1
|
Yang Y, Miao C, Wang R, Zhang R, Li X, Wang J, Wang X, Yao J. Advances in morphology-controlled alumina and its supported Pd catalysts: synthesis and applications. Chem Soc Rev 2024; 53:5014-5053. [PMID: 38600823 DOI: 10.1039/d3cs00776f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Alumina materials, as one of the cornerstones of the modern chemical industry, possess physical and chemical properties that include excellent mechanical strength and structure stability, which also make them highly suitable as catalyst supports. Alumina-supported Pd-based catalysts with the advantages of exceptional catalytic performance, flexible regulated surface metal/acid sites, and good regeneration ability have been widely used in many traditional chemical industry fields and have also shown great application prospects in emerging fields. This review aims to provide an overview of the recent advances in alumina and its supported Pd-based catalysts. Specifically, the synthesis strategies, morphology transformation mechanisms, and structural properties of alumina with various morphologies are comprehensively summarized and discussed in-depth. Then, the preparation approaches of Pd/Al2O3 catalysts (impregnation, precipitation, and other emerging methods), as well as the metal-support interactions (MSIs), are revisited. Moreover, Some promising applications have been chosen as representative reactions in fine chemicals, environmental purification, and sustainable development fields to highlight the universal functionality of the alumina-supported Pd-based catalysts. The role of the Pd species, alumina support, promoters, and metal-support interactions in the enhancement of catalytic performance are also discussed. Finally, some challenges and upcoming opportunities in the academic and industrial application of the alumina and its supported Pd-based are presented and put forward.
Collapse
Affiliation(s)
- Yanpeng Yang
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, 100083, P. R. China.
| | - Chenglin Miao
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, 100083, P. R. China.
| | - Ruoyu Wang
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, 100083, P. R. China.
| | - Rongxin Zhang
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, 100083, P. R. China.
| | - Xiaoyu Li
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, 100083, P. R. China.
| | - Jieguang Wang
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, 100083, P. R. China.
| | - Xi Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 51031, P. R. China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Science, Beijing 100190, P. R. China.
| |
Collapse
|
2
|
Lee SY, Cho E, Suh BL, Choi JW, Lee S, Kim J, Lee C, Jung KW. Unveiling interfacial interaction between antimony oxyanions and boehmite nanorods: Spectroscopic evidence and density functional theory analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133902. [PMID: 38422738 DOI: 10.1016/j.jhazmat.2024.133902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
In natural environments, the fate and migratory behavior of metalloid contaminants such as antimony (Sb) significantly depend on the interfacial reactivity of mineral surfaces. Although boehmite (γ-AlOOH) is widely observed in (sub)surface environments, its underlying interaction mechanism with Sb oxyanions at the molecular scale remains unclear. Considering Sb-contaminated environmental conditions in this study, we prepared boehmite under weakly acidic conditions for use in the systematic investigation of interfacial interactions with Sb(III) and Sb(V). The as-synthesized boehmite showed a nanorod morphology and comprised four crystal facets in the following order: 48.4% (010), 27.1% (101), 15.0% (001), and 9.5% (100). The combined results of spectroscopic analyses and theoretical calculations revealed that Sb(III) formed hydrogen bonding outer-sphere complexation on the (100), (010), and (001) facets and that Sb(V) preferred to form bidentate inner-sphere complexation via mononuclear edge-sharing configuration on the (100), (001), and (101) facets and binuclear corner-sharing configuration on the (010) facet. These findings indicate that the facet-mediated thermodynamic stability of the surface complexation determines the interaction affinity toward the Sb species. This work is the first to document the contribution of boehmite to (sub)surface media, improving the ability to forecast the fate and behavior of Sb oxyanions at mineral-water interfaces.
Collapse
Affiliation(s)
- Seon Yong Lee
- Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea
| | - Eun Cho
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
| | - Bong Lim Suh
- Mechatronics Research, Samsung Electronics co., Ltd, Gyeonggi-do 18448, Republic of Korea
| | - Jae-Woo Choi
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environmental Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Seunghak Lee
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environmental Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea; Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul 02841, Republic of Korea
| | - Jihan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea.
| | - Kyung-Won Jung
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| |
Collapse
|
3
|
Yu Z, Guo C, Pang X, Shen Y, Gao M, Zhao S, Wang Y, Luo G. Coprecipitation Synthesis of Large-Pore-Volume γ-Alumina Nanofibers by Two Serial Membrane Dispersion Microreactors with a Circulating Continuous Phase. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zhiyuan Yu
- Department of Chemical Engineering, The State Key Lab of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Chengyu Guo
- PetroChina Petrochemical Research Institute, Beijing102206, China
| | - Xinmei Pang
- PetroChina Petrochemical Research Institute, Beijing102206, China
| | - Yuge Shen
- PetroChina Petrochemical Research Institute, Beijing102206, China
| | - Mingtang Gao
- Department of Chemical Engineering, The State Key Lab of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Shenyuan Zhao
- Department of Chemical Engineering, The State Key Lab of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Yujun Wang
- Department of Chemical Engineering, The State Key Lab of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Guangsheng Luo
- Department of Chemical Engineering, The State Key Lab of Chemical Engineering, Tsinghua University, Beijing100084, China
| |
Collapse
|
4
|
Wu G, Liu G, Li X, Peng Z, Zhou Q, Qi T. Enhanced phosphate removal with fine activated alumina synthesized from a sodium aluminate solution: performance and mechanism. RSC Adv 2022; 12:4562-4571. [PMID: 35425491 PMCID: PMC8981406 DOI: 10.1039/d1ra08474g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Fine activated alumina (FAA) acting as an adsorbent for phosphate was synthesized from an industrial sodium aluminate solution based on phase evolution from Al(OH)3 and NH4Al(OH)2CO3. This material was obtained in the form of γ-Al2O3 with an open mesoporous structure and a specific surface area of 648.02 m2 g-1. The phosphate adsorption capacity of the FAA gradually increased with increases in phosphate concentration or contact time. The maximum adsorption capacity was 261.66 mg g-1 when phosphate was present as H2PO4 - at a pH of 5.0. A removal efficiency of over 96% was achieved in a 50 mg L-1 phosphate solution. The adsorption of phosphate anions could be explained using non-linear Langmuir or Freundlich isotherm models and a pseudo-second-order kinetic model. Tetra-coordinate AlO4 sites acting as Lewis acids resulted in some chemisorption, while (O) n Al(OH)2 + (n = 4, 5, 6) Brønsted acid groups generated by the protonation of AlO4 or AlO6 sites in the FAA led to physisorption. Analyses of aluminum-oxygen coordination units using Fourier transform infrared and X-ray photoelectron spectroscopy demonstrated that physisorption was predominant. Minimal chemisorption was also verified by the significant desorption rate observed in dilute NaOH solutions and the high performance of the regenerated FAA. The high specific surface area, many open mesopores and numerous highly active tetra-coordinate AlO4 sites on the FAA all synergistically contributed to its exceptional adsorption capacity.
Collapse
Affiliation(s)
- Guoyu Wu
- School of Metallurgy and Environment, Central South University Changsha 410083 Hunan China
- Changchun Gold Research Institute Co., Ltd Changchun 130012 Jilin China
| | - Guihua Liu
- School of Metallurgy and Environment, Central South University Changsha 410083 Hunan China
| | - Xiaobin Li
- School of Metallurgy and Environment, Central South University Changsha 410083 Hunan China
| | - Zhihong Peng
- School of Metallurgy and Environment, Central South University Changsha 410083 Hunan China
| | - Qiusheng Zhou
- School of Metallurgy and Environment, Central South University Changsha 410083 Hunan China
| | - Tiangui Qi
- School of Metallurgy and Environment, Central South University Changsha 410083 Hunan China
| |
Collapse
|
5
|
Liu H, Wang S, Gao H, Yang H, Wang F, Chen X, Fang L, Tang S, Yi Z, Li D. A simple polyacrylamide gel route for the synthesis of MgAl2O4 nanoparticles with different metal sources as an efficient adsorbent: Neural network algorithm simulation, equilibrium, kinetics and thermodynamic studies. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119855] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Deng L, Han S, Zhou D, Li Y, Shen W. Morphology dependent effect of γ-Al2O3 for ethanol dehydration: nanorods and nanosheets. CrystEngComm 2022. [DOI: 10.1039/d1ce01316e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
γ-Al2O3 nanorods gave the improved selectivity of C2H4 in ethanol dehydration due to the selective exposure of {100} facets.
Collapse
Affiliation(s)
- Li Deng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shaobo Han
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Di Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Wenjie Shen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
7
|
Janani G, Surendran S, Choi H, Han MK, Sim U. In Situ Grown CoMn 2 O 4 3D-Tetragons on Carbon Cloth: Flexible Electrodes for Efficient Rechargeable Zinc-Air Battery Powered Water Splitting Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103613. [PMID: 34677907 DOI: 10.1002/smll.202103613] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/30/2021] [Indexed: 06/13/2023]
Abstract
The integration of energy conversion and storage systems such as electrochemical water splitting (EWS) and rechargeable zinc-air battery (ZAB) is on the vision to provide a sustainable future with green energy resources. Herein, a unique strategy for decorating 3D tetragonal CoMn2 O4 on carbon cloth (CMO-U@CC) via a facile one-pot in situ hydrothermal process, is reported. The highly exposed morphology of 3D tetragons enhances the electrocatalytic activity of CMO-U@CC. This is the first demonstration of such a bifunctional activity of CMO-U@CC in an EWS system; it achieves a nominal cell voltage of 1.610 V @ 10 mA cm-2 . Similarly, the fabricated rechargeable ZAB delivers a specific capacity of 641.6 mAh gzn -1 , a power density of 135 mW cm-2 , and excellent cyclic stability (50 h @ 10 mA cm-2 ). Additionally, a series of flexible solid-state ZABs are fabricated and employed to power the assembled CMO-U@CC-based water electrolyzer. To the best of the authors' knowledge, this is the first demonstration of an in situ-grown binder-free CMO-U@CC as a flexible multifunctional electrocatalyst for a built-in integrated rechargeable ZAB-powered EWS system.
Collapse
Affiliation(s)
- Gnanaprakasam Janani
- Department of Materials Science & Engineering, Engineering Research Center, Optoelectronics Convergence Research Center, Future Energy Engineering Convergence and College of AI Convergence, Chonnam National University, Gwangju, 61186, South Korea
| | - Subramani Surendran
- Department of Materials Science & Engineering, Engineering Research Center, Optoelectronics Convergence Research Center, Future Energy Engineering Convergence and College of AI Convergence, Chonnam National University, Gwangju, 61186, South Korea
| | - Hyeonuk Choi
- Department of Materials Science & Engineering, Engineering Research Center, Optoelectronics Convergence Research Center, Future Energy Engineering Convergence and College of AI Convergence, Chonnam National University, Gwangju, 61186, South Korea
| | - Mi-Kyung Han
- Department of Materials Science & Engineering, Engineering Research Center, Optoelectronics Convergence Research Center, Future Energy Engineering Convergence and College of AI Convergence, Chonnam National University, Gwangju, 61186, South Korea
- Research Institute, NEEL Sciences, INC., Gwangju, 61186, South Korea
| | - Uk Sim
- Department of Materials Science & Engineering, Engineering Research Center, Optoelectronics Convergence Research Center, Future Energy Engineering Convergence and College of AI Convergence, Chonnam National University, Gwangju, 61186, South Korea
- Research Institute, NEEL Sciences, INC., Gwangju, 61186, South Korea
| |
Collapse
|