1
|
Jiang Y, Sun H, Guo J, Liang Y, Qin P, Yang Y, Luo L, Leng L, Gong X, Wu Z. Vacancy Engineering in 2D Transition Metal Chalcogenide Photocatalyst: Structure Modulation, Function and Synergy Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310396. [PMID: 38607299 DOI: 10.1002/smll.202310396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/08/2024] [Indexed: 04/13/2024]
Abstract
Transition metal chalcogenides (TMCs) are widely used in photocatalytic fields such as hydrogen evolution, nitrogen fixation, and pollutant degradation due to their suitable bandgaps, tunable electronic and optical properties, and strong reducing ability. The unique 2D malleability structure provides a pre-designed platform for customizable structures. The introduction of vacancy engineering makes up for the shortcomings of photocorrosion and limited light response and provides the greatest support for TMCs in terms of kinetics and thermodynamics in photocatalysis. This work reviews the effect of vacancy engineering on photocatalytic performance based on 2D semiconductor TMCs. The characteristics of vacancy introduction strategies are summarized, and the development of photocatalysis of vacancy engineering TMCs materials in energy conversion, degradation, and biological applications is reviewed. The contribution of vacancies in the optical range and charge transfer kinetics is also discussed from the perspective of structure manipulation. Vacancy engineering not only controls and optimizes the structure of the TMCs, but also improves the optical properties, charge transfer, and surface properties. The synergies between TMCs vacancy engineering and atomic doping, other vacancies, and heterojunction composite techniques are discussed in detail, followed by a summary of current trends and potential for expansion.
Collapse
Affiliation(s)
- Yi Jiang
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Haibo Sun
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Jiayin Guo
- School of Resources and Environment, Hunan University of Technology and Business, Changsha, 410205, P. R. China
| | - Yunshan Liang
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Pufeng Qin
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Yuan Yang
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Lin Luo
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Xiaomin Gong
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Zhibin Wu
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| |
Collapse
|
2
|
Liao A, Liu Z, Wei Y, Xie Q, Kong T, Zeng M, Wang W, Yang C, Zhang L, Xu Y, Zhou Y, Zou Z. Synthesis of Sulfur Vacancy-Bearing In 2S 3/CuInS 2 Microflower Heterojunctions via a Template-Assisted Strategy and Cation-Exchange Reaction for Photocatalytic CO 2 Reduction. Molecules 2024; 29:3334. [PMID: 39064912 PMCID: PMC11279527 DOI: 10.3390/molecules29143334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The synthesis of the accurate composition and morphological/structural design of multielement semiconductor materials is considered an effective strategy for obtaining high-performance hybrid photocatalysts. Herein, sulfur vacancy (Vs)-bearing In2S3/CuInS2 microflower heterojunctions (denoted Vs-In2S3/CuInS2) were formed in situ using In2S3 microsphere template-directed synthesis and a metal ion exchange-mediated growth strategy. Photocatalysts with flower-like microspheres can be obtained using hydrothermally synthesized In2S3 microspheres as a template, followed by Ostwald ripening growth during the metal cation exchange of Cu+ and In3+. The optimal heterostructured Vs-In2S3/CuInS2 microflowers exhibited CO and CH4 evolution rates of 80.3 and 11.8 μmol g-1 h-1, respectively, under visible-light irradiation; these values are approximately 4 and 6.8 times higher than those reported for pristine In2S3, respectively. The enhanced photocatalytic performance of the Vs-In2S3/CuInS2 catalysts could be attributed to the synergistic effects of the following factors: (i) the constructed heterojunctions accelerate charge-carrier separation; (ii) the flower-like microspheres exhibit highly uniform morphologies and compositions, which enhance electron transport and light harvesting; and (iii) the vs. may trap excited electrons and, thus, inhibit charge-carrier recombination. This study not only confirms the feasibility of the design of heterostructures on demand, but also presents a simple and efficient strategy to engineer metal sulfide photocatalysts with enhanced photocatalytic performance.
Collapse
Affiliation(s)
- Aizhen Liao
- School of Science, Xi’an University of Posts and Telecommunications, Xi’an 710121, China; (Q.X.); (T.K.); (M.Z.); (W.W.); (C.Y.); (L.Z.); (Y.X.)
| | - Zhengchu Liu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, China; (Z.L.); (Y.W.); (Z.Z.)
| | - Yiqing Wei
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, China; (Z.L.); (Y.W.); (Z.Z.)
| | - Qinghua Xie
- School of Science, Xi’an University of Posts and Telecommunications, Xi’an 710121, China; (Q.X.); (T.K.); (M.Z.); (W.W.); (C.Y.); (L.Z.); (Y.X.)
| | - Ting Kong
- School of Science, Xi’an University of Posts and Telecommunications, Xi’an 710121, China; (Q.X.); (T.K.); (M.Z.); (W.W.); (C.Y.); (L.Z.); (Y.X.)
| | - Maolin Zeng
- School of Science, Xi’an University of Posts and Telecommunications, Xi’an 710121, China; (Q.X.); (T.K.); (M.Z.); (W.W.); (C.Y.); (L.Z.); (Y.X.)
| | - Wenpeng Wang
- School of Science, Xi’an University of Posts and Telecommunications, Xi’an 710121, China; (Q.X.); (T.K.); (M.Z.); (W.W.); (C.Y.); (L.Z.); (Y.X.)
| | - Chao Yang
- School of Science, Xi’an University of Posts and Telecommunications, Xi’an 710121, China; (Q.X.); (T.K.); (M.Z.); (W.W.); (C.Y.); (L.Z.); (Y.X.)
| | - Linji Zhang
- School of Science, Xi’an University of Posts and Telecommunications, Xi’an 710121, China; (Q.X.); (T.K.); (M.Z.); (W.W.); (C.Y.); (L.Z.); (Y.X.)
| | - Yonggang Xu
- School of Science, Xi’an University of Posts and Telecommunications, Xi’an 710121, China; (Q.X.); (T.K.); (M.Z.); (W.W.); (C.Y.); (L.Z.); (Y.X.)
| | - Yong Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, China; (Z.L.); (Y.W.); (Z.Z.)
- Ecomaterials and Renewable Energy Research Center, School of Physics, Nanjing University, Nanjing 210093, China
| | - Zhigang Zou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, China; (Z.L.); (Y.W.); (Z.Z.)
- Ecomaterials and Renewable Energy Research Center, School of Physics, Nanjing University, Nanjing 210093, China
| |
Collapse
|
3
|
Jubeer EM, Manthrammel MA, Subha PA, Shkir M, Biju KP, AlFaify SA. Defect engineering for enhanced optical and photocatalytic properties of ZnS nanoparticles synthesized by hydrothermal method. Sci Rep 2023; 13:16820. [PMID: 37798379 PMCID: PMC10556056 DOI: 10.1038/s41598-023-43735-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
Defect engineering is a promising method for improving light harvesting in photocatalytic materials like Zinc sulphide (ZnS). By altering the S/Zn molar ratio during hydrothermal processes, Zn and S defects are successfully introduced into the ZnS crystal. The band structures can be modified by adding defects to the crystal structure of ZnS samples. During the treatment process, defects are formed on the surface. XRD and Raman studies are used for the confirmation of the crystallinity and phase formation of the samples. Using an X-ray peak pattern assessment based on the Debye Scherer model, the Williamson-Hall model, and the size strain plot, it was possible to study the influence of crystal defect on the structural characteristics of ZnS nanoparticles. The band gap (Eg) values were estimated using UV-Vis diffuse spectroscopy (UV-Vis DRS) and found that the Eg is reduced from 3.28 to 3.49 eV by altering the S/Zn molar ratio. Photoluminescence study (PL) shows these ZnS nanoparticles emit violet and blue radiations. In keeping with the results of XRD, TEM demonstrated the nanoscale of the prepared samples and exhibited a small agglomeration of homogenous nanoparticles. Scanning electron microscopy (SEM) was used to examine the surface morphology of the ZnS particles. Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) and X-ray photoelectron spectroscopy (XPS) were used to evaluate and validate the elemental composition. XPS results indicate the presence of defects on the prepared ZnS nanoparticles. For the investigation of vacancy-dependent catalytic activity under exposure to visible light, defective ZnS with different quantities of Zn and S voids are used as catalysts. The lowest S/Zn sample, ZnS0.67 and the highest S/Zn sample, ZnS3, show superior photocatalytic activity.
Collapse
Affiliation(s)
- E Muhammed Jubeer
- Department of Physics, Farook College, University Of Calicut, Kozhikode, 673632, Kerala, India
| | - M Aslam Manthrammel
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box-9004, 61413, Abha, Saudi Arabia.
| | - P A Subha
- Department of Physics, Farook College, University Of Calicut, Kozhikode, 673632, Kerala, India
| | - Mohd Shkir
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box-9004, 61413, Abha, Saudi Arabia.
| | - K P Biju
- Department of Physics, Govt. Arts and Science College, Kozhikode, Calicut, 673018, Kerala, India
| | - S A AlFaify
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box-9004, 61413, Abha, Saudi Arabia
| |
Collapse
|
4
|
Zhang G, Yang J, Huang Z, Pan G, Xie B, Ni Z, Xia S. Construction dual vacancies to regulate the energy band structure of ZnIn 2S 4 for enhanced visible light-driven photodegradation of 4-NP. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129916. [PMID: 36103766 DOI: 10.1016/j.jhazmat.2022.129916] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Most of the intrinsic photocatalysts with visible light response can only generate one active radical due to the limitation of their band structures, which is immediate cause limiting their photocatalytic degradation performance. In this work, ZnIn2S4 with Zn vacancy and S vacancy (VZn+S-ZnIn2S4) was prepared for the first time. As expected, the VZn+S-ZnIn2S4 exhibits remarkable photocatalytic performance for 4-Nitrophenol (4-NP) degradation under visible light and the apparent rate constant is about 11 times that of pristine ZnIn2S4. The construction of dual vacancies can regulate the energy band structure of the ZnIn2S4, enabling it to generate •OH and •O2- simultaneously. Meanwhile, dual vacancies system can also extremely improve the separation efficiency of carriers. It is worth noting that Zn vacancy and S vacancy can capture photogenerated holes and photogenerated electrons, respectively, which is beneficial for photogenerated carriers to participate in radical generation reactions. In addition, a possible 4-NP degradation pathway was proposed based on HPLC-MS analysis. This work provides a new way to construct photocatalysts for photodegradation of pollutants in wastewater.
Collapse
Affiliation(s)
- Guanhua Zhang
- Department of Chemistry, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China; School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, Shandong, PR China
| | - Jieyi Yang
- Department of Chemistry, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China
| | - Zhiling Huang
- Department of Life and Health Sciences, Huzhou College, 313000 Huzhou, PR China
| | - Guoxiang Pan
- School of Engineering, Huzhou University, 759 East Erhuan Road, Huzhou 313000, PR China
| | - Bo Xie
- Department of Chemistry, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China
| | - Zheming Ni
- Department of Chemistry, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China
| | - Shengjie Xia
- Department of Chemistry, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China.
| |
Collapse
|
5
|
Lu Z, Yuan C, Ruan W, Ma B, Hao W, Wang Q, Cheng G, Yang J, Teng F. Large-scale synthesis of visible light responsive ZnS by one-step molten salt method. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Zhi Y, Yi Y, Deng C, Zhang Q, Yang S, Peng F. Defect-Enriched ZnO/ZnS Heterostructures Derived from Hydrozincite Intermediates for Hydrogen Evolution under Visible Light. CHEMSUSCHEM 2022; 15:e202200860. [PMID: 35734960 DOI: 10.1002/cssc.202200860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Introducing defect engineering into ZnO/ZnS heterojunction photocatalysts is an effective method to simultaneously improve their visible light performance and photocatalytic efficiency. Herein, a defect-enriched ZnO/ZnS heterostructure photocatalyst was synthesized through a hydrozincite [Zn5 (OH)6 (CO3 )2 ] intermediate-deriving reaction. The mechanism analysis showed that there were interstitial Zn and Zn vacancies in the hydrozincite-derived ZnO, while S vacancies and interstitial S and Zn vacancies were formed in ZnS components after calcination. These specific defect states endowed visible light response ability to both ZnO and ZnS components in the ZnO/ZnS photocatalysts. Under visible light irradiation, the photocatalytic hydrogen evolution rate of ZnO/ZnS reached 11.68 mmol h-1 g-1 , and under simulated sunlight irradiation, the best photocatalytic hydrogen evolution rate could reach 27.94 mmol h-1 g-1 , which was much higher than most previous reports. The analysis of energy band structure and photodeposition showed that the photocatalytic reduction sites were mainly on ZnS, and the photocatalytic reaction mainly followed the typical Z-type mechanism. This work presents a simple and low-cost method for the preparation of defects-enriched ZnO/ZnS-based photocatalytic materials with high photocatalytic activity and stability.
Collapse
Affiliation(s)
- Yaqing Zhi
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 51006, P. R. China
| | - Yuan Yi
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 51006, P. R. China
| | - Chenxi Deng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 51006, P. R. China
| | - Qiao Zhang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 51006, P. R. China
| | - Siyuan Yang
- College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Feng Peng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 51006, P. R. China
| |
Collapse
|
7
|
Zehtab-Lotfi E, Amani-Ghadim AR, Soltani B. Visible light-driven photocatalytic activity of wide band gap ATiO 3 (A = Sr, Zn and Cd) perovskites by lanthanide doping and the formation of a mesoporous heterostructure with ZnS QDs. Dalton Trans 2022; 51:12198-12212. [PMID: 35894544 DOI: 10.1039/d2dt01751b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Charge carrier recombination and wide band gap energy are still the main challenges in the visible-light-driven photocatalytic applications of titanate perovskites, ATiO3. Herein, three strategies are rationally used to achieve a titanate-based photocatalyst with high photocatalytic performance under visible light. In the first step, SrTiO3, ZnTiO3, and CdTiO3 perovskites were synthesized and their photocatalytic activity was evaluated in the degradation of methylene blue (MB) and bisphenol A (BPA). Then, a dysprosium cation (Dy3+) was doped into an ATiO3 crystalline lattice. Systematic investigations indicate that Dy doping in SrTiO3 and CdTiO3 extends the ligand to metal charge transfer absorption edge to visible wavelengths leading to the activation of doped perovskites under visible light. Higher visible-light-driven photocatalytic performance (73.29% for MB and 52.57% for BPA) and higher total organic carbon (TOC) removal (59.20% for MB and 39.53% for BPA) have been achieved by Dy doped CdTiO3 compared to other photocatalysts. Finally, we prepared a Dy-CdTP/ZnS QD mesoporous type-II heterostructure by the in situ growth of ZnS QDs on a flower-like Dy-CdTP. This design accelerates the separation and transfer of photogenerated electron-hole pairs. The surface area of the Dy-CdTP/ZnS QD heterostructure was ∼11.6 times greater than that of Dy-CdTP, offering a large surface area for the adsorption of organics, and abundant active sites for photocatalytic degradation. Taking advantage of the large surface area and considerable suppressing of the charge carrier recombination, the optimized Dy-CdTP(0.6)/ZnS QD photocatalyst exhibits excellent and stable performance for the degradation of MB (98.25%) and BPA (89.12%) with their considerable mineralization under visible light.
Collapse
Affiliation(s)
- Elnaz Zehtab-Lotfi
- Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University (ASMU), Tabriz 53751-71379, Iran
| | - Ali Reza Amani-Ghadim
- Applied Chemistry Research laboratory, Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University (ASMU), Tabriz 53751-71379, Iran. .,New Technologies in the Environment Research Center, Azarbaijan Shahid Madani University (ASMU), Tabriz 53751-71379, Iran
| | - Behzad Soltani
- Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University (ASMU), Tabriz 53751-71379, Iran
| |
Collapse
|