1
|
Gautam A, Sasmal PK. Eradication of Antibiotic-Resistant Gram-Positive Bacteria and Biofilms by Rationally Designed AIE-Active Iridium(III) Complexes Derived from Cyclometalating 2-Phenylquinoline and Ancillary Bipyridyl Ligands. Inorg Chem 2025; 64:2905-2918. [PMID: 39887057 DOI: 10.1021/acs.inorgchem.4c05064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Antibiotic resistance caused by Gram-positive bacteria is a growing global human health threat. Selective discrimination and eradication of Gram-positive bacteria and their biofilms is challenging. Therapeutic strategies with multiple modes of action are urgently needed to address the increase in Gram-positive bacteria-resistant nosocomial infections. In this work, we have presented rationally designed aggregation-induced emission (AIE)-active cationic cyclometalated iridium(III) complexes derived from 2-phenylquinoline and 2,2'-bipyridine ligands for Gram-positive antibacterial studies. The AIE properties of these complexes were exploited for selective discrimination between Gram-positive and Gram-negative bacteria. These complexes displayed good antimicrobial activity against critical Gram-positive ESKAPE pathogens with minimum inhibitory concentrations in the low micromolar range but were inactive against Gram-negative pathogens. Importantly, the complexes can inhibit biofilm formation and eradicate bacteria from mature biofilms, which are major causes of persistent infections and antibiotic resistance and are more difficult to eliminate. In addition, these complexes showed low hemolytic activity against mammalian cells and a high therapeutic index, indicating good selectivity. Interestingly, the complexes kill bacteria through a variety of modes of mechanism, including ROS generation, cell membrane disruption, and depolarization and the loss of bacterial membrane integrity. These findings offer opportunities for designing metal AIEgens to treat Gram-positive bacterial infections effectively.
Collapse
Affiliation(s)
- Aryan Gautam
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pijus K Sasmal
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
2
|
Pei L, Yu X, Shan X, Li G. Transition metal complexes: next-generation photosensitizers for combating Gram-positive bacteria. Future Med Chem 2025; 17:467-484. [PMID: 39878538 PMCID: PMC11834427 DOI: 10.1080/17568919.2025.2458459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
The rise of antibiotic-resistant Gram-positive bacterial infections poses a significant threat to public health, necessitating the exploration of alternative therapeutic strategies. A photosensitizer (PS) can convert energy from absorbed photon into reactive oxygen species (ROS) for damaging bacteria. This photoinactivation action bypassing conventional antibiotic mechanism is less prone to resistance development, making antibacterial photodynamic therapy (aPDT) highly efficient in combating Gram-positive bacteria. Photodynamic transition metal complexes leveraging the unique properties of metals to enhance the aPDT activity are the next-generation PS. This review provides an overview of metal-based PS for combating Gram-positive bacteria. Based on the structures, these metal-PS could be mainly classified as metal-tetrapyrrole derivatives, ruthenium complexes, iridium complexes, and zinc complexes. PS based on complexes of other transition metals such as silver, cobalt, and rhenium are also presented. Finally, we summarize the advantages and shortcomings of these metal- PS, conclude some critical aspects impacting their aPDT performances and give a perspective on their future development.
Collapse
Affiliation(s)
- Lingmin Pei
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, P. R. China
| | - Xianyi Yu
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, P. R. China
| | - Xiaoyu Shan
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, P. R. China
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R., China
| | - Guanying Li
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R., China
| |
Collapse
|
3
|
Gautam A, Gupta A, Prasad P, Sasmal PK. Development of Cyclometalated Iridium(III) Complexes of 2-Phenylbenzimidazole and Bipyridine Ligands for Selective Elimination of Gram-Positive Bacteria. Chem Asian J 2025; 20:e202401060. [PMID: 39520124 DOI: 10.1002/asia.202401060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Herein, we have reported a series of cationic aggregation-induced emission (AIE) active iridium(III) complexes (Ir1-Ir5) of the type [Ir(C N)2(N N)]Cl, wherein C N is a cyclometalating 2-phenylbenzimidazole ligand with varying alkyl chain lengths and N N is a 2,2'-bipyridine ligand attached to bis-polyethylene glycol chains, for the treatment of bacterial infections. The AIE phenomenon of the complexes leveraged for detecting bacteria by fluorescence microscopy imaging that displayed a strong red emission in Gram-positive bacteria. The antibacterial activity of the complexes assessed against Gram-positive methicillin-sensitive S. aureus, methicillin-resistant S. aureus, E. faecium and E. faecalis and Gram-negative E. coli and P. aeruginosa bacteria of clinical interest. The complexes Ir2-Ir4 exerted potent antibacterial activity towards Gram-positive strains with low minimum inhibitory concentrations (MICs) values in the range of 1-9 μM, which is comparable to clinically approved antibiotic vancomycin. In contrast, these complexes were found to be inactive towards Gram-negative bacterial strains (MICs >100 μM). The mechanism of antibacterial activity of the complexes implies that ROS generation, membrane depolarization and rupture are responsible for bacterial cell death. Further, the complexes Ir1-Ir3 were found to be low-toxic against human red blood cells and human embryonic kidney (HEK293) cells, indicating their potential for use as antibacterial agents.
Collapse
Affiliation(s)
- Aryan Gautam
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ajay Gupta
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Puja Prasad
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh, 201303, India
| | - Pijus K Sasmal
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
4
|
Liu GJ, Zhang JD, Zhou W, Feng GL, Xing GW. Recent advances in sugar-based AIE luminogens and their applications in sensing and imaging. Chem Commun (Camb) 2024; 60:11899-11915. [PMID: 39323243 DOI: 10.1039/d4cc03850a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Most fluorogens with aggregation-induced emission (AIE) characteristics are hydrophobic and most common sugars are hydrophilic and naturally nontoxic. The combination of AIEgens and sugars can construct glycosyl AIEgens with the advantages of good water-solubility, low fluorescent background and satisfactory biocompatibility. Based on the specific reaction or binding with analytes to change the conjugate system or restrict intramolecular motions, glycosyl AIEgens can be used as powerful tools for detecting bioactive molecules or imaging living cells. In this feature article, we summarize recent advances in sugar-based AIE luminogens and their applications in biosensing and imaging. The sugar units could significantly increase the solubility, biocompatibility, target activity, and chemical modifying capacity and often decrease the background fluorescence of the AIE probes. Corresponding studies not only expand the application fields of AIEgens but also provide effective tools for broad carbohydrate research.
Collapse
Affiliation(s)
- Guang-Jian Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Jing-Dong Zhang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Wei Zhou
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Gai-Li Feng
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Guo-Wen Xing
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
5
|
Bera S, Selvakumaraswamy A, Nayak BP, Prasad P. Aggregation-induced emission luminogens for latent fingerprint detection. Chem Commun (Camb) 2024; 60:8314-8338. [PMID: 39037456 DOI: 10.1039/d4cc02026j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
For over a century, fingerprints have served as a pivotal tool for identification of individuals owing to their enduring characteristics and easily apparent features, particularly in the realm of criminal investigations. Latent fingerprints (LFPs) are "invisible fingerprints" that are most commonly available at crime scenes and require a rapid, selective, sensitive, and convenient method for detection. However, existing fingerprint development techniques harbour limitations, prompting the exploration of novel approaches that prioritize investigator safety and environmental sustainability. Leveraging the unique photophysical properties of aggregation-induced emission luminogens (AIEgens) has emerged as a promising strategy for on-site analysis of LFP visualization. In this highlight, we have presented a comparative analysis of various AIEgens (organic compounds, metal complexes, nanoparticles, and polymers) for the development and detection of LFPs. Through this examination, insights into the efficiency and potential applications of AIE-based fingerprint development techniques are provided. In addition, several strategies have been proposed for circumventing the limitations of existing AIEgens. We hope that this highlight article will encourage more researchers to investigate AIEgens in LFP detection, contributing to forensic science.
Collapse
Affiliation(s)
- Sonali Bera
- Medicinal Chemistry and Chemical Biology Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201303, India.
| | | | - Biswa Prakash Nayak
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh 201303, India
| | - Puja Prasad
- Medicinal Chemistry and Chemical Biology Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201303, India.
| |
Collapse
|
6
|
Zhang Q, Wang Y, Ma D, Pan X, Sheng E, Shen J, Liang D, Wang C, Qian C, Qian W, Zhu D. Boronic functionalized aptamer macroarrays with dual-recognition and isothermal amplification of lipopolysaccharide detection. Mikrochim Acta 2024; 191:476. [PMID: 39037471 DOI: 10.1007/s00604-024-06567-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
A highly sensitive dual-recognition fluorescence amplification method is presented for lipopolysaccharide (LPS) detection based on boronic functionalized aptamer macroarrays with dual-recognition and isothermal amplification. The surface of the polystyrene microplate was firstly carboxylated, and then, 3-aminophenylboronic acid was conjugated to the carboxyl groups through EDC/NHS reaction, creating boronic acid groups as the capture moiety for LPS. A recognition DNA aptamer labeled with the fluorescent dye 6-FAM, which exhibits specificity towards LPS, was selected as the signal reporting moiety. By introducing primers and Klenow enzyme, the fluorescent-labeled aptamers are released from the microplate bottom, and double-stranded structures were formed via isothermal amplification. The addition of SYBR Green I, which strongly fluoresces upon binding to the double-stranded structures, enables signal amplification and detection. This detection method exhibits a linear range of 1-10,000 ng/mL and has a detection limit as low as 401.93 pg/mL. This analytical approach shows high selectivity and sensitivity and may serve as a universal platform in lipopolysaccharide detection.
Collapse
Affiliation(s)
- Qijia Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Yuting Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Dandan Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Xing Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Enze Sheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Jiachen Shen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Dongbing Liang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Chao Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Chen Qian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Wenhui Qian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Dong Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China.
| |
Collapse
|
7
|
Das B, Biswas P, Mallick AI, Gupta P. Application of Mono and Trinuclear Cyclometalated Iridium (III) Complexes in Differential Bacterial Imaging and Antimicrobial Photodynamic Therapy. Chemistry 2024; 30:e202400646. [PMID: 38652686 DOI: 10.1002/chem.202400646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
The application of transition metal complexes for antimicrobial photodynamic therapy (PDT) has emerged as an attractive alternative in mitigating a broad range of bacterial pathogens, including multidrug-resistant pathogens. In view of their photostability, long excited-state lifetimes, and tunable emission properties, transition metal complexes also contribute as bioimaging agents. In the present work, we designed mono and trinuclear cyclometalated iridium (III) complexes to explore their imaging application and antibacterial potential. For this, we used Methicillin-resistant S. aureus (MRSA), the most prevalent of community-associated (CA) multidrug-resistant (MDR) bacteria (CA MDR) and Lactococcus lactis (L. lactis) as Gram-positive while Campylobacter jejuni (C. jejuni) and E. coli as Gram-negative bacteria. In addition to differential bioimaging of these bacteria, we assessed the antibacterial effects of both mono and trinuclear Ir(III) complexes under exposure to 427 nm LED light. The data presented herein strongly suggest better efficacy of trinuclear Ir(III) complex over the mononuclear complex in imparting photoinduced cell death of MRSA. Based on the safety profile of these complexes, we propose that trinuclear cyclometalated iridium(III) complex holds great promise for selective recognition and targeting MDR bacteria with minimal off-target effect.
Collapse
Affiliation(s)
- Bishnu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
- Present address, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, 13699, New York, US
| | - Prakash Biswas
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Amirul Islam Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Parna Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|
8
|
Lodowski P, Jaworska M. Theoretical Investigation of Iridium Complex with Aggregation-Induced Emission Properties. Molecules 2024; 29:580. [PMID: 38338325 PMCID: PMC10856369 DOI: 10.3390/molecules29030580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
The mechanism of aggregation-induced emission (AIE) for the bis(1-(2,4-difluorophenyl)-1H-pyrazole)(2-(20-hydroxyphenyl)-2-oxazoline)iridium(III) complex, denoted as Ir(dfppz)2(oz), was investigated with use DFT and the TD-DFT level of theory. The mechanism of radiationless deactivation of the triplet state was elucidated. Such a mechanism requires an additional, photophysical triplet channel of the internal conversion (IC) type, which is activated as a result of intramolecular motion deforming the structure of the oz ligand and distorting the iridium coordination sphere. Formally, the rotational movement of the oxazoline relative to the C-C bond in the oz ligand is the main active coordinate that leads to the opening of the triplet channel. The rotation of the oxazoline group and the elongation of the Ir-Nox bond cause a transition between the luminescent, low-lying triplet state with a d/π→π* characteristic (T1(eq)), and the radiationless d→d triplet state (T1(Ir)). This transition is made possible by the low energy barrier, which, based on calculations, was estimated at approximately 8.5 kcal/mol. Dimerization, or generally aggregation of the complex molecules, blocks the intramolecular movement in the ligand and is responsible for a strong increase in the energy barrier for the T1(eq)⇝T1(Ir) conversion of triplet states. Thus, the aggregation phenomenon blocks the nonradiative deactivation channel of the excited states and, consequently, contributes to directing the photophysical process toward phosphorescence. The mechanism involved in locking the nonradiative triplet path can be called restricted access to singlet-triplet crossing (RASTC).
Collapse
Affiliation(s)
| | - Maria Jaworska
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland;
| |
Collapse
|
9
|
Bhattacharya S, Pal P, Baitalik S. Design of molecular sensors and switches based on luminescent ruthenium-terpyridine complexes bearing active methylene and triphenylphosphonium motifs as anion recognition sites: experimental and DFT/TD-DFT investigation. Dalton Trans 2024; 53:1307-1321. [PMID: 38115813 DOI: 10.1039/d3dt03681b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Synthesis, characterization and thorough investigation of the photophysical and electrochemical properties of a new category of emissive homo- and heteroleptic Ru(II)-complexes derived from the [4'-(p-triphenylphosphonium methyl phenyl)-2,2':6',2''-terpyridine]bromide (tpy-PhCH2PPh3Br) ligand have been executed in this work. Incorporation of the PhCH2PPh3+Br- group at the terpyridine motif appropriately adjusts the triplet metal-to-ligand charge transfer (3MLCT) and metal-centered (3MC) excited states so that the complexes luminesce at room temperature (RT) having lifetimes within the range of 6.82-9.63 ns. The RT emission characteristics of the complexes get further enhanced via aggregation phenomena through the use of different solvent/non-solvent mixtures (DMSO/H2O and DMSO/PhCH3 mixtures). Temperature dependent emission spectral measurements indicate that the emission intensity, quantum yield and lifetime increase upon dropping down the temperature, thereby designated as the on-state, while the increase of temperature causes a reduction of the said properties, indicating the off-state and the process is fully reversible. Taking advantage of the active methylene group coupled with a phosphonium motif, anion sensing characteristics of the complexes are investigated systematically in DMSO through the use of various optical channels and spectroscopic tools. The complexes are very much sensitive to fluoride and to a lesser extent acetate and dihydrogen phosphate among the studied anions. In essence, the complexes function as sensors for temperature and fluoride ion. Computational investigations were also executed via density functional theory (DFT) and time-dependent (TD)-DFT to obtain a clear understanding of the electronic structures of the metalloreceptors, appropriate assignment of the spectral bands and their mode of interaction with selected anions.
Collapse
Affiliation(s)
- Sohini Bhattacharya
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India.
| | - Poulami Pal
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India.
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S C Mullick Road, Kolkata 700032, India
| | - Sujoy Baitalik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
10
|
Zhu R, Qin F, Zheng X, Fang S, Ding J, Wang D, Liang L. Single-molecule lipopolysaccharides identification and the interplay with biomolecules via nanopore readout. Biosens Bioelectron 2023; 240:115641. [PMID: 37657310 DOI: 10.1016/j.bios.2023.115641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Lipopolysaccharides (LPS) are the major constituent on the cell envelope of all gram-negative bacteria. They are ubiquitous in air, and are toxic inflammatory stimulators for urinary disorders and sepsis. The reported optical, thermal, and electrochemical sensors via the intermolecular interplay of LPS with proteins and aptamers are generally complicated methods. We demonstrate the single-molecule nanopore approach for LPS identification in distinct bacteria as well as the serotypes discrimination. With a 4 nm nanopore, we achieve a detection limit of 10 ng/mL. Both the antibiotic polymyxin B (PMB) and DNA aptamer display specific binding to LPS. The identification of LPS in both human serum and tap water show good performance with nanopore platforms. Our work shows a highly-sensitive and easy-to-handle scheme for clinical and environmental biomarkers determination and provides a promising screening tool for early warning of contamination in water and medical supplies.
Collapse
Affiliation(s)
- Rui Zhu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China; Chongqing Jiaotong University, Chongqing, 400014, PR China
| | - Fupeng Qin
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China
| | - Xinchuan Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China
| | - Shaoxi Fang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China
| | - Jianjun Ding
- Southwest University, Chongqing, 400715, PR China
| | - Deqiang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China.
| | - Liyuan Liang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China.
| |
Collapse
|
11
|
Chen L, Zhao Y, Wu W, Zeng Q, Wang JJ. New trends in the development of photodynamic inactivation against planktonic microorganisms and their biofilms in food system. Compr Rev Food Sci Food Saf 2023; 22:3814-3846. [PMID: 37530552 DOI: 10.1111/1541-4337.13215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023]
Abstract
The photodynamic inactivation (PDI) is a novel and effective nonthermal inactivation technology. This review provides a comprehensive overview on the bactericidal ability of endogenous photosensitizers (PSs)-mediated and exogenous PSs-mediated PDI against planktonic bacteria and their biofilms, as well as fungi. In general, the PDI exhibited a broad-spectrum ability in inactivating planktonic bacteria and fungi, but its potency was usually weakened in vivo and for eradicating biofilms. On this basis, new strategies have been proposed to strengthen the PDI potency in food system, mainly including the physical and chemical modification of PSs, the combination of PDI with multiple adjuvants, adjusting the working conditions of PDI, improving the targeting ability of PSs, and the emerging aggregation-induced emission luminogens (AIEgens). Meanwhile, the mechanisms of PDI on eradicating mono-/mixed-species biofilms and preserving foods were also summarized. Notably, the PDI-mediated antimicrobial packaging film was proposed and introduced. This review gives a new insight to develop the potent PDI system to combat microbial contamination and hazard in food industry.
Collapse
Affiliation(s)
- Lu Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Weiliang Wu
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qiaohui Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- Foshan Research Center for Quality Safety of the Whole Industry Chain of Agricultural Products, Foshan University, Foshan, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products, Foshan University, Foshan, China
- Foshan Research Center for Quality Safety of the Whole Industry Chain of Agricultural Products, Foshan University, Foshan, China
| |
Collapse
|
12
|
Wang H, Li Q, Alam P, Bai H, Bhalla V, Bryce MR, Cao M, Chen C, Chen S, Chen X, Chen Y, Chen Z, Dang D, Ding D, Ding S, Duo Y, Gao M, He W, He X, Hong X, Hong Y, Hu JJ, Hu R, Huang X, James TD, Jiang X, Konishi GI, Kwok RTK, Lam JWY, Li C, Li H, Li K, Li N, Li WJ, Li Y, Liang XJ, Liang Y, Liu B, Liu G, Liu X, Lou X, Lou XY, Luo L, McGonigal PR, Mao ZW, Niu G, Owyong TC, Pucci A, Qian J, Qin A, Qiu Z, Rogach AL, Situ B, Tanaka K, Tang Y, Wang B, Wang D, Wang J, Wang W, Wang WX, Wang WJ, Wang X, Wang YF, Wu S, Wu Y, Xiong Y, Xu R, Yan C, Yan S, Yang HB, Yang LL, Yang M, Yang YW, Yoon J, Zang SQ, Zhang J, Zhang P, Zhang T, Zhang X, Zhang X, Zhao N, Zhao Z, Zheng J, Zheng L, Zheng Z, Zhu MQ, Zhu WH, Zou H, Tang BZ. Aggregation-Induced Emission (AIE), Life and Health. ACS NANO 2023; 17:14347-14405. [PMID: 37486125 PMCID: PMC10416578 DOI: 10.1021/acsnano.3c03925] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Light has profoundly impacted modern medicine and healthcare, with numerous luminescent agents and imaging techniques currently being used to assess health and treat diseases. As an emerging concept in luminescence, aggregation-induced emission (AIE) has shown great potential in biological applications due to its advantages in terms of brightness, biocompatibility, photostability, and positive correlation with concentration. This review provides a comprehensive summary of AIE luminogens applied in imaging of biological structure and dynamic physiological processes, disease diagnosis and treatment, and detection and monitoring of specific analytes, followed by representative works. Discussions on critical issues and perspectives on future directions are also included. This review aims to stimulate the interest of researchers from different fields, including chemistry, biology, materials science, medicine, etc., thus promoting the development of AIE in the fields of life and health.
Collapse
Affiliation(s)
- Haoran Wang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Qiyao Li
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Parvej Alam
- Clinical
Translational Research Center of Aggregation-Induced Emission, School
of Medicine, The Second Affiliated Hospital, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Haotian Bai
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Organic
Solids, Institute of Chemistry, Chinese
Academy of Sciences, Beijing 100190, China
| | - Vandana Bhalla
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Mingyue Cao
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Chao Chen
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Sijie Chen
- Ming
Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong Kong SAR 999077, China
| | - Xirui Chen
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Yuncong Chen
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), Department of Cardiothoracic Surgery, Nanjing Drum Tower
Hospital, Medical School, Nanjing University, Nanjing 210023, China
| | - Zhijun Chen
- Engineering
Research Center of Advanced Wooden Materials and Key Laboratory of
Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dongfeng Dang
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049 China
| | - Dan Ding
- State
Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive
Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Siyang Ding
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s Hospital (The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Meng Gao
- National
Engineering Research Center for Tissue Restoration and Reconstruction,
Key Laboratory of Biomedical Engineering of Guangdong Province, Key
Laboratory of Biomedical Materials and Engineering of the Ministry
of Education, Innovation Center for Tissue Restoration and Reconstruction,
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wei He
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Xuewen He
- The
Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren’ai Road, Suzhou 215123, China
| | - Xuechuan Hong
- State
Key Laboratory of Virology, Department of Cardiology, Zhongnan Hospital
of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuning Hong
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jing-Jing Hu
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Rong Hu
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
| | - Xiaolin Huang
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Xingyu Jiang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory
of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Gen-ichi Konishi
- Department
of Chemical Science and Engineering, Tokyo
Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Ryan T. K. Kwok
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Jacky W. Y. Lam
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Chunbin Li
- College
of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory
of Fine Organic Synthesis, Inner Mongolia
University, Hohhot 010021, China
| | - Haidong Li
- State
Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Kai Li
- College
of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Nan Li
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory
of Applied Surface and Colloid Chemistry of Ministry of Education,
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Wei-Jian Li
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Ying Li
- Innovation
Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal
and Guangdong Provincial Key Laboratory of Molecular Target &
Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xing-Jie Liang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Yongye Liang
- Department
of Materials Science and Engineering, Shenzhen Key Laboratory of Printed
Organic Electronics, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Bin Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Guozhen Liu
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Xingang Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xiaoding Lou
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Xin-Yue Lou
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Liang Luo
- National
Engineering Research Center for Nanomedicine, College of Life Science
and Technology, Huazhong University of Science
and Technology, Wuhan 430074, China
| | - Paul R. McGonigal
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Zong-Wan Mao
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Guangle Niu
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Tze Cin Owyong
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Andrea Pucci
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, Pisa 56124, Italy
| | - Jun Qian
- State
Key Laboratory of Modern Optical Instrumentations, Centre for Optical
and Electromagnetic Research, College of Optical Science and Engineering,
International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Anjun Qin
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Zijie Qiu
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Andrey L. Rogach
- Department
of Materials Science and Engineering, City
University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Bo Situ
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kazuo Tanaka
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura,
Nishikyo-ku, Kyoto 615-8510, Japan
| | - Youhong Tang
- Institute
for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Bingnan Wang
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Dong Wang
- Center
for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianguo Wang
- College
of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory
of Fine Organic Synthesis, Inner Mongolia
University, Hohhot 010021, China
| | - Wei Wang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Wen-Xiong Wang
- School
of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Wen-Jin Wang
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Central
Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-
Shenzhen), & Longgang District People’s Hospital of Shenzhen, Guangdong 518172, China
| | - Xinyuan Wang
- Department
of Materials Science and Engineering, Shenzhen Key Laboratory of Printed
Organic Electronics, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Yi-Feng Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Shuizhu Wu
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, College
of Materials Science and Engineering, South
China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Yifan Wu
- Innovation
Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal
and Guangdong Provincial Key Laboratory of Molecular Target &
Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yonghua Xiong
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Ruohan Xu
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049 China
| | - Chenxu Yan
- Key
Laboratory for Advanced Materials and Joint International Research,
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Saisai Yan
- Center
for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hai-Bo Yang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Lin-Lin Yang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Mingwang Yang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Ying-Wei Yang
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Juyoung Yoon
- Department
of Chemistry and Nanoscience, Ewha Womans
University, Seoul 03760, Korea
| | - Shuang-Quan Zang
- College
of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Jiangjiang Zhang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory
of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
- Key
Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry
and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Pengfei Zhang
- Guangdong
Key Laboratory of Nanomedicine, Shenzhen, Engineering Laboratory of
Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, University Town of Shenzhen, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Tianfu Zhang
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Xin Zhang
- Department
of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Westlake
Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Xin Zhang
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Na Zhao
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory
of Applied Surface and Colloid Chemistry of Ministry of Education,
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Zheng Zhao
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Jie Zheng
- Department
of Chemical, Biomolecular, and Corrosion Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Lei Zheng
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zheng Zheng
- School of
Chemistry and Chemical Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Ming-Qiang Zhu
- Wuhan
National
Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei-Hong Zhu
- Key
Laboratory for Advanced Materials and Joint International Research,
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hang Zou
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
13
|
Gangaram S, Naidoo Y, Dewir YH, Singh M, Lin J, Murthy HN. Phytochemical Composition and Antibacterial Activity of Barleria albostellata C.B. Clarke Leaf and Stem Extracts. PLANTS (BASEL, SWITZERLAND) 2023; 12:2396. [PMID: 37446958 DOI: 10.3390/plants12132396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023]
Abstract
Barleria albostellata (Acanthaceae) is a shrub located in South Africa and is relatively understudied. However, plants within this genus are well known for their medicinal and ethnopharmacological properties. This study aimed to characterise the phytochemical compounds and antibacterial efficacies of B. albostellata. Phytochemical analysis, fluorescence microscopy and gas chromatography-mass spectrometry (GC-MS) analysis were performed to determine the composition of compounds that may be of medicinal importance. Crude leaf and stem extracts (hexane, chloroform and methanol) were subjected to an antibacterial analysis against several pathogenic microorganisms. The qualitative phytochemical screening of leaf and stem extracts revealed the presence various compounds. Fluorescence microscopy qualitatively assessed the leaf and stem powdered material, which displayed various colours under bright and UV light. GC-MS chromatograms represents 10-108 peaks of various compounds detected in the leaf and stem crude extracts. Major pharmacologically active compounds found in the extracts were alpha-amyrin, flavone, phenol, phytol, phytol acetate, squalene and stigmasterol. Crude extracts positively inhibited Gram-positive and Gram-negative bacteria. Significance was established at p < 0.05 for all concentrations and treatments. These results indicate that the leaves and stems of B. albostellata are rich in bioactive compounds, which could be a potential source of antibacterial agents for treating various diseases linked to the pathogenic bacteria studied. Future discoveries from this plant could advance the use of indigenous traditional medicine and provide novel drug leads.
Collapse
Affiliation(s)
- Serisha Gangaram
- School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Yougasphree Naidoo
- School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Yaser Hassan Dewir
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Moganavelli Singh
- School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Johnson Lin
- School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | | |
Collapse
|
14
|
Ganguly T, Pal P, Maity D, Baitalik S. Synthesis, characterization and emission switching behaviors of styrylphenyl-conjugated Ru(II)-terpyridine complexes via aggregation and trans–cis photoisomerization. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
15
|
Specific discrimination and efficient elimination of gram-positive bacteria by an aggregation-induced emission-active ruthenium (II) photosensitizer. Eur J Med Chem 2023; 251:115249. [PMID: 36893623 DOI: 10.1016/j.ejmech.2023.115249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
The infections caused by Gram-positive bacteria (G+) have seriously endangered public heath due to their high morbidity and mortality. Therefore, it is urgent to develop a multifunctional system for selective recognition, imaging and efficient eradication of G+. Aggregation-induced emission materials have shown great promise for microbial detection and antimicrobial therapy. In this paper, a multifunctional ruthenium (II) polypyridine complex Ru2 with aggregation-induced emission (AIE) characteristic, was developed and used for selective discrimination and efficient extermination of G+ from other bacteria with unique selectivity. The selective G+ recognition benefited from the interaction between lipoteichoic acids (LTA) and Ru2. Accumulation of Ru2 on the G+ membrane turned on its AIE luminescence and allowed specific G+ staining. Meanwhile, Ru2 under light irradiation also possessed robust antibacterial activity for G+in vitro and in vivo antibacterial experiments. To the best of our knowledge, Ru2 is the first Ru-based AIEgen photosensitizer for simultaneous dual applications of G+ detection and treatment, and inspires the development of promising antibacterial agents in the future.
Collapse
|
16
|
Fumoto T, Tanaka R, Ooyama Y. Aggregation-induced emission of a bis(imino)acenaphthene zinc complex with tetraphenylethene units. Dalton Trans 2023; 52:5047-5055. [PMID: 36807366 DOI: 10.1039/d2dt03525a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Using bis(imino)acenaphthene (BIAN) zinc(II) and palladium(II) complexes with tetraphenylethene (TPE) units as bulky aryl groups, Zn-2 and Pd-2 have been designed and developed, and their photophysical properties in solution and in the solid state have been investigated. Both in solution and in the solid state Zn-2 and Pd-2 show two photoabsorption bands in the ranges of 300 nm to 350 nm and 450 nm to 600 nm, which are assigned to the π-π* transition originating from both the TPE units and naphthalene units and the intraligand charge transfer (ILCT) between the TPE units and the BIAN unit, respectively. Density functional theory (DFT) calculations demonstrated that for Zn-2 the highest occupied molecular orbitals (HOMO) are localized on the TPE units, while the lowest unoccupied molecular orbitals (LUMO) are localized on the BIAN unit, leading to the appearance of a photoabsorption band on the ILCT. The emission from Zn-2 was quenched in solution, but appeared as phosphorescence at around 600 nm by photoexcitation at the ILCT band in the solid state as well as in the aggregated state, which was formed by the addition of n-hexane as a poor solvent to the dichloromethane (DCM) solution. The aggregate formation of Zn-2 in the DCM/n-hexane (10 wt%/90 wt%) solution was confirmed by the Tyndall scattering and scanning electron microscopy (SEM) measurements, demonstrating the aggregation-induced emission (AIE) characteristics of Zn-2. On the other hand, Pd-2 was non-emissive in the solid state and in the aggregated state as well as in solution. Moreover, the DCM-inclusion complexes of Zn-2 and Pd-2 were obtained and their photophysical properties were investigated. It was found that the photoluminescence quantum yield (ΦPL-solid) values of Zn-2 and Zn-2-DCM in the solid state are less than 1%. Single-crystal X-ray structural analysis of Zn-2-DCM revealed the absence of intermolecular π-π interactions. Consequently, it was suggested that the low ΦPL-solid value of Zn-2 is mainly due to the radiationless relaxation of the excitons by dynamic rotation of the phenyl groups of the TPE units, even in the solid state and in the aggregation state.
Collapse
Affiliation(s)
- Takuma Fumoto
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | - Ryo Tanaka
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | - Yousuke Ooyama
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| |
Collapse
|
17
|
Nurnabi M, Gurusamy S, Wu JY, Lee CC, Sathiyendiran M, Huang SM, Chang CH, Chao I, Lee GH, Peng SM, Sathish V, Thanasekaran P, Lu KL. Aggregation-induced emission enhancement (AIEE) of tetrarhenium(I) metallacycles and their application as luminescent sensors for nitroaromatics and antibiotics. Dalton Trans 2023; 52:1939-1949. [PMID: 36691828 DOI: 10.1039/d2dt03408e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The self-assembly of tetrarhenium metallacycles [{Re(CO)3}2(μ-dhaq)(μ-N-N)]2 (3a, N-N = 1,3-bis(1-butylbenzimidazol-2-yl)benzene; 3b, N-N = 1,3-bis(1-octylbenzimidazol-2-yl)benzene), (H2-dhaq = 1,4-dihydroxy-9,10-anthraquinone) and [{Re(CO)3}2(μ-thaq)(μ-N-N)]2 (4, N-N = 1,3-bis(1-butylbenzimidazol-2-yl)benzene), (H2-thaq = 1,2,4-trihydroxy-9,10-anthraquinone) under solvothermal conditions is described. The metallacycles 3a,b and 4 underwent aggregation-induced emission enhancement (AIEE) in THF upon the incremental addition of water. TEM images revealed that metallacycle 3a in a 60% aqueous THF solution formed rectangular aggregates with a wide size distribution, while a 90% aqueous THF solution resulted in the formation of a mixture of nanorods and amorphous aggregates due to rapid and abrupt aggregation. UV-vis and emission spectral profiles supported the formation of nanoaggregates of metallacycles 3a,b and 4 upon the gradual addition of water to a THF solution containing metallacycles. Further studies indicated that these nanoaggregates were excellent probes for the sensitive and selective detection of nitro group containing picric acid (PA) derivatives as well as antibiotics.
Collapse
Affiliation(s)
| | - Shunmugasundaram Gurusamy
- PG and Research Department of Chemistry, V. O. Chidambaram College, Tuticorin - 628 008, Tamil Nadu, India
| | - Jing-Yun Wu
- Department of Applied Chemistry, National Chi Nan University, Nantou 545, Taiwan
| | - Chung-Chou Lee
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | | | | | - Che-Hao Chang
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Ito Chao
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Gene-Hsiang Lee
- Department of Chemistry, National Taiwan University, Taipei 107, Taiwan
| | - Shie-Ming Peng
- Department of Chemistry, National Taiwan University, Taipei 107, Taiwan
| | - Veerasamy Sathish
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam - 638 401, India
| | | | - Kuang-Lieh Lu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan. .,Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan
| |
Collapse
|
18
|
Gupta A, Adarsh T, Manchanda V, Sasmal PK, Gupta S. COVID-19 detection using AIE-active iridium complexes. Dalton Trans 2023; 52:1188-1192. [PMID: 36656120 DOI: 10.1039/d2dt03554e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The highly contagious COVID-19, caused by the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is commonly diagnosed using reverse transcription polymerase chain reaction (RT-PCR). However, despite being highly sensitive, RT-PCR is also time consuming and quite complex, which limits its use for point-of-care (POC) testing. We have developed a simple single-step fluorescence assay for SARS-CoV-2 RNA detection based on the principle of aggregation-induced emission (AIE) using iridium complexes. Our smartly designed iridium probes fluorescently "turn-on" in the presence of SARS-CoV-2 RNA and give specific results at room temperature within 10 min. The lower limit of detection (LOD) is 1.84 genome copies per reaction, and the sensitivity and specificity of the assay in 20 clinical samples are found to be 90% and 80%, respectively.
Collapse
Affiliation(s)
- Ajay Gupta
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Tarun Adarsh
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Vikas Manchanda
- Department of Microbiology, Maulana Azad Medical College, New Delhi 110002, India
| | - Pijus K Sasmal
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Shalini Gupta
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
19
|
Kumari G, Gupta A, Sah RK, Gautam A, Saini M, Gupta A, Kushawaha AK, Singh S, Sasmal PK. Development of Mitochondria Targeting AIE-Active Cyclometalated Iridium Complexes as Potent Antimalarial Agents. Adv Healthc Mater 2022; 12:e2202411. [PMID: 36515128 DOI: 10.1002/adhm.202202411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/10/2022] [Indexed: 12/15/2022]
Abstract
The emergence of resistance to conventional antimalarial treatments remains a major cause for concern. New drugs that target the distinct development stages of Plasmodium parasites are required to address this risk. Herein, water-soluble aggregation-induced emission active cyclometalated iridium(III) polypyridyl complexes (Ir1-Ir12) are developed for the elimination of malaria parasites. Remarkably, these complexes show potent antimalarial activity in low nanomolar range against 3D7 (chloroquine and artemisinin sensitive strain), RKL9 (chloroquine resistant strain), and R539T (artemisinin resistant strains) strains of Plasmodium falciparum with faster killing rate of malaria parasites. Concomitantly, these complexes exhibit efficient in vivo antimalarial activity against both the asexual and gametocyte stages of Plasmodium berghei malaria parasite, suggesting promising transmission-blocking potential. The complexes tend to localize into mitochondria of P. falciparum determined by image and cell-based assay. The mechanistic studies reveal that these complexes exert their antimalarial activity by increasing reactive oxygen species levels and disrupting its mitochondrial membrane potential. Furthermore, the mitochondrial-dependent antimalarial activity of these complexes is confirmed in yeast model. Thus, this study for the first time highlights the potential role of targeting P. falciparum mitochondria by iridium complexes in discovering and developing the next-generation antimalarial agents for treating multidrug resistant malaria parasites.
Collapse
Affiliation(s)
- Geeta Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ajay Gupta
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Raj Kumar Sah
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Aryan Gautam
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Monika Saini
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.,Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Budhha Nagar, Uttar Pradesh, 201314, India
| | - Aashima Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Akhilesh K Kushawaha
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pijus K Sasmal
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
20
|
Zhang Z, Kang M, Tan H, Song N, Li M, Xiao P, Yan D, Zhang L, Wang D, Tang BZ. The fast-growing field of photo-driven theranostics based on aggregation-induced emission. Chem Soc Rev 2022; 51:1983-2030. [PMID: 35226010 DOI: 10.1039/d1cs01138c] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photo-driven theranostics, also known as phototheranostics, relying on the diverse excited-state energy conversions of theranostic agents upon photoexcitation represents a significant branch of theranostics, which ingeniously integrate diagnostic imaging and therapeutic interventions into a single formulation. The combined merits of photoexcitation and theranostics endow photo-driven theranostics with numerous superior features. The applications of aggregation-induced emission luminogens (AIEgens), a particular category of fluorophores, in the field of photo-driven theranostics have been intensively studied by virtue of their versatile advantageous merits of favorable biocompatibility, tuneable photophysical properties, unique aggregation-enhanced theranostic (AET) features, ideal AET-favored on-site activation ability and ready construction of one-for-all multimodal theranostics. This review summarised the significant achievements of photo-driven theranostics based on AIEgens, which were detailedly elaborated and classified by their diverse theranostic modalities into three groups: fluorescence imaging-guided photodynamic therapy, photoacoustic imaging-guided photothermal therapy, and multi-modality theranostics. Particularly, the tremendous advantages and individual design strategies of AIEgens in pursuit of high-performance photosensitizing output, high photothermal conversion and multimodal function capability by adjusting the excited-state energy dissipation pathways are emphasized in each section. In addition to highlighting AIEgens as promising templates for modulating energy dissipation in the application of photo-driven theranostics, current challenges and opportunities in this field are also discussed.
Collapse
Affiliation(s)
- Zhijun Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Miaomiao Kang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Hui Tan
- Pneumology Department, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Nan Song
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Meng Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Peihong Xiao
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Liping Zhang
- Pneumology Department, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong 518172, China.
| |
Collapse
|
21
|
Ramdass A, Sathish V, Thanasekaran P. AIE or AIE(P)E-active transition metal complexes for highly sensitive detection of nitroaromatic explosives. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
22
|
Cai X, Xiong Z, Zhan J, Ping X, Zhu Y, Zuo J, Feng H, Qian Z. Dramatic Emission Enhancement of Aggregation-Induced Emission Luminogens by Dynamic Metal Coordination Bonds and Anti-Heavy-Atom Effect. Chem Commun (Camb) 2022; 58:10837-10840. [DOI: 10.1039/d2cc03809a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Restriction of intramolecular motions of AIEgens is greatly intensified by introducing dynamic metal coordination bonds to achieve dramatic fluorescence enhancement, which provides a simple and effective way to dramatically improve...
Collapse
|
23
|
Ding M, Wan S, Wu N, Yan Y, Li J, Bao X. Synthesis, Structural Characterization, and Antibacterial and Antifungal Activities of Novel 1,2,4-Triazole Thioether and Thiazolo[3,2- b]-1,2,4-triazole Derivatives Bearing the 6-Fluoroquinazolinyl Moiety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15084-15096. [PMID: 34881871 DOI: 10.1021/acs.jafc.1c02144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A total of 52 novel 1,2,4-triazole thioether and thiazolo[3,2-b]-1,2,4-triazole derivatives bearing the 6-fluoroquinazolinyl moiety were designed, synthesized, and evaluated as antimicrobial agents in agriculture based on the molecular hybridization strategy. Among them, molecular structures of compounds 5g and 6m were further confirmed via the single-crystal X-ray diffraction method. The bioassay results indicated that some of the target compounds possessed excellent antibacterial activities in vitro against the pathogen Xanthomonas oryzae pv. oryzae (Xoo). For example, compound 6u demonstrated a strong anti-Xoo efficacy with an EC50 value of 18.8 μg/mL, nearly 5-fold more active than that of the commercialized bismerthiazol (EC50 = 93.6 μg/mL). Moreover, the anti-Xoo mechanistic studies revealed that compound 6u exerted its antibacterial effects by increasing the permeability of bacterial membrane, reducing the content of extracellular polysaccharide, and inducing morphological changes of bacterial cells. Importantly, in vivo assays revealed its pronounced protection and curative effects against rice bacterial blight, proving its potential as a promising bactericide candidate for controlling Xoo. Moreover, compound 6u had a good pesticide-likeness based on Tice's criteria. More interestingly, compound 6u with high anti-Xoo activity also demonstrated a potent inhibitory effect of 80.8% against the fungus Rhizoctonia solani at 50 μg/mL, comparable to that of the commercialized chlorothalonil (85.9%). Overall, the current study will provide useful guidance for the rational design of more efficient agricultural antimicrobial agents using the thiazolo[3,2-b]-1,2,4-triazole derivatives bearing the 6-fluoroquinazolinyl moiety as lead compounds.
Collapse
Affiliation(s)
- Muhan Ding
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Suran Wan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Nan Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Ya Yan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Junhong Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Xiaoping Bao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
24
|
Ho P, Lee S, Kam C, Zhu J, Shan G, Hong Y, Wong W, Chen S. Fluorescence Imaging and Photodynamic Inactivation of Bacteria Based on Cationic Cyclometalated Iridium(III) Complexes with Aggregation-Induced Emission Properties. Adv Healthc Mater 2021; 10:e2100706. [PMID: 34296536 PMCID: PMC11468684 DOI: 10.1002/adhm.202100706] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/17/2021] [Indexed: 12/27/2022]
Abstract
Antibacterial photodynamic therapy (PDT) is one of the emerging methods for curbing multidrug-resistant bacterial infections. Effective fluorescent photosensitizers with dual functions of bacteria imaging and PDT applications are highly desirable. In this study, three cationic and heteroleptic cyclometalated Ir(III) complexes with the formula of [Ir(CˆN)2 (NˆN)][PF6 ] are prepared and characterized. These Ir(III) complexes named Ir(ppy)2 bP, Ir(1-pq)2 bP, and Ir(2-pq)2 bP are comprised of three CˆN ligands (i.e., 2-phenylpyridine (ppy), 1-phenylisoquinoline (1-pq), and 2-phenylquinoline (2-pq)) and one NˆN bidentate co-ligand (bP). The photophysical characterizations demonstrate that these Ir(III) complexes are red-emitting, aggregation-induced emission active luminogens. The substitution of phenylpyridine with phenylquinoline isomers in the molecules greatly enhances their UV and visible-light absorbance as well as the photoinduced reactive oxygen species (ROS) generation ability. All three Ir(III) complexes can stain both Gram-positive and Gram-negative bacteria efficiently. Interestingly, even though Ir(1-pq)2 bP and Ir(2-pq)2 bP are constitutional isomers with very similar structures and similar ROS generation ability in buffer, the former eradicates bacteria much more effectively than the other through white light-irradiated photodynamic inactivation. This work will provide valuable information on the rational design of Ir(III) complexes for fluorescence imaging and efficient photodynamic inactivation of bacteria.
Collapse
Affiliation(s)
- Po‐Yu Ho
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongP. R. China
| | - Sin‐Ying Lee
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongP. R. China
| | - Chuen Kam
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongP. R. China
| | - Junfei Zhu
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongP. R. China
| | - Guo‐Gang Shan
- Institute of Functional Materials Chemistry and National & Local United Engineering Lab for Power BatteryFaculty of ChemistryNortheast Normal UniversityChangchun130024P. R. China
| | - Yuning Hong
- Department of Chemistry and PhysicsLa Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoria3086Australia
| | - Wai‐Yeung Wong
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung HomHong KongP. R. China
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongP. R. China
| |
Collapse
|
25
|
Youf R, Müller M, Balasini A, Thétiot F, Müller M, Hascoët A, Jonas U, Schönherr H, Lemercier G, Montier T, Le Gall T. Antimicrobial Photodynamic Therapy: Latest Developments with a Focus on Combinatory Strategies. Pharmaceutics 2021; 13:1995. [PMID: 34959277 PMCID: PMC8705969 DOI: 10.3390/pharmaceutics13121995] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) has become a fundamental tool in modern therapeutics, notably due to the expanding versatility of photosensitizers (PSs) and the numerous possibilities to combine aPDT with other antimicrobial treatments to combat localized infections. After revisiting the basic principles of aPDT, this review first highlights the current state of the art of curative or preventive aPDT applications with relevant clinical trials. In addition, the most recent developments in photochemistry and photophysics as well as advanced carrier systems in the context of aPDT are provided, with a focus on the latest generations of efficient and versatile PSs and the progress towards hybrid-multicomponent systems. In particular, deeper insight into combinatory aPDT approaches is afforded, involving non-radiative or other light-based modalities. Selected aPDT perspectives are outlined, pointing out new strategies to target and treat microorganisms. Finally, the review works out the evolution of the conceptually simple PDT methodology towards a much more sophisticated, integrated, and innovative technology as an important element of potent antimicrobial strategies.
Collapse
Affiliation(s)
- Raphaëlle Youf
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Max Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Ali Balasini
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Franck Thétiot
- Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 6521, Université de Brest (UBO), CS 93837, 29238 Brest, France
| | - Mareike Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Alizé Hascoët
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Gilles Lemercier
- Coordination Chemistry Team, Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7312, Institut de Chimie Moléculaire de Reims (ICMR), Université de Reims Champagne-Ardenne, BP 1039, CEDEX 2, 51687 Reims, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
- CHRU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200 Brest, France
| | - Tony Le Gall
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| |
Collapse
|
26
|
Abstract
Bacterial infection remains a worldwide problem that requires urgent addressing. Overuse and poor disposal of antibacterial agents abet the emergence of bacterial resistance mechanisms. There is a clear need for new approaches for the development of antibacterial therapeutics. Herein, the antibacterial potential of molecules based on dithiocarbamate anions, of general formula R(R’)NCS2(−), and metal salts of transition metals and main group elements, is summarized. Preclinical studies show a broad range of antibacterial potential, and these investigations are supported by appraisals of possible biological targets and mechanisms of action to guide chemical syntheses. This bibliographic review of the literature points to the exciting potential of dithiocarbamate-based therapeutics in the crucial battle against bacteria. Additionally, included in this overview, for the sake of completeness, is mention of the far fewer studies on the antifungal potential of dithiocarbamates and even less work conducted on antiparasitic behavior.
Collapse
|
27
|
Wang B, Wu H, Hu R, Liu X, Liu Z, Wang Z, Qin A, Tang BZ. Cationic Tricyclic AIEgens for Concomitant Bacterial Discrimination and Inhibition. Adv Healthc Mater 2021; 10:e2100136. [PMID: 34019741 DOI: 10.1002/adhm.202100136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/18/2021] [Indexed: 12/15/2022]
Abstract
New ionic compounds with aggregation-induced emission (AIE) feature has been widely studied. These AIE-based luminogens (AIEgens) not only effectively resolve aggregation-caused quenching (ACQ) problems that are encountered for most of conventional fluorescent dyes, but also exhibit promising applications in biological imaging, potentially for a wide variety of diseases. However, such an AIE system needs to be further developed. In this work, a series of novel cationic AIEgens that are comprised of tricyclic 2-aminopyridinium derivatives with seven-membered rings are designed and synthesized via a simple, multicomponent reaction. Notably, these AIEgens exhibit the ability to specifically stain gram-positive bacteria. Moreover, a specific AIEgen, BMTAP-7, possesses highly efficient bacteriostatic ability for Staphylococcus aureus (S. aureus) in both liquid medium and solid agar plates, which have a minimum inhibitory concentration (MIC) between 4 and 8 µg mL-1 . Using live-cell imaging and a wash-free process, it is observed that hydrophilic AIEgens are localized to mitochondria, whereas lipophilic AIEgens display specific staining of lysosomes. These AIEgens with bacteriostatic activity hold great promise for distinguishing between bacterial types and inhibiting bacterial infections in situ.
Collapse
Affiliation(s)
- Bingnan Wang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates SCUT‐HKUST Joint Research Institute Center for Aggregation‐Induced Emission South China University of Technology (SCUT) Guangzhou 510640 China
| | - Haozhong Wu
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates SCUT‐HKUST Joint Research Institute Center for Aggregation‐Induced Emission South China University of Technology (SCUT) Guangzhou 510640 China
| | - Rong Hu
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates SCUT‐HKUST Joint Research Institute Center for Aggregation‐Induced Emission South China University of Technology (SCUT) Guangzhou 510640 China
| | - Xiaolin Liu
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction Institute for Advanced Study and Department of Chemical and Biological Engineering The Hong Kong University of Science & Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| | - Zhiyang Liu
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction Institute for Advanced Study and Department of Chemical and Biological Engineering The Hong Kong University of Science & Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| | - Zhiming Wang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates SCUT‐HKUST Joint Research Institute Center for Aggregation‐Induced Emission South China University of Technology (SCUT) Guangzhou 510640 China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates SCUT‐HKUST Joint Research Institute Center for Aggregation‐Induced Emission South China University of Technology (SCUT) Guangzhou 510640 China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates SCUT‐HKUST Joint Research Institute Center for Aggregation‐Induced Emission South China University of Technology (SCUT) Guangzhou 510640 China
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction Institute for Advanced Study and Department of Chemical and Biological Engineering The Hong Kong University of Science & Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| |
Collapse
|