1
|
Nestoros E, Sharma A, Kim E, Kim JS, Vendrell M. Smart molecular designs and applications of activatable organic photosensitizers. Nat Rev Chem 2024:10.1038/s41570-024-00662-7. [PMID: 39506088 DOI: 10.1038/s41570-024-00662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
Photodynamic therapy (PDT) - which combines light, oxygen and photosensitizers (PS) to generate reactive oxygen species - has emerged as an effective approach for targeted ablation of pathogenic cells with reduced risk of inducing resistance. Some organic PS are now being applied for PDT in the clinic or undergoing evaluation in clinical trials. A limitation of the first-generation organic PS was their potential off-target toxicity. This shortcoming prompted the design of constructs that can be activated by the presence of specific biomolecules - from small biomolecules to large enzymes - in the target cells. Here, we review advances in the design and synthesis of activatable organic PS and their contribution to PDT in the past decade. Important areas of research include novel synthetic methodologies to engineer smart PS with tuneable singlet oxygen generation, their integration into larger constructs such as bioconjugates, and finally, representative examples of their translational potential as antimicrobial and anticancer therapies.
Collapse
Affiliation(s)
- Eleni Nestoros
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Amit Sharma
- Amity School of Chemical Sciences, Amity University Punjab, Mohali, India
| | - Eunji Kim
- Department of Chemistry, Korea University, Seoul, Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, Korea.
| | - Marc Vendrell
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Zhang H, Zhu W, Pan W, Wan X, Li N, Tang B. Recent advances in spatio-temporally controllable systems for management of glioma. Asian J Pharm Sci 2024; 19:100954. [PMID: 39483717 PMCID: PMC11525460 DOI: 10.1016/j.ajps.2024.100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 11/03/2024] Open
Abstract
Malignant glioma remains one of the most aggressive intracranial tumors with devastating clinical outcomes despite the great advances in conventional treatment approaches, including surgery and chemotherapy. Spatio-temporally controllable approaches to glioma are now being actively investigated due to the preponderance, including spatio-temporal adjustability, minimally invasive, repetitive properties, etc. External stimuli can be readily controlled by adjusting the site and density of stimuli to exert the cytotoxic on glioma tissue and avoid undesired injury to normal tissues. It is worth noting that the removability of external stimuli allows for on-demand treatment, which effectively reduces the occurrence of side effects. In this review, we highlight recent advancements in drug delivery systems for spatio-temporally controllable treatments of glioma, focusing on the mechanisms and design principles of sensitizers utilized in these controllable therapies. Moreover, the potential challenges regarding spatio-temporally controllable therapy for glioma are also described, aiming to provide insights into future advancements in this field and their potential clinical applications.
Collapse
Affiliation(s)
- Huiwen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Wanqi Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Xiuyan Wan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
- Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
3
|
Cheng Z, Benson S, Mendive-Tapia L, Nestoros E, Lochenie C, Seah D, Chang KY, Feng Y, Vendrell M. Enzyme-Activatable Near-Infrared Hemicyanines as Modular Scaffolds for in vivo Photodynamic Therapy. Angew Chem Int Ed Engl 2024; 63:e202404587. [PMID: 38717316 DOI: 10.1002/anie.202404587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Indexed: 06/21/2024]
Abstract
Photodynamic therapy is an anti-cancer treatment that requires illumination of photosensitizers to induce local cell death. Current near-infrared organic photosensitizers are built from large and non-modular structures that cannot be tuned to improve safety and minimize off-target toxicity. This work describes a novel chemical platform to generate enzyme-activatable near-infrared photosensitizers. We optimized the Se-bridged hemicyanine scaffold to include caging groups and biocompatible moieties, and generated cathepsin-triggered photosensitizers for effective ablation of human glioblastoma cells. Furthermore, we demonstrated that enzyme-activatable Se-bridged hemicyanines are effective photosensitizers for the safe ablation of microtumors in vivo, creating new avenues in the chemical design of targeted anti-cancer photodynamic therapy agents.
Collapse
Affiliation(s)
- Zhiming Cheng
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Sam Benson
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Lorena Mendive-Tapia
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Eleni Nestoros
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Charles Lochenie
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Deborah Seah
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Kai Yee Chang
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Yi Feng
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, EH4 2XR, Edinburgh, UK
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| |
Collapse
|
4
|
Zhi S, Huang M, Cheng K. Enzyme-responsive design combined with photodynamic therapy for cancer treatment. Drug Discov Today 2024; 29:103965. [PMID: 38552778 DOI: 10.1016/j.drudis.2024.103965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/09/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
Photodynamic therapy (PDT) is a noninvasive cancer treatment that has garnered significant attention in recent years. However, its application is still hampered by certain limitations, such as the hydrophobicity and low targeting of photosensitizers (PSs) and the hypoxia of the tumor microenvironment. Nevertheless, the fusion of enzyme-responsive drugs with PDT offers novel solutions to overcome these challenges. Utilizing the attributes of enzyme-responsive drugs, PDT can deliver PSs to the target site and selectively release them, thereby enhancing therapeutic outcomes. In this review, we spotlight recent advances in enzyme-responsive materials for cancer treatment and primarily delineate their application in combination with PDT.
Collapse
Affiliation(s)
- Siying Zhi
- Guangdong Provincial Key Laboratory of New Drug Screening and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Meixin Huang
- Guangdong Provincial Key Laboratory of New Drug Screening and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
5
|
Almammadov T, Elmazoglu Z, Atakan G, Kepil D, Aykent G, Kolemen S, Gunbas G. Locked and Loaded: β-Galactosidase Activated Photodynamic Therapy Agent Enables Selective Imaging and Targeted Treatment of Glioblastoma Multiforme Cancer Cells. ACS APPLIED BIO MATERIALS 2022; 5:4284-4293. [PMID: 36043987 PMCID: PMC9490748 DOI: 10.1021/acsabm.2c00484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
Abstract
Selective detection and effective therapy of brain cancer, specifically, the very aggressive glioblastoma multiforme (GBM), remains one of the paramount challenges in clinical settings. While radiotherapy combined surgery is proposed as the main treatment course, it has several drawbacks such as complexity of the operation and common development of recurrent tumors in this course of patient care. Unique opportunities presented by photodynamic therapy (PDT) offer promising, effective, and precise therapy against GBM cells along with simultaneous imaging opportunities. However, activatable, theranostic molecular systems in PDT modality for GBM remained scarce. Specifically, even though elevated β-galactosidase (β-gal) activity in glioblastoma cells is well-documented, targeted, activatable therapeutic PDT agents have not been realized. Herein, we report a β-galactosidase (β-gal) activatable phototheranostic agent based on an iodinated resorufin core (RB-1) which was realized in only three steps with commercial reagents in 29% overall yield. RB-1 showed very high singlet oxygen (1O2) quantum yield (54%) accompanied by a remarkable turn-on response in fluorescence upon enzymatic activation. RB-1 was tested in different cell lines and revealed selective photocytotoxicity in U-87MG glioblastoma cells. Additionally, thanks to almost 7% fluorescence quantum yield (ΦF) despite extremely high 1O2 generation yield, RB-1 was also demonstrated as a successful agent for fluorescence imaging of U-87MG cells. Due to significantly lower (β-gal) activity in healthy cells (NIH/3T3), RB-1 stayed in a passive state and showed minimal photo and dark toxicity. RB-1 marks the first example of a β-gal activatable phototheranostic agent toward effective treatment of glioblastoma.
Collapse
Affiliation(s)
- Toghrul Almammadov
- Department
of Chemistry, Koç University, Rumelifeneri Yolu, 34450 Istanbul, Turkey
| | - Zubeyir Elmazoglu
- Department
of Chemistry, Middle East Technical University
(METU), 06800 Ankara, Turkey
| | - Gizem Atakan
- Department
of Chemistry, Middle East Technical University
(METU), 06800 Ankara, Turkey
| | - Dilay Kepil
- Department
of Chemistry, Middle East Technical University
(METU), 06800 Ankara, Turkey
| | - Guzide Aykent
- Department
of Chemistry, Middle East Technical University
(METU), 06800 Ankara, Turkey
| | - Safacan Kolemen
- Department
of Chemistry, Koç University, Rumelifeneri Yolu, 34450 Istanbul, Turkey
- Surface
Science and Technology Center (KUYTAM), Koç University, 34450 Istanbul, Turkey
- Boron
and Advanced Materials Application and Research Center, Koç University, 34450 Istanbul, Turkey
| | - Gorkem Gunbas
- Department
of Chemistry, Middle East Technical University
(METU), 06800 Ankara, Turkey
| |
Collapse
|
6
|
Yang L, Liu G, Chen Q, Wan Y, Liu Z, Zhang J, Huang C, Xu Z, Li S, Lee CS, Zhang L, Sun H. An Activatable NIR Probe for the Detection and Elimination of Senescent Cells. Anal Chem 2022; 94:5425-5431. [PMID: 35319866 DOI: 10.1021/acs.analchem.2c00239] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cellular senescence is involved in diverse physiological processes. Accumulation of senescent cells can lead to numerous age-related diseases. Therefore, it is of great significance to develop chemical tools to effectively detect and eliminate senescent cells. Till date, a dual functional probe that could detect and eliminate senescent cells has yet been accomplished. Herein, a β-gal-activated probe, MB-βgal, based on the methylene blue (MB) fluorophore, was designed to detect and eliminate senescent cells. In the absence of β-gal, the probe showed no fluorescence and its 1O2 production efficiency was suppressed simultaneously. On the other hand, MB-βgal could be specifically activated by the high level of β-gal in senescent cells, thus, releasing free MB with near-infrared (NIR) fluorescence and high 1O2 production efficiency under light irradiation. MB-βgal demonstrated a fast response, high sensitivity, and high selectivity in detecting β-gal in an aqueous solution and was further applied to visualization and ablation of senescent cells. As a proof of concept, the dual functions of MB-βgal were successfully demonstrated in senescent HeLa cells and mouse embryonic fibroblast cells.
Collapse
Affiliation(s)
- Liu Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China.,Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, People's Republic of China
| | - Guopan Liu
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, People's Republic of China.,Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Qingxin Chen
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, People's Republic of China
| | - Yingpeng Wan
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Zhiyang Liu
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, People's Republic of China
| | - Jie Zhang
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, People's Republic of China
| | - Chen Huang
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, People's Republic of China
| | - Zhiqiang Xu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Shengliang Li
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China.,College of Pharmaceutical Sciences, Soochow University Suzhou, 215123, People's Republic of China
| | - Chun-Sing Lee
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Liang Zhang
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, People's Republic of China.,Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Hongyan Sun
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, People's Republic of China
| |
Collapse
|
7
|
Lee SK, Shen Z, Han MS, Tung CH. Developing a far-red fluorogenic beta-galactosidase probe for senescent cell imaging and photoablation. RSC Adv 2022; 12:4543-4549. [PMID: 35425504 PMCID: PMC8981090 DOI: 10.1039/d2ra00377e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/31/2022] [Indexed: 01/10/2023] Open
Abstract
A methylene blue (MB)-based beta-galactosidase (β-gal) activatable molecule, Gal-MB, was developed for senescence imaging and light-triggered senolysis. When in contact with LacZ β-gal or senescence-associated β-gal (SA-β-gal), the photoinsensitive Gal-MB becomes fluorescent. Gal-MB also offered selective phototoxicity toward LacZ β-gal expressing cells and drug-induced senescent cells, which express SA-β-gal, after light illumination at 665 nm. A methylene blue (MB)-based beta-galactosidase (β-gal) activatable molecule, Gal-MB, was developed for senescence imaging and light-triggered senolysis.![]()
Collapse
Affiliation(s)
- Seung Koo Lee
- Department of Radiology, Molecular Imaging Innovations Institute, Weill Cornell Medicine New York NY 10021 USA
| | - Zhenhua Shen
- Department of Radiology, Molecular Imaging Innovations Institute, Weill Cornell Medicine New York NY 10021 USA
| | - Myung Shin Han
- Department of Radiology, Molecular Imaging Innovations Institute, Weill Cornell Medicine New York NY 10021 USA
| | - Ching-Hsuan Tung
- Department of Radiology, Molecular Imaging Innovations Institute, Weill Cornell Medicine New York NY 10021 USA
| |
Collapse
|
8
|
Verirsen I, Uyar B, Ozsamur NG, Demirok N, Erbas-Cakmak S. Enzyme activatable photodynamic therapy agents targeting melanoma. Org Biomol Chem 2022; 20:8864-8868. [DOI: 10.1039/d2ob01937j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A tyrosinase activatable photosensitizer is developed with selective phototoxicity to melanoma cells.
Collapse
Affiliation(s)
- Imran Verirsen
- Konya Food and Agriculture University, Faculty of Science, Department of Biotechnology, 42080, Konya, Turkey
| | - Busra Uyar
- Konya Food and Agriculture University, Faculty of Science, Department of Biotechnology, 42080, Konya, Turkey
| | - Nezahat Gokce Ozsamur
- Konya Food and Agriculture University, Faculty of Science, Department of Biotechnology, 42080, Konya, Turkey
| | - Naime Demirok
- Konya Food and Agriculture University, Faculty of Science, Department of Biotechnology, 42080, Konya, Turkey
| | - Sundus Erbas-Cakmak
- Konya Food and Agriculture University, Faculty of Science, Department of Biotechnology, 42080, Konya, Turkey
- Research and Development Center for Diagnostic Kits (KIT-ARGEM), Konya Food and Agriculture University, 42080, Konya, Turkey
- Konya Food and Agriculture University, Department of Molecular Biology and Genetics, 42080, Konya, Turkey
| |
Collapse
|