1
|
Soxpollard N, Strauss S, Jungmann R, MacPherson IS. Selection of antibody-binding covalent aptamers. Commun Chem 2024; 7:174. [PMID: 39117896 PMCID: PMC11310417 DOI: 10.1038/s42004-024-01255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Aptamers are oligonucleotides with antibody-like binding function, selected from large combinatorial libraries. In this study, we modified a DNA aptamer library with N-hydroxysuccinimide esters, enabling covalent conjugation with cognate proteins. We selected for the ability to bind to mouse monoclonal antibodies, resulting in the isolation of two distinct covalent binding motifs. The covalent aptamers are specific for the Fc region of mouse monoclonal IgG1 and are cross-reactive with mouse IgG2a and other IgGs. Investigation into the covalent conjugation of the aptamers revealed a dependence on micromolar concentrations of Cu2+ ions which can be explained by residual catalyst remaining after modification of the aptamer library. The aptamers were successfully used as adapters in the formation of antibody-oligonucleotide conjugates (AOCs) for use in detection of HIV protein p24 and super-resolution imaging of actin. This work introduces a new method for the site-specific modification of native monoclonal antibodies and may be useful in applications requiring AOCs or other antibody conjugates.
Collapse
Affiliation(s)
- Noah Soxpollard
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, University of Hawaii, Honolulu, HI, 96813, USA
| | - Sebastian Strauss
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany
| | - Ralf Jungmann
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany
| | - Iain S MacPherson
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, University of Hawaii, Honolulu, HI, 96813, USA.
| |
Collapse
|
2
|
Hillebrand L, Liang XJ, Serafim RAM, Gehringer M. Emerging and Re-emerging Warheads for Targeted Covalent Inhibitors: An Update. J Med Chem 2024; 67:7668-7758. [PMID: 38711345 DOI: 10.1021/acs.jmedchem.3c01825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Covalent inhibitors and other types of covalent modalities have seen a revival in the past two decades, with a variety of new targeted covalent drugs having been approved in recent years. A key feature of such molecules is an intrinsically reactive group, typically a weak electrophile, which enables the irreversible or reversible formation of a covalent bond with a specific amino acid of the target protein. This reactive group, often called the "warhead", is a critical determinant of the ligand's activity, selectivity, and general biological properties. In 2019, we summarized emerging and re-emerging warhead chemistries to target cysteine and other amino acids (Gehringer, M.; Laufer, S. A. J. Med. Chem. 2019, 62, 5673-5724; DOI: 10.1021/acs.jmedchem.8b01153). Since then, the field has rapidly evolved. Here we discuss the progress on covalent warheads made since our last Perspective and their application in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Laura Hillebrand
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Xiaojun Julia Liang
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
3
|
Qin Z, Zhang K, He P, Zhang X, Xie M, Fu Y, Gu C, Zhu Y, Tong A, Wei H, Zhang C, Xiang Y. Discovering covalent inhibitors of protein-protein interactions from trillions of sulfur(VI) fluoride exchange-modified oligonucleotides. Nat Chem 2023; 15:1705-1714. [PMID: 37653229 DOI: 10.1038/s41557-023-01304-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/24/2023] [Indexed: 09/02/2023]
Abstract
Molecules that covalently engage target proteins are widely used as activity-based probes and covalent drugs. The performance of these covalent inhibitors is, however, often compromised by the paradox of efficacy and risk, which demands a balance between reactivity and selectivity. The challenge is more evident when targeting protein-protein interactions owing to their low ligandability and undefined reactivity. Here we report sulfur(VI) fluoride exchange (SuFEx) in vitro selection, a general platform for high-throughput discovery of covalent inhibitors from trillions of SuFEx-modified oligonucleotides. With SuFEx in vitro selection, we identified covalent inhibitors that cross-link distinct residues of the SARS-CoV-2 spike protein at its protein-protein interaction interface with the human angiotensin-converting enzyme 2. A separate suite of covalent inhibitors was isolated for the human complement C5 protein. In both cases, we observed a clear disconnection between binding affinity and cross-linking reactivity, indicating that direct search for the aimed reactivity-as enabled by SuFEx in vitro selection-is vital for discovering covalent inhibitors of high selectivity and potency.
Collapse
Affiliation(s)
- Zichen Qin
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Kaining Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Ping He
- CAS Key Laboratory of Special Pathogens and Biosafety, Centre for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xue Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| | - Miao Xie
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| | - Yucheng Fu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunmei Gu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
- Beijing Institute of Collaborative Innovation (BICI), Beijing, China
| | - Yiying Zhu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Aijun Tong
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Centre for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Xiang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Kohn EM, Konovalov K, Gomez CA, Hoover GN, Yik AKH, Huang X, Martell JD. Terminal Alkyne-Modified DNA Aptamers with Enhanced Protein Binding Affinities. ACS Chem Biol 2023; 18:1976-1984. [PMID: 37531184 DOI: 10.1021/acschembio.3c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Nucleic acid-based receptors, known as aptamers, are relatively fast to discover and manufacture but lack the diverse functional groups of protein receptors (e.g., antibodies). The binding properties of DNA aptamers can be enhanced by attaching abiotic functional groups; for example, aromatic groups such as naphthalene slow dissociation from proteins. Although the terminal alkyne is a π-electron-rich functional group that has been used in small molecule drugs to enhance binding to proteins through noncovalent interactions, it remains unexplored for enhancing DNA aptamer binding affinity. Here, we demonstrate the utility of the terminal alkyne for improving the binding of DNA to proteins. We prepared a library of 256 terminal-alkyne-bearing variants of HD22, a DNA aptamer that binds the protein thrombin with nanomolar affinity. After a one-step thrombin-binding selection, a high-affinity aptamer containing two alkynes was discovered, exhibiting 3.2-fold tighter thrombin binding than the corresponding unmodified sequence. The tighter binding was attributable to a slower rate of dissociation from thrombin (5.2-fold slower than HD22). Molecular dynamics simulations with enhanced sampling by Replica Exchange with Solute Tempering (REST2) suggest that the π-electron-rich alkyne interacts with an asparagine side chain N-H group on thrombin, forming a noncovalent interaction that stabilizes the aptamer-protein interface. Overall, this work represents the first case of terminal alkynes enhancing the binding properties of an aptamer and underscores the utility of the terminal alkyne as an atom economical π-electron-rich functional group to enhance binding affinity with minimal steric perturbation.
Collapse
Affiliation(s)
- Eric M Kohn
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kirill Konovalov
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Christian A Gomez
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Gillian N Hoover
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Andrew Kai-Hei Yik
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xuhui Huang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jeffrey D Martell
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, United States
| |
Collapse
|
5
|
Zaman K, Breitman A, Malik I, Fortenberry YM. Positive Allosteric Modulation of Antithrombin's Inhibitory Activity by RNA Aptamers. Nucleic Acid Ther 2023; 33:277-286. [PMID: 37093131 DOI: 10.1089/nat.2022.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
The leading cause of death in adults in the United States is cardiovascular disease, with mortality and morbidity mainly attributed to thromboembolism. Heparin is the most common therapy used for treating venous and arterial thrombosis. Heparin effectively accelerates the inhibition of coagulation proteases thrombin and factor Xa through the serine protease inhibitor (serpin) antithrombin (AT). Heparin is an essential therapeutic anticoagulant because of its effectiveness and the availability of protamine sulfate as an antidote. However, heparin therapy has several limitations. Thus, new anticoagulants, including direct thrombin inhibitors (ie, argatroban) and low-molecular-weight heparins (ie, fondaparinux), are used to treat some thromboembolic disorders. We developed and characterized a family of novel RNA-based aptamers that bind AT using two novel selection schemes. One of the aptamers, AT-16, accelerates factor Xa inhibition by AT in the absence of heparin. AT-16's effect on thrombin inhibition by AT is less effective compared to factor Xa. AT-16 induces a conformational change in AT that is different from that induced by heparin. This study demonstrates that an AT-specific RNA aptamer, AT-16, exhibits a positive allosteric modulator effect on AT's inhibition of factor Xa.
Collapse
Affiliation(s)
- Khalequz Zaman
- Biology Department, Case Western Reserve University, Cleveland, Ohio, USA
| | - Adi Breitman
- Biology Department, Case Western Reserve University, Cleveland, Ohio, USA
| | - Isa Malik
- Biology Department, Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|
6
|
Carneiro SN, Khasnavis SR, Lee J, Butler TW, Majmudar JD, Am Ende CW, Ball ND. Sulfur(VI) fluorides as tools in biomolecular and medicinal chemistry. Org Biomol Chem 2023; 21:1356-1372. [PMID: 36662157 PMCID: PMC9929716 DOI: 10.1039/d2ob01891h] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023]
Abstract
Recent advances in the synthesis of sulfur(VI)-fluorides has enabled incredible growth in their application in biomolecular chemistry. This review aims to serve as a primer highlighting synthetic strategies toward a diversity of S(VI) fluorides and their application in chemical biology, bioconjugation, and medicinal chemistry.
Collapse
Affiliation(s)
- Sabrina N Carneiro
- Department of Chemistry, Pomona College, Claremont, California 91711, USA.
| | - Samuel R Khasnavis
- Department of Chemistry, Pomona College, Claremont, California 91711, USA.
| | - Jisun Lee
- Pfizer Worldwide Research, Development, Groton, Connecticut 06340, USA.
| | - Todd W Butler
- Pfizer Worldwide Research, Development, Groton, Connecticut 06340, USA.
| | - Jaimeen D Majmudar
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, USA
| | | | - Nicholas D Ball
- Department of Chemistry, Pomona College, Claremont, California 91711, USA.
| |
Collapse
|
7
|
Yang J, Tabuchi Y, Katsuki R, Taki M. bioTCIs: Middle-to-Macro Biomolecular Targeted Covalent Inhibitors Possessing Both Semi-Permanent Drug Action and Stringent Target Specificity as Potential Antibody Replacements. Int J Mol Sci 2023; 24:3525. [PMID: 36834935 PMCID: PMC9968108 DOI: 10.3390/ijms24043525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Monoclonal antibody therapies targeting immuno-modulatory targets such as checkpoint proteins, chemokines, and cytokines have made significant impact in several areas, including cancer, inflammatory disease, and infection. However, antibodies are complex biologics with well-known limitations, including high cost for development and production, immunogenicity, a limited shelf-life because of aggregation, denaturation, and fragmentation of the large protein. Drug modalities such as peptides and nucleic acid aptamers showing high-affinity and highly selective interaction with the target protein have been proposed alternatives to therapeutic antibodies. The fundamental limitation of short in vivo half-life has prevented the wide acceptance of these alternatives. Covalent drugs, also known as targeted covalent inhibitors (TCIs), form permanent bonds to target proteins and, in theory, eternally exert the drug action, circumventing the pharmacokinetic limitation of other antibody alternatives. The TCI drug platform, too, has been slow in gaining acceptance because of its potential prolonged side-effect from off-target covalent binding. To avoid the potential risks of irreversible adverse drug effects from off-target conjugation, the TCI modality is broadening from the conventional small molecules to larger biomolecules possessing desirable properties (e.g., hydrolysis resistance, drug-action reversal, unique pharmacokinetics, stringent target specificity, and inhibition of protein-protein interactions). Here, we review the historical development of the TCI made of bio-oligomers/polymers (i.e., peptide-, protein-, or nucleic-acid-type) obtained by rational design and combinatorial screening. The structural optimization of the reactive warheads and incorporation into the targeted biomolecules enabling a highly selective covalent interaction between the TCI and the target protein is discussed. Through this review, we hope to highlight the middle to macro-molecular TCI platform as a realistic replacement for the antibody.
Collapse
Affiliation(s)
- Jay Yang
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu 182-8585, Japan
- School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
- Department of GI Surgery II, Graduate School of Medicine, Hokkaido University, Sapporo 068-8638, Japan
| | - Yudai Tabuchi
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu 182-8585, Japan
| | - Riku Katsuki
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu 182-8585, Japan
| | - Masumi Taki
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu 182-8585, Japan
- Institute for Advanced Science, UEC, Chofu 182-8585, Japan
| |
Collapse
|
8
|
Wang D, Zhang J, huang Z, Yang Y, Fu T, Yang Y, Lyu Y, Jiang J, Qiu L, Cao Z, Zhang X, You Q, Lin Y, Zhao Z, Tan W. Robust Covalent Aptamer Strategy Enables Sensitive Detection and Enhanced Inhibition of SARS-CoV-2 Proteins. ACS CENTRAL SCIENCE 2023; 9:72-83. [PMID: 36712483 PMCID: PMC9881204 DOI: 10.1021/acscentsci.2c01263] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Indexed: 06/18/2023]
Abstract
Aptamer-based detection and therapy have made substantial progress with cost control and easy modification. However, the conformation lability of an aptamer typically causes the dissociation of aptamer-target complexes during harsh washes and other environmental stresses, resulting in only moderate detection sensitivity and a decreasing therapeutic effect. Herein, we report a robust covalent aptamer strategy to sensitively detect nucleocapsid protein and potently neutralize spike protein receptor binding domain (RBD), two of the most important proteins of SARS-CoV-2, after testing different cross-link electrophilic groups via integrating the specificity and efficiency. Covalent aptamers can specifically convert aptamer-protein complexes from the dynamic equilibrium state to stable and irreversible covalent complexes even in harsh environments. Covalent aptamer-based ELISA detection of nucleocapsid protein can surpass the gold standard, antibody-based sandwich ELISA. Further, covalent aptamer performs enhanced functional inhibition to RBD protein even in a blood vessel-mimicking flowing circulation system. The robust covalent aptamer-based strategy is expected to inspire more applications in accurate molecular modification, disease biomarker discovery, and other theranostic fields.
Collapse
Affiliation(s)
- Dan Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Zhejiang
Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- LIMES
Chemical Biology Unit, Universität
Bonn, 53121 Bonn, Germany
| | - Jing Zhang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Zhiyong huang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yuhang Yang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Ting Fu
- Zhejiang
Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yu Yang
- Institute
of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University
School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yifan Lyu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Jianhui Jiang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Liping Qiu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Zehui Cao
- Institute
of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University
School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaobing Zhang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Qimin You
- Zhejiang
Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Ustar
Biotechnologies (Hangzhou) Ltd., Hangzhou, Zhejiang 310053, China
| | - Yuankui Lin
- Zhejiang
Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Ustar
Biotechnologies (Hangzhou) Ltd., Hangzhou, Zhejiang 310053, China
| | - Zilong Zhao
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Zhejiang
Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute
of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University
School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Tabuchi Y, Yang J, Taki M. Relative Nuclease Resistance of a DNA Aptamer Covalently Conjugated to a Target Protein. Int J Mol Sci 2022; 23:7778. [PMID: 35887130 PMCID: PMC9319527 DOI: 10.3390/ijms23147778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/10/2022] Open
Abstract
A major obstacle to the therapeutic application of an aptamer is its susceptibility to nuclease digestion. Here, we confirmed the acquisition of relative nuclease resistance of a DNA-type thrombin binding aptamer with a warhead (TBA3) by covalent binding to a target protein in the presence of serum/various nucleases. When the thrombin-inhibitory activity of TBA3 on thrombin was reversed by the addition of the complementary strand, the aptamer was instantly degraded by the nucleases, showing that the properly folded/bound aptamer conferred the resistance. Covalently binding aptamers possessing both a prolonged drug effect and relative nuclease resistance would be beneficial for in vivo translational applications.
Collapse
Affiliation(s)
- Yudai Tabuchi
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), Chofu 182-8585, Japan;
| | - Jay Yang
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), Chofu 182-8585, Japan;
- School of Medicine and Public Health, University of Wisconsin, Madison, WL 53706, USA
- Department of GI Surgery II, Graduate School of Medicine, Hokkaido University, Sapporo 068-8638, Japan
| | - Masumi Taki
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), Chofu 182-8585, Japan;
- Institute for Advanced Science, University of Electro-Communications (UEC), Chofu 182-8585, Japan
| |
Collapse
|
10
|
Wu H, Zhang L, Zhu Z, Ding C, Chen S, Liu R, Fan H, Chen Y, Li H. Novel CD123 polyaptamer hydrogel edited by Cas9/sgRNA for AML-targeted therapy. Drug Deliv 2021; 28:1166-1178. [PMID: 34121564 PMCID: PMC8205012 DOI: 10.1080/10717544.2021.1934191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 11/10/2022] Open
Abstract
CD123 targeting molecules have been widely applied in acute myelocytic leukemia (AML) therapeutics. Although antibodies have been more widely used as targeting molecules, aptamer have unique advantages for CD123 targeting therapy. In this study, we constructed an aptamer hydrogel termed as SSFH which could be precisely cut by Cas9/sgRNA for programmed SS30 release. To construct hydrogel, rolling-circle amplification (RCA) was used to generate hydrogel containing CD123 aptamer SS30 and sgRNA-targeting sequence. After incubation with Cas9/sgRNA, SSFH could lose its gel property and liberated the SS30 aptamer sequence, and released SS30 has been confirmed by gel electrophoresis. In addition, SS30 released from SSFH could inhibit cell proliferation and induce cell apoptosis in vitro. Moreover, SSFH could prolong survival rate and inhibit tumor growth via JAK2/STAT5 signaling pathway in vivo. Additionally, molecular imaging revealed SSFH co-injected with Cas9/sgRNA remained at the injection site longer than free aptamer. Furthermore, once the levels of cytokines were increasing, the complementary sequences of aptamers injection could neutralize SS30 and relieve side effect immediately. This study suggested that CD123 aptamer hydrogel SSFH and Cas9/sgRNA system has strong potential for CD123-positive AML anticancer therapy.
Collapse
Affiliation(s)
- Haibin Wu
- Department of Neonatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Institute of Pediatric Diseases, Affiliated Children’s hospital of Xi’an Jiaotong University, Xi’an, China
| | - Liyu Zhang
- Department of Neonatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Institute of Pediatric Diseases, Affiliated Children’s hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zeen Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chenxi Ding
- Department of Neonatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shengquan Chen
- Department of Neonatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ruiping Liu
- Department of Clinical Nutrition, Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huafeng Fan
- Department of Cardiovascular Medicine, Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yang Chen
- Department of Clinical Nutrition, Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hui Li
- Department of Neonatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Neonatology, Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
11
|
Tabuchi Y, Watanabe T, Katsuki R, Ito Y, Taki M. Direct screening of a target-specific covalent binder: stringent regulation of warhead reactivity in a matchmaking environment. Chem Commun (Camb) 2021; 57:5378-5381. [PMID: 33978001 DOI: 10.1039/d1cc01773j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A peptide-type covalent binder for a target protein was obtained by direct and stringent screening of a warhead-modified peptide library on the robust T7 phage. The aryl fluorosulfate (fosylate) warhead was activated only in a matchmaking microenvironment created between the target protein and an appropriate peptide during the reactivity/affinity-based co-selection process of extended phage display.
Collapse
Affiliation(s)
- Yudai Tabuchi
- Department of Engineering Science, Bioscience and Technology Program, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| | - Takahito Watanabe
- Department of Engineering Science, Bioscience and Technology Program, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| | - Riku Katsuki
- Department of Engineering Science, Bioscience and Technology Program, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| | - Yuji Ito
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Masumi Taki
- Department of Engineering Science, Bioscience and Technology Program, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| |
Collapse
|