1
|
Fang YG, Zhu C, Shen L, Wang H, Fang WH. Synergistic Effects of Unconventional Hydrogen Bonds and π-Stacking Interaction and Their Excited-State Dependence: The Origin of Unusual Photophysical Properties of Aromatic Thioketones in Acetonitrile and Hydrocarbons. J Am Chem Soc 2024; 146:28845-28855. [PMID: 39390821 DOI: 10.1021/jacs.4c08578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
It has been established experimentally that aromatic thioketones possess several inherently unique photophysical properties, some of which are highly sensitive even to common hydrocarbon solvents. However, the deeper reasons and the underlying mechanisms remain unclear up to date. In this study, the multistate complete active space second-order perturbation theory (MS-CASPT2) has been utilized to investigate the five lowest-lying electronic states (S0, T1, S1, T2, and S2) of 4H-1-benzopyran-4-thione (BPT) in acetonitrile and hydrocarbons. The results show that the S1, T1, and T2 states of BPT are close in energy so that the T2-state-mediated S1 → T2 → T1 and T1 → T2 → S1 transitions could occur in tens of picoseconds, which exhibits little dependence on the formation of the BPT-solvent complexes and on the bulk-solvent effect. This explains why thermally activated delayed fluorescence from the S1 state has been observed for many aromatic thioketones in both inert media and hydrocarbons. Meanwhile, our calculations show that the intracomplex noncovalent interactions could be automatically adjusted by the redistribution of π-electrons in the flexible aromatic rings. This allows the S2 → S1 internal conversion to occur efficiently in the vicinity of the two-state conical intersection, which results in the remarkable changes in the S2-state lifetimes and fluorescence quantum yields of many aromatic thioketones from inert media to hydrocarbon solvents. The aforementioned inherent photophysical properties could be qualitatively understood by a simple model of frontier molecular orbitals. This model could be used to understand photophysical properties of other aromatic compounds (such as aldehydes, ketones, amines, and carboxylic acids) in different solvents.
Collapse
Affiliation(s)
- Ye-Guang Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Chongqin Zhu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Lin Shen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Haobin Wang
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80204, United States
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
2
|
Ruiz C, Martín R, Benito A, Gutierrez E, Monge MÁ, Facchetti A, Termine R, Golemme A, Gómez-Lor B. Columnar Mesomorphism in a Methylthio-Decorated Triindole for Enhanced Charge Transport. ACS APPLIED ELECTRONIC MATERIALS 2024; 6:4709-4717. [PMID: 38947954 PMCID: PMC11210202 DOI: 10.1021/acsaelm.4c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024]
Abstract
We report a semiconducting triindole-based discotic liquid crystal (TRISMe) functionalized with six p-methylthiophenyl groups at its periphery. While initially a crystalline solid at room temperature, TRISMe transitions to a columnar hexagonal mesophase upon heating and retains this supramolecular organization upon subsequent cooling, despite having only three flexible alkyl chains attached to the core's nitrogens. The incorporation of methylthio groups effectively hinders tight molecular packing, stabilizing the columnar arrangement of this disk-shaped molecule. Single crystal analysis confirmed the high tendency of this compound to organize into a columnar architecture and the role played by the methylthio groups in reinforcing such structure. The mesomorphic behavior of TRISMe provides an opportunity for processing from its molten state. Notably, our research reveals significant differences in charge transport depending on the processing method, whether solution drop-casting or melt-based. TRISMe shows hole mobility values averaging 3 × 10-1 cm2 V-1 s-1 when incorporated in diode-type devices from the isotropic melt and annealed at the mesophase temperature, estimated by SCLC (space-charge-limited current) measurements. However, when integrated into solution-processed organic field-effect transistors (OFETs), crystalline TRISMe exhibits a hole mobility of 3 × 10-4 cm2 V-1 s-1. The observed differences can be attributed to a beneficial supramolecular assembly achieved in the mesophase in spite of its lower order. These results emphasize the material's potential for applications in easy-to-process electronic devices and highlight the potential of methylthio moieties in promoting columnar mesophases.
Collapse
Affiliation(s)
- Constanza Ruiz
- Instituto
de Ciencia de Materiales de Madrid, CSIC, Cantoblanco 28049, Madrid, Spain
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Raúl Martín
- Instituto
de Ciencia de Materiales de Madrid, CSIC, Cantoblanco 28049, Madrid, Spain
- Faculty
of Chemical and Technologies Sciences, University
of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Angela Benito
- Instituto
de Ciencia de Materiales de Madrid, CSIC, Cantoblanco 28049, Madrid, Spain
| | - Enrique Gutierrez
- Instituto
de Ciencia de Materiales de Madrid, CSIC, Cantoblanco 28049, Madrid, Spain
| | - M. Ángeles Monge
- Instituto
de Ciencia de Materiales de Madrid, CSIC, Cantoblanco 28049, Madrid, Spain
| | - Antonio Facchetti
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Roberto Termine
- CNR
Nanotec UOS Rende, Dipartimento di Fisica, Università della Calabria, Rende 87036, Italy
| | - Attilio Golemme
- CNR
Nanotec UOS Rende, Dipartimento di Fisica, Università della Calabria, Rende 87036, Italy
| | - Berta Gómez-Lor
- Instituto
de Ciencia de Materiales de Madrid, CSIC, Cantoblanco 28049, Madrid, Spain
| |
Collapse
|
3
|
Torres-Hernández F, Pinillos P, Li W, Saragi RT, Camiruaga A, Juanes M, Usabiaga I, Lesarri A, Fernández JA. Competition between O-H and S-H Intermolecular Interactions in Conformationally Complex Systems: The 2-Phenylethanethiol and 2-Phenylethanol Dimers. J Phys Chem Lett 2024; 15:5674-5680. [PMID: 38767855 PMCID: PMC11145646 DOI: 10.1021/acs.jpclett.4c00903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
Noncovalent interactions involving sulfur centers play a relevant role in biological and chemical environments. Yet, detailed molecular descriptions are scarce and limited to very simple model systems. Here we explore the formation of the elusive S-H···S hydrogen bond and the competition between S-H···O and O-H···S interactions in pure and mixed dimers of the conformationally flexible molecules 2-phenylethanethiol (PET) and 2-phenylethanol (PEAL), using the isolated and size-controlled environment of a jet expansion. The structure of both PET-PET and PET-PEAL dimers was unraveled through a comprehensive methodology that combined rotationally resolved microwave spectroscopy, mass-resolved isomer-specific infrared laser spectroscopy, and quantum chemical calculations. This synergic experimental-computational approach offered unique insights into the potential energy surface, conformational equilibria, molecular structure, and intermolecular interactions of the dimers. The results show a preferential order for establishing hydrogen bonds following the sequence S-H···S < S-H···O ≲ O-H···S < O-H···O, despite the hydrogen bond only accounting for a fraction of the total interaction energy.
Collapse
Affiliation(s)
- Fernando Torres-Hernández
- Departamento
de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Paul Pinillos
- Departamento
de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Wenqin Li
- Departamento
de Química Física y Química Inorgánica,
Facultad de Ciencias - I.U. CINQUIMA, Universidad
de Valladolid, Paseo de Belén, 7, E-47011 Valladolid, Spain
| | - Rizalina Tama Saragi
- Departamento
de Química Física y Química Inorgánica,
Facultad de Ciencias - I.U. CINQUIMA, Universidad
de Valladolid, Paseo de Belén, 7, E-47011 Valladolid, Spain
| | - Ander Camiruaga
- Departamento
de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Marcos Juanes
- Departamento
de Química Física y Química Inorgánica,
Facultad de Ciencias - I.U. CINQUIMA, Universidad
de Valladolid, Paseo de Belén, 7, E-47011 Valladolid, Spain
| | - Imanol Usabiaga
- Departamento
de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Alberto Lesarri
- Departamento
de Química Física y Química Inorgánica,
Facultad de Ciencias - I.U. CINQUIMA, Universidad
de Valladolid, Paseo de Belén, 7, E-47011 Valladolid, Spain
| | - José A. Fernández
- Departamento
de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, Leioa 48940, Spain
| |
Collapse
|
4
|
Lv W, Xu Y, Yang T, Wang L, Huang J, Huang H, Feng G. Unveiling the underappreciated: The bonding features of C-H⋯S-S interactions observed from rotational spectroscopy. J Chem Phys 2024; 160:134302. [PMID: 38557843 DOI: 10.1063/5.0200788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
The C-H⋯S-S interactions are fundamentally important to understand the stability of biomacromolecules and their binding with small molecules, but they are still underappreciated. Herein, we characterized the C-H⋯S-S interactions in model molecular complexes. The rotational spectra of the complexes of diethyl disulfide with CH2CH2 and CH2CHF were measured and analyzed. All the detected structures are mainly stabilized by a C-H⋯S-S hydrogen bond, providing stabilization energies of 2.3-7.2 kJ mol-1. Incidental C-H⋯π or C-H⋯F interactions enhance the stabilization of the complexes. London dispersion, which accounts for 54%-68% of the total attractions, is the main driving force of stabilization. The provided bonding features of C-H⋯S-S are crucial for understanding the stabilizing role of this type of interaction in diverse processes such as supramolecular recognition, protein stability, and enzyme activity.
Collapse
Affiliation(s)
- Wenqi Lv
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Yugao Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Tingting Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Liuting Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Jinxi Huang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Haiying Huang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Gang Feng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| |
Collapse
|
5
|
Elsayed MH, Abdellah M, Alhakemy AZ, Mekhemer IMA, Aboubakr AEA, Chen BH, Sabbah A, Lin KH, Chiu WS, Lin SJ, Chu CY, Lu CH, Yang SD, Mohamed MG, Kuo SW, Hung CH, Chen LC, Chen KH, Chou HH. Overcoming small-bandgap charge recombination in visible and NIR-light-driven hydrogen evolution by engineering the polymer photocatalyst structure. Nat Commun 2024; 15:707. [PMID: 38267492 PMCID: PMC10808228 DOI: 10.1038/s41467-024-45085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/15/2024] [Indexed: 01/26/2024] Open
Abstract
Designing an organic polymer photocatalyst for efficient hydrogen evolution with visible and near-infrared (NIR) light activity is still a major challenge. Unlike the common behavior of gradually increasing the charge recombination while shrinking the bandgap, we present here a series of polymer nanoparticles (Pdots) based on ITIC and BTIC units with different π-linkers between the acceptor-donor-acceptor (A-D-A) repeated moieties of the polymer. These polymers act as an efficient single polymer photocatalyst for H2 evolution under both visible and NIR light, without combining or hybridizing with other materials. Importantly, the difluorothiophene (ThF) π-linker facilitates the charge transfer between acceptors of different repeated moieties (A-D-A-(π-Linker)-A-D-A), leading to the enhancement of charge separation between D and A. As a result, the PITIC-ThF Pdots exhibit superior hydrogen evolution rates of 279 µmol/h and 20.5 µmol/h with visible (>420 nm) and NIR (>780 nm) light irradiation, respectively. Furthermore, PITIC-ThF Pdots exhibit a promising apparent quantum yield (AQY) at 700 nm (4.76%).
Collapse
Affiliation(s)
- Mohamed Hammad Elsayed
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Mohamed Abdellah
- Department of Chemistry, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
- Department of Chemistry, Qena Faculty of Science, South Valley University, 83523, Qena, Egypt
- Chemical Physics and NanoLund, Lund University, 22100, Lund, Sweden
| | - Ahmed Zaki Alhakemy
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71542, Egypt
| | - Islam M A Mekhemer
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Ahmed Esmail A Aboubakr
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Taipei, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
- Institute of Chemistry, Academia Sinica, 128 Sec 2 Academia Rd., Nankang, Taipei, 11529, Taiwan
| | - Bo-Han Chen
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Amr Sabbah
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
| | - Kun-Han Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Wen-Sheng Chiu
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Sheng-Jie Lin
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Che-Yi Chu
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chih-Hsuan Lu
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Shang-Da Yang
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 804, Kaohsiung, Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 804, Kaohsiung, Taiwan
| | - Chen-Hsiung Hung
- Institute of Chemistry, Academia Sinica, 128 Sec 2 Academia Rd., Nankang, Taipei, 11529, Taiwan
| | - Li-Chyong Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
| | - Kuei-Hsien Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Ho-Hsiu Chou
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan.
| |
Collapse
|
6
|
Adhav V, Saikrishnan K. The Realm of Unconventional Noncovalent Interactions in Proteins: Their Significance in Structure and Function. ACS OMEGA 2023; 8:22268-22284. [PMID: 37396257 PMCID: PMC10308531 DOI: 10.1021/acsomega.3c00205] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023]
Abstract
Proteins and their assemblies are fundamental for living cells to function. Their complex three-dimensional architecture and its stability are attributed to the combined effect of various noncovalent interactions. It is critical to scrutinize these noncovalent interactions to understand their role in the energy landscape in folding, catalysis, and molecular recognition. This Review presents a comprehensive summary of unconventional noncovalent interactions, beyond conventional hydrogen bonds and hydrophobic interactions, which have gained prominence over the past decade. The noncovalent interactions discussed include low-barrier hydrogen bonds, C5 hydrogen bonds, C-H···π interactions, sulfur-mediated hydrogen bonds, n → π* interactions, London dispersion interactions, halogen bonds, chalcogen bonds, and tetrel bonds. This Review focuses on their chemical nature, interaction strength, and geometrical parameters obtained from X-ray crystallography, spectroscopy, bioinformatics, and computational chemistry. Also highlighted are their occurrence in proteins or their complexes and recent advances made toward understanding their role in biomolecular structure and function. Probing the chemical diversity of these interactions, we determined that the variable frequency of occurrence in proteins and the ability to synergize with one another are important not only for ab initio structure prediction but also to design proteins with new functionalities. A better understanding of these interactions will promote their utilization in designing and engineering ligands with potential therapeutic value.
Collapse
Affiliation(s)
- Vishal
Annasaheb Adhav
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Kayarat Saikrishnan
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
7
|
Le Corre L, Padovani D. Mechanism-based and computational modeling of hydrogen sulfide biogenesis inhibition: interfacial inhibition. Sci Rep 2023; 13:7287. [PMID: 37142727 PMCID: PMC10160035 DOI: 10.1038/s41598-023-34405-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/28/2023] [Indexed: 05/06/2023] Open
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule that participates in various signaling functions in health and diseases. The tetrameric cystathionine γ-lyase (CSE) contributes to H2S biogenesis and several investigations provide evidence on the pharmacological modulation of CSE as a potential target for the treatment of a multitude of conditions. D-penicillamine (D-pen) has recently been reported to selectively impede CSE-catalyzed H2S production but the molecular bases for such inhibitory effect have not been investigated. In this study, we report that D-pen follows a mixed-inhibition mechanism to inhibit both cystathionine (CST) cleavage and H2S biogenesis by human CSE. To decipher the molecular mechanisms underlying such a mixed inhibition, we performed docking and molecular dynamics (MD) simulations. Interestingly, MD analysis of CST binding reveals a likely active site configuration prior to gem-diamine intermediate formation, particularly H-bond formation between the amino group of the substrate and the O3' of PLP. Similar analyses realized with both CST and D-pen identified three potent interfacial ligand-binding sites for D-pen and offered a rational for D-pen effect. Thus, inhibitor binding not only induces the creation of an entirely new interacting network at the vicinity of the interface between enzyme subunits, but it also exerts long range effects by propagating to the active site. Overall, our study paves the way for the design of new allosteric interfacial inhibitory compounds that will specifically modulate H2S biogenesis by cystathionine γ-lyase.
Collapse
Affiliation(s)
- Laurent Le Corre
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, 75006, Paris, France
| | - Dominique Padovani
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, 75006, Paris, France.
| |
Collapse
|
8
|
Lu T, Zhang J, Xu Y, Wang Z, Feng G, Zeng Z. Hydrogen bond interactions between thioethers and amides: A joint rotational spectroscopic and theoretical study of the formamide⋯dimethyl sulfide adduct. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122199. [PMID: 36473293 DOI: 10.1016/j.saa.2022.122199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/17/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
The rotational spectrum of the binary adduct of formamide (HCONH2) with dimethyl sulfide (DMS) has been investigated employing cavity-based Fourier transform microwave spectroscopy combined with theoretical computations. Experimentally, only one isomer of the adduct was unambiguously observed and assigned according to the theoretically predicted spectroscopic parameters, and its rotational spectrum displays the hyperfine splittings associated with the 14N nuclear quadrupole coupling effect. The observed isomer exhibits Cs symmetry, such that the ∠CSC angle of the DMS subunit is bisected by the ab-plane of the HCONH2 moiety. The two moieties in the detected isomer are connected via one primary NH···S and two secondary CH···O hydrogen bonds. Quantum theory of atoms in molecules (QTAIM), non-covalent interaction (NCI), natural bond orbital (NBO) and symmetry-adapted perturbation theory (SAPT) approaches were utilized for characterizing the intermolecular interactions occurring in the titled adduct. Additionally, the adduct of HCONH2 with dimethyl ether (DME) was also theoretically investigated to compare the difference in structure and energy characteristics between the NH···S and NH···O hydrogen bonds.
Collapse
Affiliation(s)
- Tao Lu
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing 401331, China.
| | - Jiaqi Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing 401331, China
| | - Yugao Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing 401331, China
| | - Zhen Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing 401331, China
| | - Gang Feng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing 401331, China
| | - Zhu Zeng
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
9
|
Rawls B, Cunningham J, Bender JE, Staples RJ, Biros SM. Crystal structures of ( Z)-(ethene-1,2-di-yl)bis-(di-phenyl-phosphine sulfide) and its complex with Pt II dichloride. Acta Crystallogr E Crystallogr Commun 2023; 79:28-32. [PMID: 36628368 PMCID: PMC9815131 DOI: 10.1107/s2056989022011847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The crystal structures of (Z)-(ethene-1,2-di-yl)bis-(di-phenyl-phosphine sulfide), C26H22P2S2 (I), along with its complex with PtII dichloride, di-chlorido[(Z)-(ethene-1,2-di-yl)bis-(di-phenyl-phosphine sulfide)-κ2 S,S']platinum(II), [PtCl2(C26H22P2S2)] (II), are described here. Compound I features P=S bond lengths of 1.9571 (15) and 1.9529 (15) Å, with a torsion angle of 166.24 (7)° between the two phosphine sulfide groups. The crystal of compound I features both intra-molecular C-H⋯S hydrogen bonds and π-π inter-actions. Mol-ecules of compound I are held together with inter-molecular π-π and C-H⋯π inter-actions to form chains that run parallel to the z-axis. The inter-molecular C-H⋯π inter-action has a H⋯Cg distance of 2.63 Å, a D⋯Cg distance of 3.573 (5) Å and a D-H⋯Cg angle of 171° (where Cg refers to the centroid of one of the phenyl rings). These chains are linked by relatively long C-H⋯S hydrogen bonds with D⋯A distances of 3.367 (4) and 3.394 (4) Å with D-H⋯A angles of 113 and 115°. Compound II features Pt-Cl and Pt-S bond lengths of 2.3226 (19) and 2.2712 (19) Å, with a P=S bond length of 2.012 (3) Å. The PtII center adopts a square-planar geometry, with Cl-Pt-Cl and S-Pt-S bond angles of 90.34 (10) and 97.19 (10)°, respectively. Mol-ecules of compound II are linked in the crystal by inter-molecular C-H⋯Cl and C-H⋯S hydrogen bonds.
Collapse
Affiliation(s)
- Brian Rawls
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA
| | - Jeremy Cunningham
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA
| | - John E. Bender
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA
| | - Richard J. Staples
- Center for Crystallographic Research, Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Shannon M. Biros
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA
| |
Collapse
|
10
|
Martínez-Bourget D, Rocha E, Labra-Vázquez P, Santillan R, Ortiz-López B, Ortiz-Navarrete V, Maraval V, Chauvin R, Farfán N. BODIPY-Ethynylestradiol molecular rotors as fluorescent viscosity probes in endoplasmic reticulum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121704. [PMID: 35985231 DOI: 10.1016/j.saa.2022.121704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Due to their capability for sensing changes in viscosity, fluorescent molecular rotors (FMRs) have emerged as potential tools to develop several promising viscosity probes; most of them, however, localize non-selectively within cells, precluding changes in the viscosity of specific cellular microdomains to be studied by these means. Following previous reports on enhanced fluorophore uptake efficiency and selectivity by incorporation of biological submolecular fragments, here we report two potential BODIPY FMRs based on an ethynylestradiol spindle, a non-cytotoxic semisynthetic estrogen well recognized by human cells. A critical evaluation of the potential of these fluorophores for being employed as FMRs is presented, including the photophysical characterization of the probes, SXRD studies and TD-DFT computations, as well as confocal microscopy imaging in MCF-7 (breast cancer) cells.
Collapse
Affiliation(s)
- Diego Martínez-Bourget
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, Coyoacán 04510, CDMX, México
| | - Erika Rocha
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, Coyoacán 04510, CDMX, México
| | - Pablo Labra-Vázquez
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, 31077 Toulouse, France
| | - Rosa Santillan
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000, México
| | - Benjamín Ortiz-López
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, CINVESTAV, Apdo., Postal 14-740, México, D.F. 07000, Mexico
| | - Vianney Ortiz-Navarrete
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, CINVESTAV, Apdo., Postal 14-740, México, D.F. 07000, Mexico
| | - Valérie Maraval
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, 31077 Toulouse, France
| | - Remi Chauvin
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, 31077 Toulouse, France
| | - Norberto Farfán
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, Coyoacán 04510, CDMX, México.
| |
Collapse
|
11
|
Dynamic/column tests for dibenzothiophene (DBT) removal using chemically functionalized carbons: Exploring the effect of physicochemical features and breakthrough modeling. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Aisha, Raza MA, Farwa U, Rashid U, Maurin JK, Budzianowski A. Synthesis, single crystal, in-silico and in-vitro assessment of the thiazolidinones. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Al-Wahaibi L, Asokan KV, Al-Shaalan NH, Tawfik SS, Hassan HM, El-Emam AA, Percino MJ, Thamotharan S. Supramolecular Self-Assembly Mediated by Multiple Hydrogen Bonds and the Importance of C-S···N Chalcogen Bonds in N'-(Adamantan-2-ylidene)hydrazide Derivatives. ACS OMEGA 2022; 7:10608-10621. [PMID: 35382346 PMCID: PMC8973099 DOI: 10.1021/acsomega.2c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/23/2022] [Indexed: 12/02/2022]
Abstract
The present article comprehensively examines six N'-(adamantan-2-ylidene)hydrazide derivatives using the Hirshfeld surface analysis, PIXEL energy for molecular dimers, lattice energies for crystal packing, and topological analysis for intramolecular and intermolecular interactions. The crystal structure of one of the N'-(adamantan-2-ylidene)hydrazide derivatives, namely, N'-(adamantan-2-ylidene)-5-bromothiophene-2-carbohydrazide 1, C15H17N2OSBr, has been determined and analyzed in detail along with five closely related structures. The molecular conformation of 1 is locked by an intramolecular C-S···N chalcogen bond as found in one of its closely related structure, namely, N'-(adamantan-2-ylidene)thiophene-2-carbohydrazide. Furthermore, a detailed potential energy surface scan analysis has been performed to highlight the importance of a chalcogen bond. Two of these compounds possess syn-orientation for amide units, whereas the corresponding moiety exhibits anti-conformations in the remaining four structures. The Hirshfeld surface and its decomposed fingerprint plots provide a qualitative picture of acyl substituent effects on the intermolecular interactions toward crystal packing of these six structures. Intermolecular interaction energies for dimers observed in these structures calculated by density functional theory (B97D3/def2-TZVP) and PIXEL (MP2/6-31G**) methods are comparable. This study also identifies that multiple hydrogen bonds, including N/C-H···O/N and C-H···π interactions, are collectively responsible for a self-assembled synthon. The nature and strength of these interactions have been studied using atoms in molecule topological analysis. The in vitro antiproliferative activity of compound 1 was assessed against five human tumor cell lines and showed marked antiproliferative activity.
Collapse
Affiliation(s)
- Lamya
H. Al-Wahaibi
- Department
of Chemistry, College of Sciences, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Karthick Vishal Asokan
- Biomolecular
Crystallography Laboratory, Department of Bioinformatics, School of
Chemical and Biotechnology, SASTRA Deemed
University, Thanjavur 613401, India
| | - Nora H. Al-Shaalan
- Department
of Chemistry, College of Sciences, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Samar S. Tawfik
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Hanan M. Hassan
- Department
of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Costal Road, Gamasa City, Mansoura 11152, Egypt
| | - Ali A. El-Emam
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - M. Judith Percino
- Unidad de
Polímeros y Electrónica Orgánica, Instituto de
Ciencias, Benemérita Universidad
Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa, Puebla 72960, Mexico
| | - Subbiah Thamotharan
- Biomolecular
Crystallography Laboratory, Department of Bioinformatics, School of
Chemical and Biotechnology, SASTRA Deemed
University, Thanjavur 613401, India
| |
Collapse
|
14
|
Pandit NR, Bej S, Banerjee P, Biswas B. Unveiling Role of Metals in Mononuclear Metal‐Complexes for Chemodosimetric Detection of S
2−
from aqueous medium: Experimental and DFT Corroboration with Real‐Field Application. ChemistrySelect 2022. [DOI: 10.1002/slct.202200307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nithun Ranjan Pandit
- Department of Chemistry Presidency University, 86/1 College Street Kolkata 700073 India
| | - Sourav Bej
- Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute Mahatma Gandhi Avenue Durgapur 713209 India
- Academy of Scientific & Innovative Research (AcSIR) AcSIR Headquarters CSIR-HRDC Campus Postal Staff College Area, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| | - Priyabrata Banerjee
- Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute Mahatma Gandhi Avenue Durgapur 713209 India
- Academy of Scientific & Innovative Research (AcSIR) AcSIR Headquarters CSIR-HRDC Campus Postal Staff College Area, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| | - Biplab Biswas
- Department of Chemistry Presidency University, 86/1 College Street Kolkata 700073 India
| |
Collapse
|
15
|
Patnin S, Makarasen A, Vijitphan P, Baicharoen A, Chaivisuthangkura A, Kuno M, Techasakul S. Computational Screening of Phenylamino-Phenoxy-Quinoline Derivatives against the Main Protease of SARS-CoV-2 Using Molecular Docking and the ONIOM Method. Molecules 2022; 27:1793. [PMID: 35335157 PMCID: PMC8955101 DOI: 10.3390/molecules27061793] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 01/02/2023] Open
Abstract
In the search for new anti-HIV-1 agents, two forms of phenylamino-phenoxy-quinoline derivatives have been synthesized, namely, 2-phenylamino-4-phenoxy-quinoline and 6-phenylamino-4-phenoxy-quinoline. In this study, the binding interactions of phenylamino-phenoxy-quinoline derivatives and six commercially available drugs (hydroxychloroquine, ritonavir, remdesivir, S-217622, N3, and PF-07321332) with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) were investigated using molecular docking and the ONIOM method. The molecular docking showed the hydrogen bonding and hydrophobic interactions of all the compounds in the pocket of SARS-CoV-2 main protease (Mpro), which plays an important role for the division and proliferation of the virus into the cell. The binding free energy values between the ligands and Mpro ranged from -7.06 to -10.61 kcal/mol. The molecular docking and ONIOM results suggested that 4-(2',6'-dimethyl-4'-cyanophenoxy)-2-(4″-cyanophenyl)-aminoquinoline and 4-(4'-cyanophenoxy)-2-(4″-cyanophenyl)-aminoquinoline have low binding energy values and appropriate molecular properties; moreover, both compounds could bind to Mpro via hydrogen bonding and Pi-Pi stacking interactions with amino acid residues, namely, HIS41, GLU166, and GLN192. These amino acids are related to the proteolytic cleavage process of the catalytic triad mechanisms. Therefore, this study provides important information for further studies on synthetic quinoline derivatives as antiviral candidates in the treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Suwicha Patnin
- Laboratory of Organic Synthesis, Department of Chemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand; (S.P.); (P.V.); (A.B.)
| | - Arthit Makarasen
- Laboratory of Organic Synthesis, Department of Chemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand; (S.P.); (P.V.); (A.B.)
| | - Pongsit Vijitphan
- Laboratory of Organic Synthesis, Department of Chemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand; (S.P.); (P.V.); (A.B.)
| | - Apisara Baicharoen
- Laboratory of Organic Synthesis, Department of Chemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand; (S.P.); (P.V.); (A.B.)
| | - Apinya Chaivisuthangkura
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Wattana, Bangkok 10110, Thailand; (A.C.); (M.K.)
| | - Mayuso Kuno
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Wattana, Bangkok 10110, Thailand; (A.C.); (M.K.)
| | - Supanna Techasakul
- Laboratory of Organic Synthesis, Department of Chemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand; (S.P.); (P.V.); (A.B.)
| |
Collapse
|
16
|
Fargher HA, Sherbow TJ, Haley MM, Johnson DW, Pluth MD. C-H⋯S hydrogen bonding interactions. Chem Soc Rev 2022; 51:1454-1469. [PMID: 35103265 PMCID: PMC9088610 DOI: 10.1039/d1cs00838b] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The short C-H⋯S contacts found in available structural data for both small molecules and larger biomolecular systems suggest that such contacts are an often overlooked yet important stabilizing interaction. Moreover, many of these short C-H⋯S contacts meet the definition of a hydrogen bonding interaction. Using available structural data from the Cambridge Structural Database (CSD), as well as selected examples from the literature in which important C-H⋯S contacts may have been overlooked, we highlight the generality of C-H⋯S hydrogen bonding as an important stabilizing interaction. To uncover and establish the generality of these interactions, we compare C-H⋯S contacts with other traditional hydrogen bond donors and acceptors as well as investigate how coordination number and metal bonding affect the preferred geometry of interactions in the solid state. This work establishes that the C-H⋯S bond meets the definition of a hydrogen bond and serves as a guide to identify C-H⋯S hydrogen bonds in diverse systems.
Collapse
Affiliation(s)
- Hazel A. Fargher
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, USA
| | - Tobias J. Sherbow
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, USA
| | - Michael M. Haley
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, USA
| | - Darren W. Johnson
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, USA
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, USA
| |
Collapse
|
17
|
MACHIDA H, HONDA A, TOMONO K, YOSHIGUCHI Y, MIYAMURA K. Crystal Structure of 1,1′-(1,7-Heptanediyl)bis(pyridinium) Bis(2-thioxo-1,3-dithiole-4,5-dithiolato)nickelate Double Salt. X-RAY STRUCTURE ANALYSIS ONLINE 2022. [DOI: 10.2116/xraystruct.38.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hiroto MACHIDA
- Department of Chemistry, Faculty of Science, Tokyo University of Science
| | - Akinori HONDA
- Department of Chemistry, Faculty of Science, Tokyo University of Science
| | - Kazuaki TOMONO
- Applied Chemistry Course, Faculty of Science and Engineering, Kanto-gakuin University
| | - Yuto YOSHIGUCHI
- Department of Chemistry, Faculty of Science, Tokyo University of Science
| | - Kazuo MIYAMURA
- Department of Chemistry, Faculty of Science, Tokyo University of Science
| |
Collapse
|
18
|
Majumdar D, Tüzün B, Pal TK, Das S, Bankura K. Architectural View of Flexible Aliphatic –OH Group Coordinated Hemi-Directed Pb(II)-Salen Coordination Polymer: Synthesis, Crystal Structure, Spectroscopic Insights, Supramolecular Topographies, and DFT Perspective. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02194-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Arakawa Y, Shiba T, Igawa K, Sasaki S, Tsuji H. 4′-Alkylseleno-4-cyanobiphenyls, nSeCB: synthesis and substituent effects on the phase-transition and liquid crystalline behaviors. CrystEngComm 2022. [DOI: 10.1039/d2ce00551d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A homologous series of 4′-alkylseleno-4-cyanobiphenyls (nSeCB) was synthesized and their phase-transition behaviors were investigated and compared with those of the alkyl, alkoxy, and alkylthio homologs.
Collapse
Affiliation(s)
- Yuki Arakawa
- Department of Applied Chemistry and Life Science, Graduate School of Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Takuma Shiba
- Department of Applied Chemistry and Life Science, Graduate School of Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Kazunobu Igawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Shunsuke Sasaki
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, F-44000 Nantes, France
| | - Hideto Tsuji
- Department of Applied Chemistry and Life Science, Graduate School of Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| |
Collapse
|
20
|
Tulsiyan KD, Jena S, Dutta J, Biswal HS. Hydrogen Bonding with Polonium. Phys Chem Chem Phys 2022; 24:17185-17194. [DOI: 10.1039/d2cp01852g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen bonding (H-bonding) with heavier chalcogens such as polonium and tellurium is almost unexplored owing to their lower electronegativities, providing us an opportunity to delve into the uncharted territory of...
Collapse
|
21
|
Arakawa Y, Ishida Y, Shiba T, Igawa K, Sasaki S, Tsuji H. Effects of alkylthio groups on phase transitions of organic molecules and liquid crystals: a comparative study with alkyl and alkoxy groups. CrystEngComm 2022. [DOI: 10.1039/d1ce01470f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The effects of the alkylthio groups on the phase transition behavior of organic liquid crystal molecules were examined by comparing them with the effects of alkyl and alkoxy groups.
Collapse
Affiliation(s)
- Yuki Arakawa
- Department of Applied Chemistry and Life Science, Graduate School of Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Yuko Ishida
- Department of Applied Chemistry and Life Science, Graduate School of Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Takuma Shiba
- Department of Applied Chemistry and Life Science, Graduate School of Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Kazunobu Igawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Shunsuke Sasaki
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | - Hideto Tsuji
- Department of Applied Chemistry and Life Science, Graduate School of Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| |
Collapse
|
22
|
Yennawar HP, Medica JJ, Silverberg LJ. Synthesis and crystal structure of racemic ( R*, R*)-2,2'-(1,4-phenyl-ene)bis-(3-phenyl-2,3,5,6-tetra-hydro-4 H-1,3-thia-zin-4-one). Acta Crystallogr E Crystallogr Commun 2021; 77:1263-1266. [PMID: 34925894 PMCID: PMC8647733 DOI: 10.1107/s2056989021011592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/02/2021] [Indexed: 11/11/2022]
Abstract
In the racemic title compound, C26H24N2O2S2, one of the thia-zine rings shows a twisted boat conformation (Q = 0.743 Å, θ = 92.1°) and the other a half-chair puckering (Q = 0.669 Å, θ = 54.3°). The terminal phenyl rings are almost parallel to each other [dihedral angle 21.71 (10)°]. Both of these rings are orthogonal to the central phenyl ring, subtending a dihedral angle of about 78° in each case. The extended structure is consolidated by C-H⋯O and C-H⋯S hydrogen bonds as well as aromatic ring inter-actions of parallel-displaced and T-type. The mol-ecule has approximate C2 local symmetry but this is not carried over to its three-dimensional structure or the inter-molecular inter-actions.
Collapse
Affiliation(s)
- Hemant P. Yennawar
- Pennsylvania State University, 8 Althouse Laboratory, University Park, PA 16802, USA
| | - Joseph J. Medica
- Pennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA
| | - Lee J. Silverberg
- Pennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA
| |
Collapse
|
23
|
Structurally diverse heterobimetallic Pb(II)-Salen complexes mechanistic notion of cytotoxic activity against neuroblastoma cancer cell: Synthesis, characterization, protein–ligand interaction profiler, and intuitions from DFT. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115504] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Ma X, Zhu Y, Yu J, Zhao G, Duanmu J, Yuan Y, Chang XP, Xu D, Zhou Q. Unprecedented observation and characterization of sulfur-centred bifurcated hydrogen bonds. Phys Chem Chem Phys 2021; 23:26519-26523. [PMID: 34807205 DOI: 10.1039/d1cp04601b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Owing to the small electronegativity of the sulfur atom, it is commonly supposed that at most one weak H-bond can be formed between a sulfur atom and an H-bond donor. In this paper, an unprecedented 2 : 1 binding species generated from two molecules of phenol and a molecule of thioether was observed and characterized by various nuclear magnetic resonance (NMR) techniques, Fourier transform-infrared (FT-IR) techniques and density functional theory (DFT) calculations, revealing the formation of sulfur-centred O-H⋯S⋯H-O bifurcated H-bonds. This work may provide a simple and efficient method for the quantitative analysis of weak H-bonds between small organic molecules.
Collapse
Affiliation(s)
- Xiantao Ma
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Yingying Zhu
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Jing Yu
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Geng Zhao
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Jiaxin Duanmu
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Yiyun Yuan
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Xue-Ping Chang
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Dongli Xu
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| |
Collapse
|
25
|
Chirality, structure and hydrogen bonding in dithiols: Rotational spectrum of the chiral and meso 2,3-butanedithiol. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Fuller RO, Taylor MR, Duggin M, Bissember AC, Canty AJ, Judd MM, Cox N, Moggach SA, Turner GF. Enhanced synthesis of oxo-verdazyl radicals bearing sterically-and electronically-diverse C3-substituents. Org Biomol Chem 2021; 19:10120-10138. [PMID: 34757372 DOI: 10.1039/d1ob01946e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthetic viability of the hydrazine- and phosgene-free synthesis of 1,5-dimethyl oxo-verdazyl radicals has been improved via a detailed study investigating the influence of the aryl substituent on tetrazinanone ring formation. Although it is well established that functionalisation at the C3 position of the tetrazinanone ring does not influence the nature of the radical, it is crucial in applications development. The synthetic route involves a 4-step sequence: Schiff base condensation of a carbohydrazide with an arylaldehyde, alkylation, ring closure then subsequent oxidation to the radical. We found that the presence of strong electron-donating substituents and electron rich heterocycles, result in a significant reduction in yield during both the alkylation and ring closure steps. This can, in part, be alleviated by milder alkylation conditions and further substitution of the aryl group. In comparison, more facile formation of the tetrazine ring was observed with examples containing electron-withdrawing groups and with meta- or para-substitution. Density functional theory suggests that the ring closure proceeds via the formation of an ion pair. Electron paramagnetic resonance spectroscopy provides insight into the precise electronic structure of the radical with small variations in hyperfine coupling constants revealing subtle differences.
Collapse
Affiliation(s)
- Rebecca O Fuller
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia.
| | - Madeleine R Taylor
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia.
| | - Margot Duggin
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia.
| | - Alex C Bissember
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia.
| | - Allan J Canty
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia.
| | - Martyna M Judd
- Research School of Chemistry, The Australia National University, Australian Capital Territory, Australia
| | - Nicholas Cox
- Research School of Chemistry, The Australia National University, Australian Capital Territory, Australia
| | - Stephen A Moggach
- School of Molecular Sciences - Chemistry, The University of Western Australia, Crawley, Western Australia, Australia
| | - Gemma F Turner
- School of Molecular Sciences - Chemistry, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
27
|
Molecular Recognition, Transient Chirality and Sulfur Hydrogen Bonding in the Benzyl Mercaptan Dimer. Symmetry (Basel) 2021. [DOI: 10.3390/sym13112022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The homodimers of transiently chiral molecules offer physical insight into the process of molecular recognition, the preference for homo or heterochiral aggregation and the nature of the non-covalent interactions stabilizing the adducts. We report the observation of the benzyl mercaptan dimer in the isolation conditions of a supersonic jet expansion, using broadband (chirped-pulse) microwave spectroscopy. A single homochiral isomer was observed for the dimer, stabilized by a cooperative sequence of S-H···S and S-H···π hydrogen bonds. The structural data, stabilization energies and energy decomposition describe these non-covalent interactions as weak and dispersion-controlled. A comparison is also provided with the benzyl alcohol dimer.
Collapse
|
28
|
Al-Mutairi A, Alagappan K, Blacque O, Al-Alshaikh MA, El-Emam AA, Percino MJ, Thamotharan S. Crystallographic and Theoretical Exploration of Weak Hydrogen Bonds in Arylmethyl N'-(adamantan-1-yl)piperidine-1-carbothioimidates and Molecular Docking Analysis. ACS OMEGA 2021; 6:27026-27037. [PMID: 34693122 PMCID: PMC8529591 DOI: 10.1021/acsomega.1c03559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/24/2021] [Indexed: 12/23/2022]
Abstract
Crystal structures of two potential chemotherapeutic agents, namely 4-nitrobenzyl N'-(adamantan-1-yl)piperidine-1-carbothioimidate 1 and 4-bromobenzyl N'-(adamantan-1-yl)piperidine-1-carbothioimidate 2, have been analyzed in detail. X-ray analysis reveals that the molecular conformations of these compounds are strikingly different. These two structures are compared with two of their closely related structures. In the related structures, morpholine replaces piperidine. Based on the Hirshfeld surface analysis and two-dimensional (2D) fingerprint plots, we describe the effects of piperidine/morpholine and Br/NO2 groups on the intermolecular interactions. An analysis of the CLP-PIXEL energy provides insight into the energetics of the dimers observed in the title compounds and their related structures. Compound 1 stabilizes with bifurcated C-H···S, C-H···O, and O(lp)···C(π) interactions, whereas compound 2 stabilizes with C-H···N, C-H···Br, and C-H···C interactions. The energy frameworks for the crystal structures of the title compounds reveal differences. The atoms-in-molecules (AIM) analysis was performed to confirm the intermolecular interactions found in the crystal structures of 1 and 2. Additionally, docking analysis suggests that the title compounds bind at the active site of human sphingosine kinase 1, a well-known cancer target.
Collapse
Affiliation(s)
- Aamal
A. Al-Mutairi
- Department
of Chemistry, College of Sciences, Imam
Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Kowsalya Alagappan
- Biomolecular
Crystallography Laboratory, Department of Bioinformatics, School of
Chemical and Biotechnology, SASTRA Deemed
University, Thanjavur 613401, India
| | - Olivier Blacque
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Monirah A. Al-Alshaikh
- Department
of Chemistry, College of Sciences, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Ali A. El-Emam
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - M. Judith Percino
- Unidad de
Polímeros y Electrónica Orgánica, Instituto de
Ciencias, Benemérita Universidad
Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa, Puebla C.P.72960, Mexico
| | - Subbiah Thamotharan
- Biomolecular
Crystallography Laboratory, Department of Bioinformatics, School of
Chemical and Biotechnology, SASTRA Deemed
University, Thanjavur 613401, India
| |
Collapse
|
29
|
Synthesis and characterization of alkylthio-attached azobenzene-based liquid crystal polymers: Roles of the alkylthio bond and polymer chain in phase behavior and liquid crystal formation. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Mishra A, Kumar R, Lama P, Metre RK. Octanuclear Organotin Copper Sulfide Cage [(RSnCu)4(μ3-S)8]·2CHCl3 (R = 2-phenylazophenyl) Assembled using Intramolecular Coordination Approach: Synthesis, Structure and DFT-NBO-AIM Analysis. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Fukuhara T, Yamazaki K, Hidani T, Saito M, Tamai Y, Osaka I, Ohkita H. Molecular Understanding of How the Interfacial Structure Impacts the Open-Circuit Voltage of Highly Crystalline Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34357-34366. [PMID: 34254768 DOI: 10.1021/acsami.1c08545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, we study the origin of differences in open-circuit voltage (VOC) for polymer:fullerene solar cells employing highly crystalline conjugated polymers (PTzBT) based on the same thiophene-thiazolothiazole backbone with different side chains. By analyzing the temperature dependence of VOC and cyclic voltammogram, we find that the difference in VOC originates in the different cascaded energy structures for the highest occupied molecular orbital (HOMO) levels in the interfacial mixed phase. Furthermore, we find that this is due to the stabilization of HOMO caused by the different branching of side chains on the basis of density functional theory calculation. Finally, we discuss the molecular design strategy based on side-chain engineering for ideal interfacial cascaded energy structures leading to higher VOC and photocurrent simultaneously.
Collapse
Affiliation(s)
- Tomohiro Fukuhara
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Koshi Yamazaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takuto Hidani
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masahiko Saito
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Yasunari Tamai
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Itaru Osaka
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Hideo Ohkita
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
32
|
Gelpí-Domínguez S, Rossi AR, Gascón JA. Insights into diastereotopic effects in thiolated gold nanoclusters. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Bhattacharyya S, Ghosh S, Wategaonkar S. O-H stretching frequency red shifts do not correlate with the dissociation energies in the dimethylether and dimethylsulfide complexes of phenol derivatives. Phys Chem Chem Phys 2021; 23:5718-5739. [PMID: 33662068 DOI: 10.1039/d0cp01589j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this perspective, we present a comprehensive report on the spectroscopic and computational investigations of the hydrogen bonded (H-bonded) complexes of Me2O and Me2S with seven para-substituted H-bond donor phenols. The salient finding was that although the dissociation energies, D0, of the Me2O complexes were consistently higher than those of the analogous Me2S complexes, the red-shifts in phenolic O-H frequencies, Δν(O-H), showed the exactly opposite trend. This is in contravention of the general perception that the red shift in the X-H stretching frequency in the X-HY hydrogen bonded complexes is a reliable indicator of H-bond strength (D0), a concept popularly known as the Badger-Bauer rule. This is also in contrast to the trend reported for the H-bonded complexes of H2S/H2O with several para substituted phenols of different pKa values wherein the oxygen centered hydrogen bonded (OCHB) complexes consistently showed higher Δν(O-H) and D0 compared to those of the analogous sulfur centered hydrogen bonded (SCHB) complexes. Our effort was to understand these intriguing observations based on the spectroscopic investigations of 1 : 1 complexes in combination with a variety of high level quantum chemical calculations. Ab initio calculations at the MP2 level and the DFT calculations using various dispersion corrected density functionals (including DFT-D3) were performed on counterpoise corrected surfaces to compute the dissociation energy, D0, of the H-bonded complexes. The importance of anharmonic frequency computations is underscored as they were able to correctly reproduce the observed trend in the relative OH frequency shifts unlike the harmonic frequency computations. We have attempted to find a unified correlation that would globally fit the observed red shifts in the O-H frequency with the H-bonding strength for the four bases, namely, H2S, H2O, Me2O, and Me2S, in this set of H-bond donors. It was found that the proton affinity normalized Δν(O-H) values scale very well with the H-bond strength.
Collapse
Affiliation(s)
- Surjendu Bhattacharyya
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India.
| | - Sanat Ghosh
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India.
| | - Sanjay Wategaonkar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India.
| |
Collapse
|
34
|
Novel (Phenothiazinyl)Vinyl-Pyridinium Dyes and Their Potential Applications as Cellular Staining Agents. Int J Mol Sci 2021; 22:ijms22062985. [PMID: 33804193 PMCID: PMC7999001 DOI: 10.3390/ijms22062985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/24/2022] Open
Abstract
We report here the synthesis and structural characterization of novel cationic (phenothiazinyl)vinyl-pyridinium (PVP) dyes, together with optical (absorption/emission) properties and their potential applicability as fluorescent labels. Convective heating, ultrasound irradiation and mechanochemical synthesis were considered as alternative synthetic methodologies proficient for overcoming drawbacks such as long reaction time, nonsatisfactory yields or solvent requirements in the synthesis of novel dye (E)-1-(3-chloropropyl)-4-(2-(10-methyl-10H-phenothiazin-3-yl)vinyl)pyridin-1-ium bromide 3d and its N-alkyl-2-methylpyridinium precursor 1c. The trans geometry of the newly synthesized (E)-4-(2-(7-bromo-10-ethyl-10H-phenothiazin-3-yl)vinyl)-1-methylpyridin-1-ium iodide 3b and (E)-1-methyl-4-(2-(10-methyl-10H-phenothiazin-3-yl)vinyl)pyridin-1-ium tetrafluoroborate 3a′ was confirmed by single crystal X-ray diffraction. A negative solvatochromism of the dyes in polar solvents was highlighted by UV-Vis spectroscopy and explanatory insights were supported by molecular modeling which suggested a better stabilization of the lowest unoccupied molecular orbitals (LUMO). The photostability of the dye 3b was investigated by irradiation at 365 nm in different solvents, while the steady-state and time-resolved fluorescence properties of dye 3b and 3a′ in solid state were evaluated under one-photon excitation at 485 nm. The in vitro cytotoxicity of the new PVP dyes on B16-F10 melanoma cells was evaluated by WST-1 assay, while their intracellular localization was assessed by epi-fluorescence conventional microscopy imaging as well as one- and two-photon excited confocal fluorescence lifetime imaging microscopy (FLIM). PVP dyes displayed low cytotoxicity, good internalization inside melanoma cells and intense fluorescence emission inside the B16-F10 murine melanoma cells, making them suitable staining agents for imaging applications.
Collapse
|
35
|
Mishra KK, Borish K, Singh G, Panwaria P, Metya S, Madhusudhan MS, Das A. Observation of an Unusually Large IR Red-Shift in an Unconventional S-H···S Hydrogen-Bond. J Phys Chem Lett 2021; 12:1228-1235. [PMID: 33492971 DOI: 10.1021/acs.jpclett.0c03183] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The S-H···S non-covalent interaction is generally known as an extremely unconventional weak hydrogen-bond in the literature. The present gas-phase spectroscopic investigation shows that the S-H···S hydrogen-bond can be as strong as any conventional hydrogen-bond in terms of the IR red-shift in the stretching frequency of the hydrogen-bond donor group. Herein, the strength of the S-H···S hydrogen-bond has been determined by measuring the red-shift (∼150 cm-1) of the S-H stretching frequency in a model complex of 2-chlorothiophenol and dimethyl sulfide using isolated gas-phase IR spectroscopy coupled with quantum chemistry calculations. The observation of an unusually large IR red-shift in the S-H···S hydrogen-bond is explained in terms of the presence of a significant amount of charge-transfer interactions in addition to the usual electrostatic interactions. The existence of ∼750 S-H···S interactions between the cysteine and methionine residues in 642 protein structures determined from an extensive Protein Data Bank analysis also indicates that this interaction is important for the structures of proteins.
Collapse
Affiliation(s)
- Kamal K Mishra
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| | - Kshetrimayum Borish
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| | - Gulzar Singh
- Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| | - Prakash Panwaria
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| | - Surajit Metya
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| | - M S Madhusudhan
- Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| | - Aloke Das
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, India
| |
Collapse
|
36
|
Siahaan P, Sasongko NA, Lusiana RA, Prasasty VD, Martoprawiro MA. The validation of molecular interaction among dimer chitosan with urea and creatinine using density functional theory: In application for hemodyalisis membrane. Int J Biol Macromol 2020; 168:339-349. [PMID: 33309669 DOI: 10.1016/j.ijbiomac.2020.12.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 11/16/2020] [Accepted: 12/06/2020] [Indexed: 01/06/2023]
Abstract
The formation of chitosan dimer and its interaction with urea and creatinine have been investigated at the density functional theory (DFT) level (B3LYP-D3/6-31++G**) to study the transport phenomena in hemodialysis membrane. The interaction energy of chitosan-creatinine and chitosan-urea complexes are in range -4 kcal/mol < interaction energy <-20 kcal/mol which were classified in medium hydrogen bond interaction. The chemical reactivity parameter proved that creatinine was more electrophilic and easier to bind chitosan than urea. The energy gap of HOMO-LUMO of chitosan-creatinine complex was lower than chitosan-urea complex that indicating chitosan-creatinine complex was more reactive and easier to transport electron than chitosan-urea complex. Moreover, the natural bond orbital (NBO) analysis showed a high contribution of hydrogen bond between chitosan-creatinine and chitosan-urea. The chitosan-creatinine interaction has a stronger hydrogen bond than chitosan-urea through the interaction O18-H34....N56 with stabilizing energy = -13 kcal/mol. The quantum theory atom in molecule (QTAIM) also supported NBO data. All data presented that creatinine can make hydrogen bond interaction stronger with chitosan than urea, that indicated creatinine easier to transport in the chitosan membrane than urea during hemodialysis process.
Collapse
Affiliation(s)
- Parsaoran Siahaan
- Department of Chemistry, Faculty Science and Mathematics, Diponegoro University, 50275 Semarang, Indonesia.
| | | | - Retno Ariadi Lusiana
- Department of Chemistry, Faculty Science and Mathematics, Diponegoro University, 50275 Semarang, Indonesia
| | - Vivitri Dewi Prasasty
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, 12930 Jakarta, Indonesia
| | - Muhamad Abdulkadir Martoprawiro
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, 40132 Bandung, Indonesia
| |
Collapse
|
37
|
Ghosh M, Panwaria P, Tothadi S, Das A, Khan S. Bis(silanetellurone) with C-H···Te Interaction. Inorg Chem 2020; 59:17811-17821. [PMID: 33215925 DOI: 10.1021/acs.inorgchem.0c03098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Herein, we report the synthesis of a series of bis(silanechalcogenones) [Ch = Te (2), S (3), or Se (4)] using an N-heterocyclic silylene-based SiCSi pincer ligand (1). 2 is the first example of a bis(silanetellurone) derivative. The bonding patterns of 2-4 were extensively studied by natural bond orbital, quantum theory of atoms in molecules, and noncovalent interaction index analyses, and these exhibit weak C-H···Ch interaction. The analogous reaction of 1 with trimethyl N-oxide produced a novel bis(cyclosiloxane) derivative (5). All of the complexes are duly characterized by single-crystal X-ray diffraction studies, multinuclear nuclear magnetic resonance (1H, 13C, and 29Si) spectroscopy, and high-resolution mass spectrometry.
Collapse
Affiliation(s)
- Moushakhi Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Prakash Panwaria
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Srinu Tothadi
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Aloke Das
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Shabana Khan
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
38
|
Chand A, Sahoo DK, Rana A, Jena S, Biswal HS. The Prodigious Hydrogen Bonds with Sulfur and Selenium in Molecular Assemblies, Structural Biology, and Functional Materials. Acc Chem Res 2020; 53:1580-1592. [PMID: 32677432 DOI: 10.1021/acs.accounts.0c00289] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hydrogen bonds (H-bonds) play important roles in imparting functionality to the basic molecules of life by stabilizing their structures and directing their interactions. Numerous studies have been devoted to understanding H-bonds involving highly electronegative atoms like nitrogen, oxygen, and halogens and consequences of those H-bonds in chemical reactions, catalysis, and structure and function of biomolecules; but the involvement of less electronegative atoms like sulfur and selenium in H-bond formation establishes the concept of noncanonical H-bonds. Initially belittled for the "weak" nature of their interactions, these perceptions have gradually evolved over time through dedicated efforts by several research groups. This has been facilitated by advancements in experimental methods for their detection through gas-phase laser spectroscopy and solution NMR spectroscopy, as well as through theoretical predictions from high level quantum chemical calculations.In this Account, we present insights into the versatility of the sulfur and selenium centered H-bonds (S/SeCHBs) by highlighting their multifarious applications in various fields from chemical reactions to optoelectronic properties to structural biology. Our group has highlighted the significance and strength of such H-bonds in natural and modified biomolecules. Here, we have reviewed several molecular assemblies, biomolecules, and functional materials, where the role of these H-bonds is pivotal in influencing biological functions. It is worth mentioning here that the precise experimental data obtained from gas-phase laser spectroscopy have contributed considerably to changing the existing perceptions toward S/SeCHBs. Thus, molecular beam experiments, though difficult to perform on smaller model thio- or seleno-substituted Molecules, etc. (amides, nucleobases, drug molecules), are inevitable to gather elementary knowledge and convincing concepts on S/SeCHBs that can be extended from a small four-atom sulfanyl dimer to a large 14 kDa iron-sulfur protein, ferredoxin. These H-bonds can also tailor a fascinating array of molecular frameworks and design supramolecular assemblies by inter- and intralinking of individual "molecular Lego-like" units.The discussion is indeed intriguing when it turns to the usage of S/SeCHBs in facile synthetic strategies like tuning regioselectivity in reactions, as well as invoking phenomena like dual phosphorescence and chemiluminescence. This is in addition to our investigations of the dispersive nature of the hydrogen bond between metal hydrides and sulfur or selenium as acceptor, which we anticipate would lead to progress in the areas of proton and hydride transfer, as well as force-field design. This Account demonstrates how ease of fabrication, enhanced efficiency, and alteration of physicochemical properties of several functional materials is facilitated owing to the presence of S/SeCHBs. Our efforts have been instrumental in the evaluation of various S/SeCHBs in flue gas capture, as well as design of organic energy harvesting materials, where dipole moment and polarizability have important roles to play. We hope this Account invokes newer perspectives with regard to how H-bonds with sulfur and selenium can be adequately adopted for crystal engineering, for more photo- and biophysical studies with different spectroscopic methods, and for developing next-generation field-effect transistors, batteries, superconductors, and organic thin-film transistors, among many other multifunctional materials for the future.
Collapse
Affiliation(s)
- Apramita Chand
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO Bhimpur-Padanpur, Via-Jatni, District Khurda, 752050 Bhubaneswar, India
- Homi Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| | - Dipak Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO Bhimpur-Padanpur, Via-Jatni, District Khurda, 752050 Bhubaneswar, India
- Homi Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| | - Abhijit Rana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO Bhimpur-Padanpur, Via-Jatni, District Khurda, 752050 Bhubaneswar, India
- Homi Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| | - Subhrakant Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO Bhimpur-Padanpur, Via-Jatni, District Khurda, 752050 Bhubaneswar, India
- Homi Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| | - Himansu S. Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO Bhimpur-Padanpur, Via-Jatni, District Khurda, 752050 Bhubaneswar, India
- Homi Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|