1
|
Liu Y, Li N, Su K, Du J, Guo R. Arginine-Rich Peptide-Rhodium Nanocluster@Reduced Graphene Oxide Composite as a Highly Selective and Active Uricase-like Nanozyme for the Degradation of Uric Acid and Inhibition of Urate Crystal. Inorg Chem 2024; 63:13602-13612. [PMID: 38973094 DOI: 10.1021/acs.inorgchem.4c01801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Metal nanozymes have offered attractive opportunities for biocatalysis and biomedicine. However, fabricating nanozymes simultaneously possessing highly catalytic selectivity and activity remains a great challenge due to the lack of three-dimensional (3D) architecture of the catalytic pocket in natural enzymes. Here, we integrate rhodium nanocluster (RhNC), reduced graphene oxide (rGO), and protamine (PRTM, a typical arginine-rich peptide) into a composite facilely based on the single peptide. Remarkably, the PRTM-RhNC@rGO composite displays outstanding selectivity, activity, and stability for the catalytic degradation of uric acid. The reaction rate constant of the uric acid oxidation catalyzed by the PRTM-RhNC@rGO composite is about 1.88 × 10-3 s-1 (4 μg/mL), which is 37.6 times higher than that of reported RhNP (k = 5 × 10-5 s-1, 20 μg/mL). Enzyme kinetic studies reveal that the PRTM-RhNC@rGO composite exhibits a similar affinity for uric acid as natural uricase. Furthermore, the uricase-like activity of PRTM-RhNC@rGO nanozymes remains in the presence of sulfur substances and halide ions, displaying incredibly well antipoisoning abilities. The analysis of the structure-function relationship indicates the PRTM-RhNC@rGO composite features the substrate binding site near the catalytic site in a confined space contributed by 2D rGO and PRTM, resulting in the high-performance of the composite nanozyme. Based on the outstanding uricase-like activity and the interaction of PRTM and uric acid, the PRTM-RhNC@rGO composite can retard the urate crystallization significantly. The present work provides new insights into the design of metal nanozymes with suitable binding sites near catalytic sites by mimicking pocket-like structures in natural enzymes based on simple peptides, conducing to broadening the practical application of high-performance nanozymes in biomedical fields.
Collapse
Affiliation(s)
- Yan Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Ning Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Kang Su
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Jiamei Du
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| |
Collapse
|
2
|
Li L, Ye X, Xiao Q, Zhu Q, Hu Y, Han M. Nanostructure engineering of Pt/Pd-based oxygen reduction reaction electrocatalysts. Phys Chem Chem Phys 2023; 25:30172-30187. [PMID: 37930248 DOI: 10.1039/d3cp03522k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Increasing the atomic utilization of Pt and Pd elements is the key to the advancement and broad dissemination of fuel cells. Central to this task is the design and fabrication of highly active and stable Pt- or Pd-based electrocatalysts for the oxygen reduction reaction (ORR), which requires a comprehensive understanding of the ORR pathways and mechanism. Past endeavors have accumulated a wealth of knowledge about the Pt/Pd-based ORR electrocatalysts based on structure engineering, while a systematic review of the nanostructure engineering of Pt/Pd-based ORR electrocatalysts has been rarely reported. In this review, we provide a systematic discussion about the current status of Pt/Pd-based ORR electrocatalysts from the perspective of nanostructure engineering, and we highlight the ORR pathways, mechanisms and theories in order to understand the ORR in a more complex nanocatalyst. Particularly, the underlying structure-function relationship of Pt/Pd-based ORR electrocatalysts is specifically highlighted, which will guide the future synthesis of more efficient ORR electrocatalysts.
Collapse
Affiliation(s)
- Le Li
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Xintong Ye
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Qi Xiao
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Qianyi Zhu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Ying Hu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Meijun Han
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| |
Collapse
|
3
|
Yang X, Ouyang Y, Guo R, Yao Z. Dimension Engineering in Noble-Metal-Based Electrocatalysts for Water Splitting. CHEM REC 2023; 23:e202200212. [PMID: 36193972 DOI: 10.1002/tcr.202200212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/12/2022] [Indexed: 11/11/2022]
Abstract
Dimension engineering plays a critical role in determining the electrocatalytic performance of catalysts towards water electrolysis since it is highly sensitive to the surface and interface properties. Bearing these considerations into mind, intensive efforts have been devoted to the rational dimension design and engineering, and many advanced nanocatalysts with multidimensions have been successfully fabricated. Aiming to provide more guidance for the fabrication of highly efficient noble-metal-based electrocatalysts, this review has focused on the recent progress in dimension engineering of noble-metal-based electrocatalysts towards water splitting, including the advanced engineering strategies, the application of noble-metal-based electrocatalysts with distinctive geometric structure from 0D to 1D, 2D, 3D, and multidimensions. In addition, the perspective insights and challenges of the dimension engineering in the noble-metal-based electrocatalysts is also systematically discussed.
Collapse
Affiliation(s)
- Xin Yang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua, 418000, PR China
| | - Yuejun Ouyang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua, 418000, PR China
| | - Ruike Guo
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua, 418000, PR China
| | - Zufu Yao
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, 418000, PR China
| |
Collapse
|
4
|
Chu X, Wang K, Qian W, Xu H. Surface and interfacial engineering of 1D Pt-group nanostructures for catalysis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Chu X, Li J, Xu H, Qian W. Introducing Te for boosting electrocatalytic reactions. Dalton Trans 2023; 52:245-259. [PMID: 36519384 DOI: 10.1039/d2dt03253h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The deployment of robust catalysts for electrochemical reactions is a critical topic for energy conversion techniques. Te-based nanomaterials have attracted increasing attention for their application in electrochemical reactions due to their positive influence on the electrocatalytic performance induced by their distinctive electronic and physicochemical properties. Herein, we have summarized the recent progress on Te-based nanocatalysts for electrocatalytic reactions by primarily focusing on the positive influence of Te on electrocatalysts. Firstly, Te-based nanomaterials can serve as an ideal template for the construction of well-defined nanostructures. Secondly, Te doping can significantly modify the electronic structure of the host catalyst, thereby, leading to the optimization of binding strength with intermediates. Furthermore, the Te etching strategy can also create a high density of surface defects, thereby leading to substantial improvement in the electrocatalytic performance. Additionally, many representative Te-based nanocatalysts for electrocatalytic reactions are also summarized and systematically discussed. Finally, a conclusive and perspective discussion is also provided to provide guidance for the future development of more efficient electrocatalysts.
Collapse
Affiliation(s)
- Xianxu Chu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China.
| | - Junru Li
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China.
| | - Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Weiyu Qian
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| |
Collapse
|
6
|
2D RhTe Monolayer: A highly efficient electrocatalyst for oxygen reduction reaction. J Colloid Interface Sci 2023; 629:971-980. [DOI: 10.1016/j.jcis.2022.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/24/2022] [Accepted: 09/04/2022] [Indexed: 11/21/2022]
|
7
|
Sun B, Wang Z, Yuan ZH, Ding Y, Li FM, Zhao GT, Li DS, Li XF, Chen Y. Ultrathin rhodium nanosheet-gold nanowire nanocomposites for alkaline methanol oxidation reaction. Chem Commun (Camb) 2022; 58:11139-11142. [PMID: 36106578 DOI: 10.1039/d2cc04762d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrostatically assembled ultrathin rhodium nanosheet-gold nanowire nanocomposites (Rh-Au CNSs) were used as an advanced electrocatalyst for the methanol oxidation reaction, which revealed a mass activity of 355 mA mgRh-1 at 0.607 V potential, much higher than single metal Rh nanosheets (273 mA mgRh-1) and commercial Rh nanoparticles (165 mA mgRh-1).
Collapse
Affiliation(s)
- Bin Sun
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Zhe Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Zi-Han Yuan
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Yu Ding
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Fu-Min Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
| | - Guang-Tao Zhao
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China
| | - Xi-Fei Li
- Key Laboratory of Advanced Batteries Materials for Electric Vehicles of China Petroleum and Chemical Industry Federation, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, P. R. China
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| |
Collapse
|
8
|
Feng YG, He JW, Chen DN, Jiang LY, Wang AJ, Bao N, Feng JJ. A sandwich-type electrochemical immunosensor for CYFRA 21-1 based on probe-confined in PtPd/polydopamine/hollow carbon spheres coupled with dendritic Au@Rh nanocrystals. Mikrochim Acta 2022; 189:271. [PMID: 35789294 DOI: 10.1007/s00604-022-05372-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/05/2022] [Indexed: 10/17/2022]
Abstract
A signal-on sandwich-like electrochemical immunosensor was built for determination of cytokeratin 19 fragments 21-1 (CYFRA 21-1) in non-small cell lung cancer (NSCLC) by confining electroactive dye (e.g., methylene blue, MB) as a probe for amplifying signals. Specifically, core-shell gold@rhodium dendritic nanocrystals (Au@Rh DNCs) behaved as a substrate for primary antibody and accelerate interfacial electron transfer. Besides, hollow carbon spheres (HCSs) were subsequently modified with polydopamine (PDA) and PtPd nanoparticles for sequential integration of the secondary antibody and confinement of MB as a label, termed as MB/PtPd/PDA/HCSs for clarity. The built sensors showed a broad linear range (100 fg mL-1 ~ 100 ng mL-1) for detection of CYFRA 21-1 with an ultra-low detection limit (31.72 fg mL-1, S/N = 3), coupled with satisfactory performance in human serum samples. This work can be explored for assays of other proteins and provides some constructive insights for early and accurate diagnosis of NSCLC.
Collapse
Affiliation(s)
- Yi-Ge Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jia-Wen He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Di-Nan Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Lu-Yao Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ning Bao
- School of Public Health, Nantong University, Nantong, 226019, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
9
|
Wang H, Jiao S, Liu S, Yin S, Zhou T, Xu Y, Li X, Wang Z, Wang L. Tannic acid modified PdAu alloy nanowires as efficient oxygen reduction electrocatalysts. NANOTECHNOLOGY 2022; 33:375401. [PMID: 35653927 DOI: 10.1088/1361-6528/ac7575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Design of the structure, composition and interface of the catalysts is very important to improve oxygen reduction reaction (ORR) catalytic activity under alkaline environment. Herein, we propose a direct method to rapid synthesis of tannic acid (TA) modified PdAu alloy nanowires (PdAu@TA NWs). Compared with pure PdAu NWs and commercial Pt/C, the PdAu@TA NWs exhibit superior ORR electrocatalytic activity (mass activity: 0.73 A mg-1metaland specific activity: 3.50 mA cm-2), stability, and methanol tolerance in an alkaline medium because PdAu@TA NWs possess sufficient active sites and synergistic effect that can effectively promote the oxygen reduction, inhibit the oxidation of the catalyst and improve the methanol tolerance of the catalyst. This synthetic method is a promising strategy to prepare metallic catalyst with surface functionalization.
Collapse
Affiliation(s)
- Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Shiqian Jiao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Songliang Liu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Shuli Yin
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Tongqing Zhou
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| |
Collapse
|
10
|
Cheng W, Sun L, He X, Tian L. Recent advances in fuel cell reaction electrocatalysis based on porous noble metal nanocatalysts. Dalton Trans 2022; 51:7763-7774. [PMID: 35508098 DOI: 10.1039/d2dt00841f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
As the center of fuel cells, electrocatalysts play a crucial role in determining the conversion efficiency from chemical energy to electrical energy. Therefore, the development of advanced electrocatalysts with both high activity and stability is significant but challenging. Active site, mass transport, and charge transfer are three central factors influencing the catalytic performance of electrocatalysts. Endowed with rich available surface active sites, facilitated electron transfer and mass diffusion channels, and highly active components, porous noble metal nanomaterials are widely considered as promising electrocatalysts toward fuel cell-related reactions. The past decade has witnessed great achievements in the design and fabrication of advanced porous noble metal nanocatalysts in the field of electrocatalytic fuel oxidation reaction (FOR) and oxygen reduction reaction (ORR). Herein, the recent research advances regarding porous noble metal nanocatalysts for fuel cell-related reactions are reviewed. In the discussions, the inherent structural features of porous noble metal nanostructures for electrocatalytic reactions, advanced synthetic strategies for the fabrication of porous noble metal nanostructures, and the structure-performance relationships are also provided.
Collapse
Affiliation(s)
- Wenjing Cheng
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China. .,School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Limei Sun
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Xiaoyan He
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China.
| | - Lin Tian
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China. .,School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| |
Collapse
|
11
|
Zhang Q, Zhang M, Chen T, Li L, Shi S, Jiang R. Unconventional Phase Engineering of Fuel-Cell Electrocatalysts. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116363] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Modulating surface electronic structure of mesoporous Rh nanoparticles by Se-doping for enhanced electrochemical ammonia synthesis. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Liu M, Yin S, Ren T, Xu Y, Wang Z, Li X, Wang L, Wang H. Two-Dimensional Heterojunction Electrocatalyst: Au-Bi 2Te 3 Nanosheets for Electrochemical Ammonia Synthesis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47458-47464. [PMID: 34605239 DOI: 10.1021/acsami.1c11246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The design of Au-based materials with good dispersion and more active sites is critical to enhance the catalytic performance of electrochemical ammonia production. Herein, two-dimensional (2D) heterojunction Au-Bi2Te3 nanosheets (Au-Bi2Te3 NSs) are prepared by Au nanoparticles growing on Bi2Te3 nanosheets. Benefiting from the good dispersion of Au nanoparticles and the synergistic effect of the heterojunction composite, Au-Bi2Te3 NSs demonstrate excellent behavior for an ambient nitrogen reduction reaction (NRR). In a 0.1 M Na2SO4 electrolyte (N2-saturated), Au-Bi2Te3 NSs display a high NH3 yield rate of 32.73 μg h-1 mgcat.-1 and a faradic efficiency of 20.39% at -0.4 V. The proposed synthetic method provides a feasible strategy for designing high-performance heterojunction electrocatalysts for electrochemical ammonia synthesis.
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shuli Yin
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Tianlun Ren
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
14
|
Chen D, Zhu J, Pu Z, Mu S. Anion Modulation of Pt-Group Metals and Electrocatalysis Applications. Chemistry 2021; 27:12257-12271. [PMID: 34129268 DOI: 10.1002/chem.202101645] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 12/14/2022]
Abstract
Pt-group metal (PGM) electrocatalysts with unique electronic structures and irreplaceable comprehensive properties play crucial roles in electrocatalysis. Anion engineering can create a series of PGM compounds (such as RuP2 , IrP2 , PtP2 , RuB2 , Ru2 B3 , RuS2 , etc.) that provide a promising prospect for improving the electrocatalytic performance and use of Pt-group noble metals. This review seeks the electrochemical activity origin of anion-modulated PGM compounds, and systematically analyzes and summarizes their synthetic strategies and energy-relevant applications in electrocatalysis. Orientation towards the sustainable development of nonfossil resources has stimulated a blossoming interest in the design of advanced electrocatalysts for clean energy conversion. The anion-modulated strategy for Pt-group metals (PGMs) by means of anion engineering possesses high flexibility to regulate the electronic structure, providing a promising prospect for constructing electrocatalysts with superior activity and stability to satisfy a future green electrochemical energy conversion system. Based on the previous work of our group and others, this review summarizes the up-to-date progress on anion-modulated PGM compounds (such as RuP2 , IrP2 , PtP2 , RuB2 , Ru2 B3 , RuS2 , etc.) in energy-related electrocatalysis from the origin of their activity and synthetic strategies to electrochemical applications including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), hydrogen oxidation reaction (HOR), N2 reduction reaction (NRR), and CO2 reduction reaction (CO2 RR). At the end, the key problems, countermeasures and future development orientations of anion-modulated PGM compounds toward electrocatalytic applications are proposed.
Collapse
Affiliation(s)
- Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.,Foshan Xianhu Laboratory of Advanced Energy Science and Technology, Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P. R. China
| | - Jiawei Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Zonghua Pu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.,Foshan Xianhu Laboratory of Advanced Energy Science and Technology, Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P. R. China
| |
Collapse
|
15
|
Jiang YC, Sun HY, Li YN, He JW, Xue Q, Tian X, Li FM, Yin SB, Li DS, Chen Y. Bifunctional Pd@RhPd Core-Shell Nanodendrites for Methanol Electrolysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35767-35776. [PMID: 34309354 DOI: 10.1021/acsami.1c09029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Methanol electrolysis is a promising strategy to achieve energy-saving and efficient electrochemical hydrogen (H2) production. In this system, the advanced electrocatalysts with high catalytic performance for both the methanol oxidation reaction (MOR) and hydrogen evolution reaction (HER) are highly desirable. Inspired by the complementary catalytic properties of rhodium (Rh) and palladium (Pd) for MOR and HER, herein, several Pd core-RhPd alloy shell nanodendrites (Pd@RhPd NDs) are synthesized through the galvanic replacement reaction between Pd nanodendrites (Pd NDs) and rhodium trichloride. For MOR, Pd@RhPd NDs exhibit Rh content-determined catalytic activity, in which Pd@Rh0.07Pd NDs have an optimal combination of oxidation potential and oxidation current due to the synergistic catalytic process of Pd/Rh double active sites. For HER, the introduction of Rh greatly improves the catalytic activity of Pd@RhPd NDs compared to that of Pd NDs, suggesting that Rh is the main activity site for HER. Unlike MOR, however, the HER activity of Pd@RhPd NDs is not sensitive to the Rh content. Using Pd@Rh0.07Pd NDs as robust bifunctional electrocatalysts, the as-constructed two-electrode methanol electrolysis cell shows a much lower voltage (0.813 V) than that of water electrolysis (1.672 V) to achieve electrochemical H2 production at 10 mA cm-2, demonstrating the application prospect of methanol electrolysis for H2 production.
Collapse
Affiliation(s)
- Yu-Chuan Jiang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Hui-Ying Sun
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Ya-Nan Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Jia-Wei He
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Qi Xue
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Xinlong Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, People's Republic of China
| | - Fu-Min Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Shi-Bin Yin
- MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, People's Republic of China
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| |
Collapse
|
16
|
Li Z, Lu X, Teng J, Zhou Y, Zhuang W. Nonmetal-doping of noble metal-based catalysts for electrocatalysis. NANOSCALE 2021; 13:11314-11324. [PMID: 34184008 DOI: 10.1039/d1nr02019f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In response to the shortage of fossil fuels, efficient electrochemical energy conversion devices are attracting increasing attention, while the limited electrochemical performance and high cost of noble metal-based electrode materials remain a daunting challenge. The electrocatalytic performance of electrode materials is closely bound with their intrinsic electronic/ionic states and crystal structures. Apart from the nanoscale design and conductive composite strategies, heteroatom doping, particularly for nonmetal doping (e.g., hydrogen, boron, sulfur, selenium, phosphorus, and tellurium), is also another effective strategy to greatly promote the intrinsic activity of the electrode materials by tuning their atomic structures. From the perspective of electrocatalytic reactions, the effective atomic structure regulation could induce additional active sites, create rich defects, and optimize the adsorption capability, thereby contributing to the promotion of the electrocatalytic performance of noble metal-based electrocatalysts. Encouraged by the great progress achieved in this field, we have reviewed recent advancements in nonmetal doping for electrocatalytic energy conversion. Specifically, the doping effect on the atomic structure and intrinsic electronic/ionic state is also systematically illustrated and the relationship with the electrocatalytic performance is also investigated. It is believed that this review will provide guidance for the development of more efficient electrocatalysts.
Collapse
Affiliation(s)
- Zhao Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Xinhua Lu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Jingrui Teng
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Yingmei Zhou
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Wenchang Zhuang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| |
Collapse
|
17
|
Wang H, Jiao S, Liu S, Wang S, Zhou T, Xu Y, Li X, Wang Z, Wang L. Mesoporous Bimetallic Au@Rh Core-Shell Nanowires as Efficient Electrocatalysts for pH-Universal Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30479-30485. [PMID: 34160205 DOI: 10.1021/acsami.1c01796] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrochemical water splitting is one hopeful strategy for hydrogen production, and designing efficient hydrogen evolution electrocatalysts under universal pH is one of the most critical topics. Here, we have successfully prepared mesoporous bimetallic core-shell nanostructures with Au nanowires (Au NWs) as cores and mesoporous Rh as shells (Au@mRh NWs). Due to the one-dimensional structure and mesoporous core-shell structure, Au@mRh NWs possess more active sites and provide the synergistic effect, leading to the great improvement of the electrochemical activity toward the hydrogen evolution reaction under a wide range of pH. The present work proposes a versatile strategy for preparing a bimetallic core-shell structure with a mesoporous shell, which is highly promising for more electrocatalytic applications.
Collapse
Affiliation(s)
- Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shiqian Jiao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Songliang Liu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shengqi Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Tongqing Zhou
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
18
|
Yin S, Liu S, Zhang H, Jiao S, Xu Y, Wang Z, Li X, Wang L, Wang H. Engineering One-Dimensional AuPd Nanospikes for Efficient Electrocatalytic Nitrogen Fixation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20233-20239. [PMID: 33884861 DOI: 10.1021/acsami.1c04619] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Designing one-dimensional (1D) bimetallic nanomaterials is of great significance for electrochemical nitrogen fixation. Inspired by this, 1D AuPd nanospikes (AuPd NSs) composed with internal Au nanowire and external Pd nanohumps were fabricated by a flexible low-temperature wet-chemical method. Benefiting from the excellent electron transport efficiency of the 1D material and the accessible surface area provided by the unique nanospike-like structure, AuPd NSs exhibit outstanding nitrogen reduction reaction performance with an NH3 yield rate of 16.9 μg h-1 mg-1cat. and a Faradaic efficiency of 15.9% at -0.3 V under 0.1 M Na2SO4. This work not only provides an effective electrocatalyst for nitrogen fixation technology, but also presents a flexible method for the controlled synthesis of spike-like nanomaterials.
Collapse
Affiliation(s)
- Shuli Yin
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Songliang Liu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hugang Zhang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shiqian Jiao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
19
|
Wang Z, Tian W, Dai Z, Zhou T, Mao Q, Xu Y, Li X, Wang L, Wang H. Bimetallic mesoporous RhRu film for electrocatalytic nitrogen reduction to ammonia. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00770j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bimetallic mesoporous RhRu film on Ni foam has been prepared for the efficient electrosynthesis of ammonia.
Collapse
Affiliation(s)
- Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Wenjing Tian
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zechuan Dai
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Tongqing Zhou
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Qiqi Mao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|