1
|
Zheng MY, Jin ZB, Ma ZZ, Gu ZG, Zhang J. Photo-Curable 3D Printing of Circularly Polarized Afterglow Metal-Organic Framework Monoliths. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313749. [PMID: 38578135 DOI: 10.1002/adma.202313749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/04/2024] [Indexed: 04/06/2024]
Abstract
Developing coordination complexes (such as metal-organic frameworks, MOFs) with circularly polarized luminescence (CPL) is currently attracting tremendous attention and remains a significant challenge in achieving MOF with circularly polarized afterglow. Herein, MOFs-based circularly polarized afterglow is first reported by combining the chiral induction approach and tuning the afterglow times by using the auxiliary ligands regulation strategy. The obtained chiral R/S-ZnIDC, R/S-ZnIDC(bpy), and R/S-ZnIDC(bpe)(IDC = 1H-Imidazole-4,5-dicarboxylate, bpy = 4,4'-Bipyridine, bpe = trans-1,2-Bis(4-pyridyl) ethylene) containing a similar structure unit display different afterglow times with 3, 1, and <0.1 s respectively which attribute to that the longer auxiliary ligand hinders the energy transfer through the hydrogen bonding. The obtained chiral complexes reveal a strong chiral signal, obvious photoluminescence afterglow feature, and strong CPL performance (glum up to 3.7 × 10-2). Furthermore, the photo-curing 3D printing method is first proposed to prepare various chiral MOFs based monoliths from 2D patterns to 3D scaffolds for anti-counterfeiting and information encryption applications. This work not only develops chiral complexes monoliths by photo-curing 3D printing technique but opens a new strategy to achieve tunable CPL afterglow in optical applications.
Collapse
Affiliation(s)
- Ming-Yi Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Bin Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Zhou Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Gang Gu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Yan Y, Han M, Jiang Y, Ng ELL, Zhang Y, Owh C, Song Q, Li P, Loh XJ, Chan BQY, Chan SY. Electrically Conductive Polymers for Additive Manufacturing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5337-5354. [PMID: 38284988 DOI: 10.1021/acsami.3c13258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The use of electrically conductive polymers (CPs) in the development of electronic devices has attracted significant interest due to their unique intrinsic properties, which result from the synergistic combination of physicochemical properties in conventional polymers with the electronic properties of metals or semiconductors. Most conventional methods adopted for the fabrication of devices with nonplanar morphologies are still challenged by the poor ionic/electronic mobility of end products. Additive manufacturing (AM) brings about exciting prospects to the realm of CPs by enabling greater design freedom, more elaborate structures, quicker prototyping, relatively low cost, and more environmentally friendly electronic device creation. A growing variety of AM technologies are becoming available for three-dimensional (3D) printing of conductive devices, i.e., vat photopolymerization (VP), material extrusion (ME), powder bed fusion (PBF), material jetting (MJ), and lamination object manufacturing (LOM). In this review, we provide an overview of the recent research progress in the area of CPs developed for AM, which advances the design and development of future electronic devices. We consider different AM techniques, vis-à-vis, their development progress and respective challenges in printing CPs. We also discuss the material requirements and notable advances in 3D printing of CPs, as well as their potential electronic applications including wearable electronics, sensors, energy storage and conversion devices, etc. This review concludes with an outlook on AM of CPs.
Collapse
Affiliation(s)
- Yinjia Yan
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Miao Han
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yixue Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Evelyn Ling Ling Ng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yanni Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Cally Owh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Qing Song
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Benjamin Qi Yu Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Siew Yin Chan
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
3
|
Sun X, Chen S, Qu B, Wang R, Zheng Y, Liu X, Li W, Gao J, Chen Q, Zhuo D. Light-oriented 3D printing of liquid crystal/photocurable resins and in-situ enhancement of mechanical performance. Nat Commun 2023; 14:6586. [PMID: 37852967 PMCID: PMC10584836 DOI: 10.1038/s41467-023-42369-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
Additive manufacturing technology has significantly impacted contemporary industries due to its ability to generate intricate computer-designed geometries. However, 3D-printed polymer parts often possess limited application potential, primarily because of their weak mechanical attributes. To overcome this drawback, this study formulates liquid crystal/photocurable resins suitable for the stereolithography technique by integrating 4'-pentyl-4-cyanobiphenyl with a photosensitive acrylic resin. This study demonstrates that stereolithography facilitates the precise modulation of the existing liquid crystal morphology within the resin. Furthermore, the orientation of the liquid crystal governs the oriented polymerization of monomers or prepolymers bearing acrylate groups. The products of this 3D printing approach manifest anisotropic behavior. Remarkably, when utilizing liquid crystal/photocurable resins, the resulting 3D-printed objects are approximately twice as robust as those created using commercial resins in terms of their tensile, flexural, and impact properties. This pioneering approach holds promise for realizing autonomously designed structures that remain elusive with present additive manufacturing techniques.
Collapse
Affiliation(s)
- Xiaolu Sun
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China
| | - Shaoyun Chen
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China.
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China.
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China.
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China.
| | - Bo Qu
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China
| | - Rui Wang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China
| | - Yanyu Zheng
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China
| | - Xiaoying Liu
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China
| | - Wenjie Li
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China
| | - Jianhong Gao
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China
| | - Qinhui Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China.
| | - Dongxian Zhuo
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, P. R. China.
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China.
- Fujian University Engineering Research Center of Polymer Functional Coating based Graphene, Quanzhou, Fujian, 362000, P. R. China.
- Fujian Key Laboratory of New Materials for Light Textile and Chemical Industry, Quanzhou, Fujian, 362000, P. R. China.
| |
Collapse
|
4
|
Experimental and computational investigations on ring-opening polymerization mechanisms of amide-functional benzoxazines. Macromol Res 2023. [DOI: 10.1007/s13233-022-00105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
5
|
Zhang Y, Tian J, Liu X, Yang Y, Zhuang Q. Design of new benzoxazines with excellent thermal stability and processability using the “gold panning” method. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Mukherjee S, Amarnath N, Ramkumar M, Lochab B. Catechin and Furfurylamine derived Biobased Benzoxazine with Latent‐Catalyst Effect. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sourav Mukherjee
- Materials Chemistry Laboratory Department of Chemistry School of Natural Sciences Shiv Nadar University Gautam Buddha Nagar Uttar Pradesh 201314 India
| | - Nagarjuna Amarnath
- Materials Chemistry Laboratory Department of Chemistry School of Natural Sciences Shiv Nadar University Gautam Buddha Nagar Uttar Pradesh 201314 India
| | - Malavika Ramkumar
- Materials Chemistry Laboratory Department of Chemistry School of Natural Sciences Shiv Nadar University Gautam Buddha Nagar Uttar Pradesh 201314 India
| | - Bimlesh Lochab
- Materials Chemistry Laboratory Department of Chemistry School of Natural Sciences Shiv Nadar University Gautam Buddha Nagar Uttar Pradesh 201314 India
| |
Collapse
|
7
|
Mukherjee S, Lochab B. Synthesis and Thermal Behaviour of Thiophene-Based Oxazine-Ring Substituted Benzoxazine Monomers & Polymers. Chem Commun (Camb) 2022; 58:3609-3612. [DOI: 10.1039/d2cc00043a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The latest fourth-generation oxazine-ring substituted thiophene-based benzoxazine monomers and polymers with variation in the degree of phenyl substitution (with and without) in oxazine-ring were synthesized and characterized. Thiophene-based di-substituted benzoxazine...
Collapse
|