1
|
Lee S, Lee G, Oh M. MOF-on-MOF Growth: Inducing Naturally Nonpreferred MOFs and Atypical MOF Growth. Acc Chem Res 2024. [PMID: 39388366 DOI: 10.1021/acs.accounts.4c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
ConspectusOverflowing metal-organic frameworks (MOFs) have been synthesized from a wide range of metal and organic components for specific purposes and intellectual curiosity. Each MOF has unique chemical and structural characteristics directed by the incorporated components, metal ions (or clusters), organic linkers, and their intrinsic coordination interactions. These incorporated components and structural characteristics are two pivotal factors influencing MOFs' fundamental properties and subsequent applications. Therefore, selecting the appropriate metal and organic components, considering their innate chemical and structural properties, is crucial to endow the final MOFs with the desired properties. Ultimately, producing MOFs with a desired structure using ideal components is the best approach to achieving the best MOFs tailored for specific purposes with desired properties. However, achieving MOFs with the intended structure from chosen components remains underdeveloped. In many cases, the resulting MOF structure is governed by the thermodynamically and/or kinetically preferred configuration (refers to a naturally preferred structure) of the chosen components and given reaction conditions. Additionally, producing hybrid MOFs with complex components, structures, and morphologies presents a great opportunity to obtain special MOFs with advanced properties and functions. In this Account, we outline our group's efforts over the past few years to develop naturally nonpreferred MOFs through the induced MOF-on-MOF growth process and atypical hybrid MOFs via nonstandard MOF-on-MOF growth. First, we highlight the prime strategy for producing naturally nonpreferred MOFs based on template-induced MOF-on-MOF growth. In this section, we discuss the two basic growth behaviors, isotropic and anisotropic growth of naturally nonpreferred MOFs, determined by the degree of matching between the cell lattices of the two MOFs. Second, we introduce the MOF farming concept for the productive cultivation and effective harvesting of naturally nonpreferred MOFs made by MOF-on-MOF growth. Here we discuss the importance of selecting the ideal MOF template for productive growth and developing an efficient method for harvesting cultivated MOFs. Next, we describe atypical anisotropic MOF-on-MOF growths between two MOFs with mismatched cell lattices. In this section, we introduce tip-to-middle MOF-on-MOF growth involving self-structural adjustment of the secondary MOF, logical inference of unidentified MOF structures based on MOF-on-MOF growth behavior and morphological features, and MOF-on-MOF growth accompanied by etching and transformation of the template. Finally, we discuss the perspectives and challenges of MOF-on-MOF growth and the synthesis of naturally nonpreferred MOFs. We hope that this Account offers valuable insights into the rational design and development of MOFs with desired structural and compositional characteristics, leading to the creation of ideal MOFs.
Collapse
Affiliation(s)
- Sujeong Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Gihyun Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Moonhyun Oh
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
Gupta G, Paul A, Gupta A, Lee J, Lee CY. Removal of organic dyes from aqueous solution using a novel pyrene appended Zn(II)-based metal-organic framework and its photocatalytic properties. Dalton Trans 2024; 53:15732-15741. [PMID: 39253790 DOI: 10.1039/d4dt01869a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
In this study, we report the efficient removal of organic dyes from aqueous solutions using a newly synthesized pyrene-appended Zn(II)-based metal-organic framework (MOF), ZnSiF6Pyrene MOF, with the chemical formula C52H32F6N4SiZn·4(CHCl3). The MOF was synthesized through a facile method at room temperature using a dipyridylpyrene ligand and ZnSiF6 metal source, resulting in a highly crystalline structure with pyrene functional groups forming the framework. The synthesized MOF was characterized using various analytical techniques, including Fourier-transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD) analysis, and scanning electron microscopy (SEM). Thermal stability was assessed using thermogravimetric analysis (TGA), while the surface area of the MOF was determined using a Brunauer-Emmett-Teller (BET) surface analyzer. Furthermore, the single-crystal X-ray diffraction (SCXRD) structure was studied to authenticate its solid-state structure. The as-synthesized MOF exhibited remarkable adsorption capacity towards various organic dyes, including Congo red (CR), rhodamine B (RhB), and methyl violet (MV), due to its ample surface area and strong π-π interactions between the pyrene moieties and dye molecules, as demonstrated by experimental and in silico docking studies. The photocatalytic degradation of MV dye was also investigated. Detailed trapping tests indicate that hydroxyl (˙OH) and superoxide (O2˙-) radicals are likely the primary active species responsible for the photodegradation of the dye under study. Furthermore, the photocatalytic property of the MOF was investigated under visible light irradiation, demonstrating excellent ability to generate singlet oxygen. This study highlights the potential of pyrene-appended Zn(II)-based MOFs as promising materials for environmental remediation applications.
Collapse
Affiliation(s)
- Gajendra Gupta
- Department of Energy and Chemical Engineering/Innovation Center for Chemical Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.
| | - Anup Paul
- Centro de Química Estrutural, Instituto of Molecular Sciences, Superior Técnico para Investigacao do Instituto Departmento de Engenharia Química, IST-ID Associação Desenvolvimento, Universidade de Lisboa, 1000-043 Lisboa, Portugal.
| | - Ajay Gupta
- Department of Chemistry, Centre for Advanced Studies, North Eastern Hill University, Shillong, 793022, India
| | - Junseong Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Chang Yeon Lee
- Department of Energy and Chemical Engineering/Innovation Center for Chemical Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.
| |
Collapse
|
3
|
Abazari R, Sanati S, Bajaber MA, Javed MS, Junk PC, Nanjundan AK, Qian J, Dubal DP. Design and Advanced Manufacturing of NU-1000 Metal-Organic Frameworks with Future Perspectives for Environmental and Renewable Energy Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306353. [PMID: 37997226 DOI: 10.1002/smll.202306353] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Metal-organic frameworks (MOFs) represent a relatively new family of materials that attract lots of attention thanks to their unique features such as hierarchical porosity, active metal centers, versatility of linkers/metal nodes, and large surface area. Among the extended list of MOFs, Zr-based-MOFs demonstrate comparably superior chemical and thermal stabilities, making them ideal candidates for energy and environmental applications. As a Zr-MOF, NU-1000 is first synthesized at Northwestern University. A comprehensive review of various approaches to the synthesis of NU-1000 MOFs for obtaining unique surface properties (e.g., diverse surface morphologies, large surface area, and particular pore size distribution) and their applications in the catalysis (electro-, and photo-catalysis), CO2 reduction, batteries, hydrogen storage, gas storage/separation, and other environmental fields are presented. The review further outlines the current challenges in the development of NU-1000 MOFs and their derivatives in practical applications, revealing areas for future investigation.
Collapse
Affiliation(s)
- Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Soheila Sanati
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Majed A Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Peter C Junk
- College of Science and Engineering, James Cook University, Townsville, 4811, Australia
| | - Ashok Kumar Nanjundan
- Schole of Engineering, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, China
| | - Deepak P Dubal
- Centre for Materials Science, School of Chemistry & Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| |
Collapse
|
4
|
Liu JW, Lv SY, Gong YN, Lin XL, Mei JH, Zhong DC, Lu TB. Water-Etched Approach to Hierarchically Porous Metal-Organic Frameworks with High Stability. Inorg Chem 2023; 62:11611-11617. [PMID: 37428154 DOI: 10.1021/acs.inorgchem.3c01351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The development of hierarchically porous metal-organic frameworks (MOFs) with high stability is desirable to expand their applications but remains challenging. Herein, an anionic sodalite-type microporous MOF (Yb-TTCA; TTCA3- = triphenylene-2,6,10-tricarboxylate) was synthesized, which shows outstanding catalytic activities for the cycloaddition of CO2 into cyclic carbonates. Moreover, the microporous Yb-TTCA can be transformed into a hierarchical micro- and mesoporous Yb-TTCA by water treatment with the mesopore sizes of 2 to 12 nm. The hierarchically porous Yb-TTCA (HP-Yb-TTCA) not only exhibits a high thermal stability up to 500 °C but also shows a high chemical stability in aqueous solutions with pH values ranging from 2 to 12. In addition, the HP-Yb-TTCA displays enhanced performance for the removal of organic dyes in comparison with microporous Yb-TTCA. This work provides a facile way to construct hierarchically porous MOF materials.
Collapse
Affiliation(s)
- Jin-Wang Liu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
- Key Laboratory of Jiangxi University for Functional Material Chemistry, College of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Si-Ya Lv
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yun-Nan Gong
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xue-Lian Lin
- Key Laboratory of Jiangxi University for Functional Material Chemistry, College of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Jian-Hua Mei
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Di-Chang Zhong
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
5
|
Wang KY, Zhang J, Hsu YC, Lin H, Han Z, Pang J, Yang Z, Liang RR, Shi W, Zhou HC. Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chem Rev 2023; 123:5347-5420. [PMID: 37043332 PMCID: PMC10853941 DOI: 10.1021/acs.chemrev.2c00879] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Indexed: 04/13/2023]
Abstract
Enzymatic catalysis has fueled considerable interest from chemists due to its high efficiency and selectivity. However, the structural complexity and vulnerability hamper the application potentials of enzymes. Driven by the practical demand for chemical conversion, there is a long-sought quest for bioinspired catalysts reproducing and even surpassing the functions of natural enzymes. As nanoporous materials with high surface areas and crystallinity, metal-organic frameworks (MOFs) represent an exquisite case of how natural enzymes and their active sites are integrated into porous solids, affording bioinspired heterogeneous catalysts with superior stability and customizable structures. In this review, we comprehensively summarize the advances of bioinspired MOFs for catalysis, discuss the design principle of various MOF-based catalysts, such as MOF-enzyme composites and MOFs embedded with active sites, and explore the utility of these catalysts in different reactions. The advantages of MOFs as enzyme mimetics are also highlighted, including confinement, templating effects, and functionality, in comparison with homogeneous supramolecular catalysts. A perspective is provided to discuss potential solutions addressing current challenges in MOF catalysis.
Collapse
Affiliation(s)
- Kun-Yu Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiaqi Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Chuan Hsu
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hengyu Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zongsu Han
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiandong Pang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- School
of Materials Science and Engineering, Tianjin Key Laboratory of Metal
and Molecule-Based Material Chemistry, Nankai
University, Tianjin 300350, China
| | - Zhentao Yang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rong-Ran Liang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wei Shi
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
6
|
Lu Z, Duan J, Tan H, Du L, Zhao X, Wang R, Kato S, Yang S, Hupp JT. Isomer of NU-1000 with a Blocking c-pore Exhibits High Water-Vapor Uptake Capacity and Greatly Enhanced Cycle Stability. J Am Chem Soc 2023; 145:4150-4157. [PMID: 36763822 DOI: 10.1021/jacs.2c12362] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Chemically and hydrolytically stable metal-organic frameworks (MOFs) have shown great potential for many water-adsorption-related applications. However, MOFs with large pores that show high water-uptake capacity and high hydrolytic and mechanical cycle stability are rare. Through a deliberate adjustment of the linker of a typical zirconium-based MOF (Zr-MOF) (NU-1000), a new isomer of NU-1000 with blocked c-pores, but large mesopores was successfully synthesized. This new isomer, ISO-NU-1000, exhibits excellent water stability, one of the highest water vapor uptake capacities, and excellent cycle stability, making it a promising candidate for water-vapor-sorption-based applications such as water-adsorption-driven heat transfer. We find that the high water-cycling stability of ISO-NU-1000 is traceable to its blocking c-pore that hinders the hydrolysis of node-coordinating formate in the c-pore area and thereby prevents the introduction of node aqua and terminal hydroxo ligands. With the absence of these ligands and their ability to hydrogen-bond to channel-located water molecules, the strength of guest (water)/host (MOF) interactions is diminished and the absolute magnitude of the capillary force exerted by water during its evacuation from MOF channels is attenuated. The attenuation leaves the MOF capable of resisting pore collapse, capacity loss, and crystallinity loss during repetitive evaporative removal (and re-introduction) of water from pores.
Collapse
Affiliation(s)
- Zhiyong Lu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, China
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Jiaxin Duan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Hao Tan
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Liting Du
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037, China
| | - Xiang Zhao
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Rui Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Satoshi Kato
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Shilong Yang
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037, China
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
7
|
Hashimoto T, Oketani R, Nobuoka M, Seki S, Hisaki I. Single Crystalline, Non-stoichiometric Cocrystals of Hydrogen-Bonded Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202215836. [PMID: 36347770 DOI: 10.1002/anie.202215836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Porous frameworks composed of non-stoichiometrically mixed multicomponent molecules attract much attention from a functional viewpoint. However, their designed preparation and precise structural characterization remain challenging. Herein, we demonstrate that cocrystallization of tetrakis(4-carboxyphenyl)hexahydropyrene and pyrene derivatives (CP-Hp and CP-Py, respectively) yields non-stoichiometric mixed frameworks through networking via hydrogen bonding. The composition ratio of CP-Hp and CP-Py in the framework was determined by single crystalline X-ray crystallographic analysis, indicating that the mixed frameworks were formed over a wide range of composition ratios. Furthermore, microscopic Raman spectroscopy on the single crystal indicates that the components are not uniformly distributed such as ideal solid solution, but are done gradationally or inhomogeneously.
Collapse
Affiliation(s)
- Taito Hashimoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Ryusei Oketani
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Masaki Nobuoka
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Ichiro Hisaki
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
8
|
Xiao Z, Li DB, Zhang LG, Wang HR, Qin JH, Yang XG, Wu YP, Ma LF, Li DS. Dimension-dependent fluorescence emission and photoelectric performances of a 3D pyrene-based metal−organic framework. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Pan Y, Sanati S, Nadafan M, Abazari R, Gao J, Kirillov AM. Postsynthetic Modification of NU-1000 for Designing a Polyoxometalate-Containing Nanocomposite with Enhanced Third-Order Nonlinear Optical Performance. Inorg Chem 2022; 61:18873-18882. [PMID: 36375112 PMCID: PMC9775467 DOI: 10.1021/acs.inorgchem.2c02709] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For the advancement of laser technologies and optical engineering, various types of new inorganic and organic materials are emerging. Metal-organic frameworks (MOFs) reveal a promising use in nonlinear optics, given the presence of organic linkers, metal cluster nodes, and possible delocalization of π-electron systems. These properties can be further enhanced by the inclusion of solely inorganic materials such as polyoxometalates as prospective low-cost electron-acceptor species. In this study, a novel hybrid nanocomposite, namely, SiW12@NU-1000 composed of SiW12 (H4SiW12O40) and Zr-based MOF (NU-1000), was assembled, completely characterized, and thoroughly investigated in terms of its nonlinear optical (NLO) performance. The third-order NLO behavior of the developed system was assessed by Z-scan measurements using a 532 nm laser. The effect of two-photon absorption and self-focusing was significant in both NU-1000 and SiW12@NU-1000. Experimental studies suggested a much superior NLO performance of SiW12@NU-1000 if compared to that of NU-1000, which can be assigned to the charge-energy transfer between SiW12 and NU-1000. Negligible light scattering, good stability, and facile postsynthetic fabrication method can promote the applicability of the SiW12@NU-1000 nanocomposite for various optoelectronic purposes. This research may thus open new horizons to improve and enhance the NLO performance of MOF-based materials through π-electron delocalization and compositing metal-organic networks with inorganic molecules as electron acceptors, paving the way for the generation of novel types of hybrid materials for prospective NLO applications.
Collapse
Affiliation(s)
- Yangdan Pan
- The
Key Laboratory of Advanced Textile Materials and Manufacturing Technology
of Ministry of Education, National Engineering Lab for Textile Fiber
Materials and Processing Technology, School of Materials Science and
Engineering, Zhejiang Sci-Tech University, Hangzhou310018, China
| | - Soheila Sanati
- Department
of Chemistry, Faculty of Science, University
of Maragheh, 55181-83111Maragheh, Iran
| | - Marzieh Nadafan
- Department
of Physics, Shahid Rajaee Teacher Training
University, 16788-15811Tehran, Iran
| | - Reza Abazari
- Department
of Chemistry, Faculty of Science, University
of Maragheh, 55181-83111Maragheh, Iran,
| | - Junkuo Gao
- The
Key Laboratory of Advanced Textile Materials and Manufacturing Technology
of Ministry of Education, National Engineering Lab for Textile Fiber
Materials and Processing Technology, School of Materials Science and
Engineering, Zhejiang Sci-Tech University, Hangzhou310018, China,
| | - Alexander M. Kirillov
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001Lisbon, Portugal,
| |
Collapse
|
10
|
Multifunctional Mn(II) Metal-Organic framework for photocatalytic aerobic oxidation and C H direct trifluoromethylation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Tan H, Du L, Zhao X, Qi X, Deng Z, Lu Z, Zhang J, He H. Avoiding interpenetration by the contraction of acylamide-inserted linker for the construction of A pcu-type Metal-Organic Polyhedral. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Gong W, Xie H, Idrees KB, Son FA, Chen Z, Sha F, Liu Y, Cui Y, Farha OK. Water Sorption Evolution Enabled by Reticular Construction of Zirconium Metal–Organic Frameworks Based on a Unique [2.2]Paracyclophane Scaffold. J Am Chem Soc 2022; 144:1826-1834. [DOI: 10.1021/jacs.1c11836] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wei Gong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, PR China
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Haomiao Xie
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Karam B. Idrees
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Florencia A. Son
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Zhijie Chen
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Fanrui Sha
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Omar K. Farha
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Lu Z, Du L, Guo R, Zhang G, Duan J, Zhang J, Han L, Bai J, Hupp JT. Double-Walled Zn 36@Zn 104 Multicomponent Senary Metal-Organic Polyhedral Framework and Its Isoreticular Evolution. J Am Chem Soc 2021; 143:17942-17946. [PMID: 34665599 DOI: 10.1021/jacs.1c08286] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metal-organic polyhedral frameworks are attractive in gas storage and separation due to large voids with windows that can serve as traps for guest molecules. Introducing multivariant/multicomponent functionalities in them are ways of improving performances for certain targets. The high compatibility of organic linkers can generate multivariant MOFs, but by far, the diversity of secondary building units (SBUs) in a single metal-organic framework is still limited (no more than two in most cases). Here we report a new double-walled Zn36@Zn104 metal-organic polyhedral framework (HHU-8) with five types of topologically distinct SBUs and its isoreticular evolution to the Zn36@Zn136 counterpart (HHU-8s). Both MOFs are the first to be constructed with such high numbers of topologically distinct SBUs as well as topologically distinct nodes, and their formation and evolution provide new insight into SBU's controllability.
Collapse
Affiliation(s)
- Zhiyong Lu
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Liting Du
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037, China
| | - Ruyong Guo
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Guangbao Zhang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Jingui Duan
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Jianfeng Zhang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Lin Han
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Junfeng Bai
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
14
|
Du L, Miao Y, Zheng B, Ma M, Zhang J. Honeycomb-like 2D metal-organic polyhedral framework exhibiting selectively adsorption of CO2. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Liao Y, Sheridan T, Liu J, Farha O, Hupp J. Product Inhibition and the Catalytic Destruction of a Nerve Agent Simulant by Zirconium-Based Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30565-30575. [PMID: 34161064 DOI: 10.1021/acsami.1c05062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rapid degradation/destruction of chemical warfare agents, especially ones containing a phosphorous-fluorine bond, is of notable interest due to their extreme toxicity and typically rapid rate of human incapacitation. Recent studies of the hydrolytic destruction of a key nerve agent simulant, dimethyl 4-nitrophenylphosphate (DMNP), catalyzed by Zr6-based metal-organic frameworks (MOFs), have suggested deactivation of the active sites due to inhibition by the products as the reaction progresses. In this study, the interactions of two MOFs, NU-1000 and MOF-808, and two hydrolysis products, dimethyl phosphate (DMP) and ethyl methyl phosphonate (EMP), from the hydrolysis of the simulant (DMNP) and nerve agent ethyl methylphosphonofluoridate (EMPF), resembling the hydrolysis degradation product of the G-series nerve agent, Sarin (GB), have been investigated to deconvolute the effect of product inhibition from other effects on catalytic activity. Kinetic studies via in situ nuclear magnetic resonance spectroscopy indicated substantial product inhibition upon catalyst activity after several tens to several thousand turnovers, depending on specific conditions. Apparent product binding constants were obtained by fitting initial reaction rates at pH 7.0 and pH 10.5 to a Langmuir-Freundlich binding/adsorption model. For the fits, varying amounts/concentrations of candidate inhibitors were introduced before the start of catalytic hydrolysis. The derived binding constants proved suitable for quantitatively describing product inhibition effects upon reaction rates over the extended time course of simulant hydrolysis by aqua-ligand-bearing hexa-zirconium(IV) nodes.
Collapse
Affiliation(s)
- Yijun Liao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Thomas Sheridan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joseph Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|