1
|
Nguyen DD, Labella J, Laforga-Martín J, Folcia CL, Ortega J, Torres T, Sierra T, Sessler JL. Columnar liquid crystals based on antiaromatic expanded porphyrins. Chem Commun (Camb) 2024; 60:3401-3404. [PMID: 38440812 DOI: 10.1039/d3cc05414d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Three naphthorosarins, antiaromatic expanded porphyrins bearing different meso substituents (NRos 1-3), designed to self-assemble into columnar liquid crystalline (LC) structures, were synthesized and characterized using polarized optical microscopy (POM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), as well as supporting computational calculations. The substituents were found to play a crucial role in modulating the LC behaviour.
Collapse
Affiliation(s)
- Duong D Nguyen
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, A5300, Austin, TX, 78712, USA.
| | - Jorge Labella
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain.
| | - Juan Laforga-Martín
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain.
| | - César L Folcia
- Department of Physics, Faculty of Science and Technology, UPV/EHU, Bilbao, Spain
| | - Josu Ortega
- Department of Physics, Faculty of Science and Technology, UPV/EHU, Bilbao, Spain
| | - Tomás Torres
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
- IMDEA-Nanociencia, Campus de Cantoblanco, Madrid 28049, Spain
| | - Teresa Sierra
- Instituto de Nanociencia y Materiales de Aragón (INMA), Departamento de Química Orgánica, Facultad de Ciencias, CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, A5300, Austin, TX, 78712, USA.
| |
Collapse
|
2
|
Hazari AS, Chandra S, Kar S, Sarkar B. Metal Complexes of Singly, Doubly and Triply Linked Porphyrins and Corroles: An Insight into the Physicochemical Properties. Chemistry 2022; 28:e202104550. [PMID: 35088477 PMCID: PMC9311859 DOI: 10.1002/chem.202104550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 11/19/2022]
Abstract
Metal complexes of multi-porphyrins and multi-corroles are unique systems that display a host of extremely interesting properties. Availability of free meso and β positions allow formation of different types of directly linked bis-porphyrins giving rise to intriguing optical and electronic properties. While the fields of metalloporphyrin and corroles monomer have seen exponential growth in the last decades, the chemistry of metal complexes of bis-porphyrins and bis-corroles remain rather underexplored. Therefore, the impact of covalent linkages on the optical, electronic, (spectro)electrochemical, magnetic and electrocatalytic activities of metal complexes of bis-porphyrins and -corroles has been summarized in this review article. This article shows that despite the (still) somewhat difficult synthetic access to these molecules, their extremely exciting properties do make a strong case for pursuing research on these classes of compounds.
Collapse
Affiliation(s)
- Arijit Singha Hazari
- Lehrstuhl für Anorganische KoordinationschemieInstitut für Anorganische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Shubhadeep Chandra
- Lehrstuhl für Anorganische KoordinationschemieInstitut für Anorganische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Sanjib Kar
- School of Chemical SciencesNational Institute of Science Education and Research (NISER)Bhubaneswar752050India
- Homi Bhabha National InstituteTraining School ComplexMumbai400094(India)
| | - Biprajit Sarkar
- Lehrstuhl für Anorganische KoordinationschemieInstitut für Anorganische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| |
Collapse
|
3
|
Chen Y, Chang HY, Lee MT, Yang ZR, Wang CH, Wu KY, Chuang WT, Wang CL. Dual-Axis Alignment of Bulk Artificial Water Channels by Directional Water-Induced Self-Assembly. J Am Chem Soc 2022; 144:7768-7777. [PMID: 35417167 DOI: 10.1021/jacs.2c00929] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Approaching single-crystal-like morphology has always been important in driving materials toward their optimal properties. With only orientational order, liquid crystal (LC) materials require dual-axis orientational control to optimize their structural order in the bulk phase. However, current external guiding fields such as electrical, magnetic, and mechanical guiding fields are less effective in aligning amphiphilic LCs. In this study, water is developed as an excellent structural stabilizer and orientation-directing agent of an amphiphilic discotic molecule (AD) in the water-induced self-assembly (WISA) process. Thermal analysis and structural characterization results show that water increases the stability and domain sizes of the hexagonal columnar (Colh) phase of the AD by co-assembling with the ADs to form bulk artificial water channels (AWCs). Moreover, through control over the nucleation conditions (degree of supercooling and location of nucleation), dual-axis alignment in both the planar and vertical growth of the AWCs is achieved by applying water as the guiding field in the directional WISA. With precise control over the hierarchical structures, the bulk AWC array of the AD delivers excellent salt rejection properties and water permeability. Considering that all the amphiphilic LCs have hydrophilic segments, these new roles of water in the WISA process could launch the further development of functional amphiphilic LCs by providing a dynamic interaction and a readily available guiding field.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan
| | - Hsi-Yen Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan
| | - Mu-Tzu Lee
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan
| | - Zong-Ren Yang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Chia-Hsin Wang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Kuan-Yi Wu
- Department of Textile Engineering, Chinese Culture University, 55 Hwa-Kang Road, Yang-Ming-Shan, Taipei 11114, Taiwan
| | - Wei-Tsung Chuang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Chien-Lung Wang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan
| |
Collapse
|