so, photocatalysis has taken the world of synthetic organic chemistry by a remarkable renaissance. It is fair to say now that everybody loves the light and photoredox chemistry has opened a new gateway to organic chemists towards milder, more simpler alternatives to the previously available methods, allowing access to many sensitive reactions and products. In this review, we present the readers with the photochemical synthesis of a variety of 1,n-dicarbonyls. Diverse photocatalytic pathways to these fascinating molecules have been discussed, placing special emphasis on the mechanisms, giving the reader an opportunity to find all these significant developments in one place.
Collapse
Affiliation(s)
- Subhashis Mondal
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| | - Nirbhik Chatterjee
- Department of Chemistry, Kanchrapara College, North 24 Parganas, 743145, West Bengal, India
| | - Soumitra Maity
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| |
Collapse
|
7
|
Xiao Y, Zhu CM, Liang RB, Huang YL, Hai CH, Chen JR, Li M, Zhong JJ, Huang XC. Building a cobaloxime-based metal-organic framework for photocatalytic aerobic oxidation of arylboronic acids to phenols. Chem Commun (Camb) 2023; 59:2239-2242. [PMID: 36723203 DOI: 10.1039/d2cc06945h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Herein, the design and synthesis of an unprecedented cobaloxime-based zirconium metal-organic framework (Zr-TCPCo) with an she net is reported. This heterogeneous material as a photocatalyst exhibits excellent catalytic activity for aerobic oxidation of arylboronic acids to phenols. Recycling experiments demonstrate the stability and reusability of Zr-TCPCo as a robust catalyst.
Collapse
Affiliation(s)
- Yonghong Xiao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, China.
| | - Can-Ming Zhu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, China.
| | - Rong-Bin Liang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, China.
| | - Yong-Liang Huang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Chun-Hua Hai
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, China.
| | - Jian-Rui Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, China.
| | - Mian Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| | - Jian-Ji Zhong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| | - Xiao-Chun Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| |
Collapse
|
8
|
Davies AM, D Hernandez R, Tunge JA. Direct Aroylation of Olefins through a Cobalt/Photoredox-Catalyzed Decarboxylative and Dehydrogenative Coupling with α-Oxo Acids. Chemistry 2022; 28:e202202781. [PMID: 36322775 DOI: 10.1002/chem.202202781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 11/05/2022]
Abstract
A photoredox/cobalt dual catalytic procedure has been developed that allows benzoylation of olefins. Here the photoredox catalyst effects the decarboxylation of α-ketoacids to form benzoyl radicals. After addition of this radical to styrenes, the cobalt catalyst abstracts a H-atom. Hydrogen evolution from the putative cobalt hydride intermediate allows a Heck-like aroylation without the need for a stoichiometric oxidant. Mechanistic studies reveal that electronically different styrenes lead to a curved Hammett plot, thus suggesting a change in product-determining step in the catalytic mechanism.
Collapse
Affiliation(s)
- Alex M Davies
- Department of Chemistry, University of Kansas, 1567 Irving Hill Rd., Lawrence, KS 66045, USA
| | - Rafael D Hernandez
- Department of Chemistry, University of Kansas, 1567 Irving Hill Rd., Lawrence, KS 66045, USA
| | - Jon A Tunge
- Department of Chemistry, University of Kansas, 1567 Irving Hill Rd., Lawrence, KS 66045, USA
| |
Collapse
|
9
|
Affiliation(s)
- Yota Sakakibara
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
- Japanese Science and Technology Agency (JST)−PRESTO, Chiyoda, Tokyo 102-0076, Japan
| | - Kei Murakami
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
- Japanese Science and Technology Agency (JST)−PRESTO, Chiyoda, Tokyo 102-0076, Japan
| |
Collapse
|
10
|
Xiao Q, Tong QX, Zhong JJ. Recent Advances in Visible-Light Photoredox Catalysis for the Thiol-Ene/Yne Reactions. Molecules 2022; 27:molecules27030619. [PMID: 35163886 PMCID: PMC8839682 DOI: 10.3390/molecules27030619] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Visible-light photoredox catalysis has been established as a popular and powerful tool for organic transformations owing to its inherent characterization of environmental friendliness and sustainability in the past decades. The thiol-ene/yne reactions, the direct hydrothiolation of alkenes/alkynes with thiols, represents one of the most efficient and atom-economic approaches for the carbon-sulfur bonds construction. In traditional methodologies, harsh conditions such as stoichiometric reagents or a specialized UV photo-apparatus were necessary suffering from various disadvantages. In particular, visible-light photoredox catalysis has also been demonstrated to be a greener and milder protocol for the thiol-ene/yne reactions in recent years. Additionally, unprecedented advancements have been achieved in this area during the past decade. In this review, we will summarize the recent advances in visible-light photoredox catalyzed thiol-ene/yne reactions from 2015 to 2021. Synthetic strategies, substrate scope, and proposed reaction pathways are mainly discussed.
Collapse
Affiliation(s)
- Qian Xiao
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China;
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou 515063, China
| | - Qing-Xiao Tong
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou 515063, China
- Correspondence: (Q.-X.T.); (J.-J.Z.)
| | - Jian-Ji Zhong
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou 515063, China
- The Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou 515063, China
- Correspondence: (Q.-X.T.); (J.-J.Z.)
| |
Collapse
|
11
|
Liang RB, Zhu CM, Song PQ, Zhao LM, Tong QX, Zhong JJ. External oxidant-free and selective thiofunctionalization of alkenes enabled by photoredox-neutral catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo00957a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photoredox approach was reported to realize a highly selective three-component thiohydroxylation, thioalkoxylation and thioamination of vinylarenes towards valuable vicinal S,O- and S,N-disubstituted molecules under mild conditions.
Collapse
Affiliation(s)
- Rong-Bin Liang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China
| | - Can-Ming Zhu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China
| | - Pei-Qi Song
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China
| | - Lei-Min Zhao
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, P. R. China
| | - Qing-Xiao Tong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China
| | - Jian-Ji Zhong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China
| |
Collapse
|
12
|
Xiao Q, Tong QX, Zhong JJ. Recent Progress on the Synthesis of Benzazepine Derivatives via Radical Cascade Cyclization Reactions. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202209025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Wang D, Ackermann L. Three-component carboacylation of alkenes via cooperative nickelaphotoredox catalysis. Chem Sci 2022; 13:7256-7263. [PMID: 35799820 PMCID: PMC9214884 DOI: 10.1039/d2sc02277j] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022] Open
Abstract
Various commercially available acyl chlorides, aldehydes, and alkanes were exploited for versatile three-component 1,2-carboacylations of alkenes to forge two vicinal C–C bonds through the cooperative action of nickel and sodium decatungstate catalysis. A wealth of ketones with high levels of structural complexity was rapidly obtained via direct functionalization of C(sp2)/C(sp3)–H bonds in a modular manner. Furthermore, a regioselective late-stage modification of natural products showcased the practical utility of the strategy, generally featuring high resource economy and ample substrate scope. Various commercially available acyl chlorides, aldehydes, and alkanes were exploited for versatile three-component 1,2-carboacylations of alkenes to forge two vicinal C–C bonds through the cooperative action of nickel and sodium decatungstate catalysis.![]()
Collapse
Affiliation(s)
- Dingyi Wang
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Germany
| |
Collapse
|
14
|
Cheng YY, Yu JX, Lei T, Hou HY, Chen B, Tung CH, Wu LZ. Direct 1,2-Dicarbonylation of Alkenes towards 1,4-Diketones via Photocatalysis. Angew Chem Int Ed Engl 2021; 60:26822-26828. [PMID: 34586701 DOI: 10.1002/anie.202112370] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Indexed: 12/17/2022]
Abstract
1,4-Dicarbonyl compounds are intriguing motifs and versatile precursors in numerous pharmaceutical molecules and bioactive natural compounds. Direct incorporation of two carbonyl groups into a double bond at both ends is straightforward, but also challenging. Represented herein is the first example of 1,2-dicarbonylation of alkenes by photocatalysis. Key to success is that N(n-Bu)4 + not only associates with the alkyl anion to avoid protonation, but also activates the α-keto acid to undergo electrophilic addition. The α-keto acid is employed both for acyl generation and electrophilic addition. By tuning the reductive and electrophilic ability of the acyl precursor, unsymmetric 1,4-dicarbonylation is achieved for the first time. This metal-free, redox-neutral and regioselective 1,2-dicarbonylation of alkenes is executed by a photocatalyst for versatile substrates under extremely mild conditions and shows great potential in biomolecular and drug molecular derivatization.
Collapse
Affiliation(s)
- Yuan-Yuan Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ji-Xin Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hong-Yu Hou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
15
|
Cheng Y, Yu J, Lei T, Hou H, Chen B, Tung C, Wu L. Direct 1,2‐Dicarbonylation of Alkenes towards 1,4‐Diketones via Photocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yuan‐Yuan Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ji‐Xin Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Hong‐Yu Hou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
16
|
Xiao Q, Lu M, Deng Y, Jian JX, Tong QX, Zhong JJ. Photoinduced Radical Cascade Cyclization: A Metal-Free Approach to Access Difluoroalkylated Dioxodibenzothiazepines. Org Lett 2021; 23:9303-9308. [PMID: 34806891 DOI: 10.1021/acs.orglett.1c03700] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A simple and mild photoredox catalytic approach to access difluoroalkylated dioxodibenzothiazepines in high regioselectivity via radical cascade cyclization has been described herein. In contrast to previous methods, this strategy does not involve the use of transition-metal catalysts and avoids the potential disadvantages of inevitable toxicity and the tedious removal process of metal catalysts. The commercially available and inexpensive CF2 precursors, wide substrate scope, and mild reaction conditions demonstrate the practicability of this approach.
Collapse
Affiliation(s)
- Qian Xiao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China.,School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, P. R. China
| | - Maojian Lu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China
| | - Yinglan Deng
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China
| | - Jing-Xin Jian
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China
| | - Qing-Xiao Tong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China
| | - Jian-Ji Zhong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China
| |
Collapse
|
17
|
Xu H, Zhang H, Tong QX, Zhong JJ. Photoredox/cobaloxime co-catalyzed allylation of amines and sulfonyl hydrazines with olefins to access α-allylic amines and allylic sulfones. Org Biomol Chem 2021; 19:8227-8231. [PMID: 34337641 DOI: 10.1039/d1ob01307f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we reported a dual-catalytic platform for the allylation of amines and sulfonyl hydrazines with olefins to selectively access α-allylic amines and allylic sulfones in good yields by combining photoredox catalysis and cobaloxime catalysis. This strategy avoided the use of a stoichiometric amount of terminal oxidant and the use of pre-functionalized allylic precursors, representing a green and ideal atom- & step-economical process. Good substrate scope and gram-scale synthesis demonstrated the utility of this protocol. Mechanistic studies revealed that a radical process is probably involved in this reaction.
Collapse
Affiliation(s)
- Hui Xu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China.
| | - Hong Zhang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China.
| | - Qing-Xiao Tong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China.
| | - Jian-Ji Zhong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China.
| |
Collapse
|
18
|
Shi J, Gao XW, Tong QX, Zhong JJ. Light-Promoted and Tertiary-Amine-Assisted Hydroxysulfenylation of Alkenes: Selective and Direct One-Pot Synthesis of β-Hydroxysulfides. J Org Chem 2021; 86:12922-12931. [PMID: 34464115 DOI: 10.1021/acs.joc.1c01610] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A light-promoted and tertiary-amine-assisted strategy for efficient hydroxysulfenylation of both electron-rich and electron-deficient alkenes with thiophenols to selectively and directly access β-hydroxysulfides in one pot is described herein. In contrast to the previously reported thiol-oxygen co-oxidation reactions, this simple and sustainable approach features mild reaction conditions, high efficiency, and excellent functional group tolerance.
Collapse
Affiliation(s)
- Jing Shi
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, and Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Xue-Wang Gao
- Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qing-Xiao Tong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, and Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Jian-Ji Zhong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, and Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| |
Collapse
|
19
|
Zhong T, Zheng X, Yin C, Shen Q, Yu C. Copper-Catalyzed Phosphorylation of 2,3-Allenoic Acids and Phosphine Oxide: Access to Phosphorylated Butenolides. J Org Chem 2021; 86:9699-9710. [PMID: 34184529 DOI: 10.1021/acs.joc.1c00998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigated a novel Cu-catalyzed annulation of 2,3-allenoic acids with diphenylphosphine oxide, leading to the formation of 4-phosphate butenolides in up to 88% yield. The formation of the C-P bond provides new avenues for the functionalization of different furan-2(5H)-ones, with favorable features such as suitable functional group tolerance and mild synthesis conditions.
Collapse
Affiliation(s)
- Tianshuo Zhong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Xiangyun Zheng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Chuanliu Yin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Qitao Shen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
20
|
Xiao Q, Zhang H, Li JH, Jian JX, Tong QX, Zhong JJ. Directing-Group-Assisted Markovnikov-Selective Hydrothiolation of Styrenes with Thiols by Photoredox/Cobalt Catalysis. Org Lett 2021; 23:3604-3609. [PMID: 33843237 DOI: 10.1021/acs.orglett.1c00999] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In contrast with the well-developed radical thiol-ene reaction to access anti-Markovnikov-type products, the research on the catalytic Markovnikov-selective hydrothiolation of alkenes is very restricted. Because of the catalyst poisoning of metal catalysts by organosulfur compounds, limited examples of transition-metal-catalyzed thiol-ene reactions have been reported. However, in this work, a directing-group-assisted hydrothiolation of styrenes with thiols by photoredox/cobalt catalysis is found to proceed smoothly to afford Markovnikov-type sulfides with excellent regioselectivity.
Collapse
Affiliation(s)
- Qian Xiao
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, and Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China.,School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, P. R. China
| | - Hong Zhang
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, and Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Jing-Hong Li
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, and Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Jing-Xin Jian
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, and Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Qing-Xiao Tong
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, and Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Jian-Ji Zhong
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, and Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| |
Collapse
|
21
|
Li Y, Zhang X, Liang D, Li Y, Gao S, Li X, Dong Y, Wang B, Ma Y. Tunable Redox‐Neutral Photocatalysis: Visible Light‐Induced Arylperfluoroalkylation of Alkenes Regulated by Protons. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yuan Li
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road Kunming, Yunnan Province 650214 P. R. China
| | - Xin Zhang
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road Kunming, Yunnan Province 650214 P. R. China
| | - Deqiang Liang
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road Kunming, Yunnan Province 650214 P. R. China
| | - Yanni Li
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road Kunming, Yunnan Province 650214 P. R. China
| | - Shulin Gao
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road Kunming, Yunnan Province 650214 P. R. China
| | - Xiangguang Li
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road Kunming, Yunnan Province 650214 P. R. China
| | - Ying Dong
- College of Chemistry, Chemical Engineering and Materials Science Shandong Normal University Jinan, Shandong Province 250014 P. R. China
| | - Baoling Wang
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road Kunming, Yunnan Province 650214 P. R. China
| | - Yinhai Ma
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road Kunming, Yunnan Province 650214 P. R. China
| |
Collapse
|
22
|
Bryden MA, Zysman-Colman E. Organic thermally activated delayed fluorescence (TADF) compounds used in photocatalysis. Chem Soc Rev 2021; 50:7587-7680. [PMID: 34002736 DOI: 10.1039/d1cs00198a] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Organic compounds that show Thermally Activated Delayed Fluorescence (TADF) have become wildly popular as next-generation emitters in organic light emitting diodes (OLEDs). Since 2016, a subset of these have found increasing use as photocatalysts. This review comprehensively highlights their potential by documenting the diversity of the reactions where an organic TADF photocatalyst can be used in lieu of a noble metal complex photocatalyst. Beyond the small number of TADF photocatalysts that have been used to date, the analysis conducted within this review reveals the wider potential of organic donor-acceptor TADF compounds as photocatalysts. A discussion of the benefits of compounds showing TADF for photocatalysis is presented, which paints a picture of a very promising future for organic photocatalyst development.
Collapse
Affiliation(s)
- Megan Amy Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK.
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK.
| |
Collapse
|
23
|
Li J, Lu XC, Xu Y, Wen JX, Hou GQ, Liu L. Photoredox Catalysis Enables Decarboxylative Cyclization with Hypervalent Iodine(III) Reagents: Access to 2,5-Disubstituted 1,3,4-Oxadiazoles. Org Lett 2020; 22:9621-9626. [DOI: 10.1021/acs.orglett.0c03663] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jian Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Xue-Chen Lu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Yue Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Jin-Xia Wen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Guo-Quan Hou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Li Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou 213164, China
| |
Collapse
|