1
|
Chatterjee S, Chowdhury T, Bagchi S. Solvation Dynamics and Microheterogeneity in Deep Eutectic Solvents. J Phys Chem B 2024; 128:12669-12684. [PMID: 39670634 DOI: 10.1021/acs.jpcb.4c06295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Deep eutectic solvents have attracted considerable attention due to their unique properties and their potential to replace conventional solvents in diverse applications, such as catalysis, energy storage, and green chemistry. However, despite their broad use, the microscopic mechanisms governing solvation dynamics and the role of hydrogen bonding in deep eutectic solvents remain insufficiently understood. In this article, we present our contributions toward unravelling the micro heterogeneity within deep eutectic solvents by combining vibrational Stark spectroscopy and two-dimensional infrared spectroscopy with molecular dynamics simulations. Our findings demonstrate how the composition, constituents, and addition of water significantly influence the heterogeneous hydrogen bonding network and solvent dynamics within these systems. These insights provide valuable guidance for the design of next-generation solvents tailored to specific applications. By integrating experimental and computational approaches, this work sheds light on the intricate relationship between solvation dynamics and nanostructure in deep eutectic solvents, ultimately paving the way for innovative advances in solvent design.
Collapse
Affiliation(s)
- Srijan Chatterjee
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Tubai Chowdhury
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sayan Bagchi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Joshi P, Shinde A, Sudhiram S, Sarangi BR, Mani NK. Wearable threads for monitoring sanitizer quality using dye displacement assay. RSC Adv 2024; 14:37155-37163. [PMID: 39569111 PMCID: PMC11577342 DOI: 10.1039/d4ra04379k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
This study employs zero-cost (≈0.01 $) and durable thread-based devices to evaluate the quality of simulated and commercial sanitizer samples through dye displacement assay (DDA). A diverse range of sanitizer compositions, including ethanol concentrations of 55%, 75%, and 95% (v/v), were analysed. This investigation encompasses an assessment of the marker type (Doms and Hauser brands) on the migration distance of the dye region marked on thread devices. Our results demonstrate a proportional increase in the migration distance of the dye with increasing ethanol concentrations due to a decrease in the coefficient of viscosity and solvation power of ethanol on dye molecules. Additionally, a field trial for the thorough assessment of commercial sanitizer quality using thread-based devices further underscores the efficacy of this methodology. A calibration plot for a braided thread with Doms marker dye provides a reliable means to quantitatively assess the ethanol content in different commercial sanitizer compositions. Our findings collectively highlight the significance of this innovative method as a valuable tool for quality control and assessment for public health and hygiene as well as for preparing us for another pandemic.
Collapse
Affiliation(s)
- Pratham Joshi
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
- Innotech Manipal, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| | - Akhiya Shinde
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| | - Sukanya Sudhiram
- Physical and Chemical Biology Laboratory, Department of Physics, Indian Institute of Technology Palakkad Kerala 678623 India
| | - Bibhu Ranjan Sarangi
- Physical and Chemical Biology Laboratory, Department of Physics, Indian Institute of Technology Palakkad Kerala 678623 India
- Biological Sciences and Engineering, Indian Institute of Technology Palakkad Kerala 678623 India
| | - Naresh Kumar Mani
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
- Innotech Manipal, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| |
Collapse
|
3
|
Wu JH, Yu HQ. Confronting the Mysteries of Oxidative Reactive Species in Advanced Oxidation Processes: An Elephant in the Room. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18496-18507. [PMID: 39382033 DOI: 10.1021/acs.est.4c06725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Advanced oxidation processes (AOPs) are rapidly evolving but still lack well-established protocols for reliably identifying oxidative reactive species (ORSs). This Perspective presents both the radical and nonradical ORSs that have been identified or proposed, along with the extensive controversies surrounding oxidative mechanisms. Conventional identification tools, such as quenchers, probes, and spin trappers, might be inadequate for the analytical demands of systems in which multiple ORSs coexist, often yielding misleading results. Therefore, the challenges of identifying these complex, short-lived, and transient ORSs must be fully acknowledged. Refining analytical methods for ORSs is necessary, supported by rigorous experiments and innovative paradigms, particularly through kinetic analysis based on in situ spectroscopic techniques and multiple-probe strategies. To demystify these complex ORSs, future efforts should be made to develop advanced tools and strategies to enhance the mechanism understanding. In addition, integrating real-world conditions into experimental designs will establish a reliable framework in fundamental studies, providing more accurate insights and effectively guiding the design of AOPs.
Collapse
Affiliation(s)
- Jing-Hang Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Farahani S, Movahedirad S, Sobati MA. Characterization of the oil water two phase flow in a novel microchannel contactor equipped with helical wire static mixer. Sci Rep 2024; 14:23369. [PMID: 39375430 PMCID: PMC11458776 DOI: 10.1038/s41598-024-75356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024] Open
Abstract
This study investigates an oil/water two-phase system to assess the potential efficacy of a novel passive mixer in enhancing the liquid-liquid interfacial area within a micro-channel contactor. In this system, two fluids are introduced into a microchannel with a diameter of 800 μm and a length of 20 cm, which is equipped with a stainless-steel helical wire measuring 250 μm in diameter. Throughout the experiments, both fluids are supplied at equal flow rates, and the dominant forces, including attachment and detachment forces, are examined. The results reveal a critical Weber number of 3.8 × 10-³, at which the first detachment occurs. A comparison between microchannels with and without the passive micromixer demonstrates that greater slug breakup occurs in the system incorporating the helical wire micromixer. This innovative configuration results in a significant reduction in slug/droplet size compared to a microchannel without a barrier, decreasing from approximately 600 μm to 390 μm at a flow rate of 0.8 mL/min. Additionally, a flow map is presented, illustrating three distinct flow regimes: flow contains long slug, Slug-droplet flow, and droplet flow regimes, with the droplet flow regime covering the largest area. The findings indicate that the implementation of this innovative passive mixer substantially increases the interfacial area, providing significant advantages for mass transfer applications.
Collapse
Affiliation(s)
- Sobhan Farahani
- School of Chemical Engineering, Iran University of Science and Technology (IUST), P.O. Box 16765-163, Tehran, Iran
| | - Salman Movahedirad
- School of Chemical Engineering, Iran University of Science and Technology (IUST), P.O. Box 16765-163, Tehran, Iran.
| | - Mohammad Amin Sobati
- School of Chemical Engineering, Iran University of Science and Technology (IUST), P.O. Box 16765-163, Tehran, Iran
| |
Collapse
|
5
|
Singh R, Seo J, Ryu J, Choi JH. Unraveling the interplay of temperature with molecular aggregation and miscibility in TEA-water mixtures. Phys Chem Chem Phys 2024; 26:18970-18982. [PMID: 38953296 DOI: 10.1039/d4cp02238f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
In the phase diagram of binary liquid mixtures, a miscibility gap is found with the concomitant liquid-liquid phase separation, wherein temperature is a key parameter in modulating the phase behavior. This includes critical temperatures such as the lower critical solution temperature (LCST) and upper critical solution temperature (UCST). Using a comprehensive approach including molecular dynamics (MD) simulation, graph theoretical analysis and spatial inhomogeneity measurement in an LCST-type mixture, we attempt to establish the relationship between the molecular aggregation pattern and phase behavior in TEA-water mixtures. At lower temperatures of binary liquid mixtures, TEA molecules tend to aggregate while simultaneously interacting with water forming a homogeneous solution. As the temperature increases, these TEA aggregates tend to self-associate by minimizing the interaction with water, which facilitates formation of two distinct liquid phases in the binary liquid. The spatial distribution analysis also reveals that the TEA aggregates compatible with water promote uniform distribution of water molecules, maintaining a homogeneous solution, while the water-incompatible ones generate isolation of water H-bond aggregates, leading to liquid-liquid phase separation in the binary system. This current study on temperature-induced molecular aggregation behavior is anticipated to contribute to a critical understanding of the phase behavior in binary liquid mixtures, including UCST, LCST, and reentrant phase behavior.
Collapse
Affiliation(s)
- Ravi Singh
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Jonghyuk Ryu
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
6
|
Milovanović MR, Zarić SD. New Aspects of Alcohol-Alcohol and Alcohol-Water Interactions: Crystallographic and Quantum Chemical Studies of Antiparallel O-H/O-H Interactions. J Phys Chem Lett 2024; 15:1294-1304. [PMID: 38284997 DOI: 10.1021/acs.jpclett.3c03399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
New modes of interaction, antiparallel O-H/O-H interactions of alcohol-alcohol dimers and alcohol-water dimers, were studied by analyzing data in the Cambridge Structural Database (CSD) and by calculating potential energy surfaces at a very accurate quantum chemical CCSD(T)/CBS level. The data reveal the existence of antiparallel interactions in crystal structures and significant interaction energies. Data from the CSD for alcohol-alcohol dimers show 49.2% of contacts with classical hydrogen bonds and 10.1% of contacts with antiparallel interactions, while for alcohol-water dimers, 59.4% of contacts are classical hydrogen bonds and only 0.6% of contacts are antiparallel interactions. The calculations were performed on methanol, ethanol, and n-propanol dimers. Classical hydrogen-bonded alcohol-alcohol and alcohol-water dimers have interaction energies of up to -6.2 kcal/mol and up to -5.5 kcal/mol, respectively. Antiparallel interactions in alcohol-alcohol and alcohol-water dimers have interaction energies of up to -4.7 kcal/mol and up to -4.4 kcal/mol, respectively. Symmetry-adapted perturbation theory analysis for antiparallel interactions shows their electrostatic nature.
Collapse
Affiliation(s)
- Milan R Milovanović
- Innovative Centre of the Faculty of Chemistry, Studentski trg 12-16, Belgrade 11000, Serbia
| | - Snežana D Zarić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade 11000, Serbia
| |
Collapse
|
7
|
Seo J, Singh R, Ryu J, Choi JH. Molecular Aggregation Behavior and Microscopic Heterogeneity in Binary Osmolyte-Water Solutions. J Chem Inf Model 2024; 64:138-149. [PMID: 37983534 DOI: 10.1021/acs.jcim.3c01382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Osmolytes, small organic compounds, play a key role in modulating the protein stability in aqueous solutions, but the operating mechanism of the osmolyte remains inconclusive. Here, we attempt to clarify the mode of osmolyte action by quantitatively estimating the microheterogeneity of osmolyte-water mixtures with the aid of molecular dynamics simulation, graph theoretical analysis, and spatial distribution measurement in the four osmolyte solutions of trimethylamine-N-oxide (TMAO), tetramethylurea (TMU), dimethyl sulfoxide, and urea. TMAO, acting as a protecting osmolyte, tends to remain isolated with no formation of osmolyte aggregates while preferentially interacting with water, but there is a strong aggregation propensity in the denaturant TMU solution, characterized by favored hydrophobic interactions between TMU molecules. Taken together, the mechanism of osmolyte action on protein stability is proposed as a comprehensive one that encompasses the direct interactions between osmolytes and proteins and indirect interactions through the regulation of water properties in the osmolyte-water mixtures.
Collapse
Affiliation(s)
- Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Ravi Singh
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jonghyuk Ryu
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
8
|
Xu J, Huang M, Zhang S, Ning D, Pang H, Jiao L, Yang Q, Yang J, Wu Q. Study on the modulating effect of halogen atom substitution on the detection range of water content detection probes in organic solvents. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123415. [PMID: 37742590 DOI: 10.1016/j.saa.2023.123415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Fluorescence probes based on the variations of aggregation state (Aggregation-Induced Emission (AIE) and Aggregation-Caused Quenching (ACQ)) have received widespread attention due to their simplicity, efficiency and intuitiveness. However, typical probes are highly sensitive to changes in polarity and slight variations in the external environment can cause a complete change in the aggregation state. With the aim of expanding the detection range of the molecular probe, this work adopts a different design strategy from adjusting the molecular backbone but regulates the fluorescence behavior of the Schiff base molecular backbone by introducing different halogen atoms. Systematic studies show that when chlorine serves as substitutional atoms (3,5-Cl Salen), the probe can achieve full-range detection of water content (0-100 vol%) in ethanol and DMF. To our knowledge, the 3,5-Cl Salen represents the best water content probe in organic molecules. Experimental and theoretical studies have shown that the adjustment of halogen atoms can linearly change the charge distribution on the benzene ring and precisely control the strength of intermolecular interactions. At the same time, we developed a fluorescent filter paper based on 3,5-Cl Salen and used smartphones for rapid, sensitive and precise on-site measurement of water content in organic solvents.
Collapse
Affiliation(s)
- Jiajun Xu
- Department of Chemical Science and Technology, Kunming University, Kunming, Yunnan 650214, China
| | - Meifen Huang
- College of Physics Science and Technology, Kunming University, Kunming, Yunnan, 650214, China
| | - Siman Zhang
- Department of Chemical Science and Technology, Kunming University, Kunming, Yunnan 650214, China
| | - Dan Ning
- Department of Chemical Science and Technology, Kunming University, Kunming, Yunnan 650214, China
| | - Haijun Pang
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Liang Jiao
- College of Physics Science and Technology, Kunming University, Kunming, Yunnan, 650214, China
| | - Qiuling Yang
- Department of Chemical Science and Technology, Kunming University, Kunming, Yunnan 650214, China
| | - Jiao Yang
- Department of Chemical Science and Technology, Kunming University, Kunming, Yunnan 650214, China
| | - Qiong Wu
- Department of Chemical Science and Technology, Kunming University, Kunming, Yunnan 650214, China; Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering. Kunming University, Kunming 650214, China.
| |
Collapse
|
9
|
Farshad M, DelloStritto MJ, Suma A, Carnevale V. Detecting Liquid-Liquid Phase Separations Using Molecular Dynamics Simulations and Spectral Clustering. J Phys Chem B 2023; 127:3682-3689. [PMID: 37053472 DOI: 10.1021/acs.jpcb.3c00805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
A stringent test of the accuracy of empirical force fields is reproducing the phase diagram of bulk phases and mixtures. Exploring the phase diagram of mixtures requires the detection of phase boundaries and critical points. In contrast to most solid-liquid transitions, in which a global order parameter (average density) can be used to discriminate between two phases, some demixing transitions entail relatively subtle changes in the local environment of each molecule. In such cases, finite sampling errors and finite-size effects make the identification of trends in local order parameters extremely challenging. Here we analyze one such example, namely a methanol/hexane mixture, and compute several local and global structural properties. We simulate the system at various temperatures and study the structural changes associated with demixing. We show that despite a seemingly continuous transformation between mixed and demixed states, the topological properties of the H-bond network change abruptly as the system crosses the demixing line. In particular, by using spectral clustering, we show that the distribution of cluster sizes develops a fat tail (as expected from percolation theory) in the vicinity of the critical point. We illustrate a simple criterion to identify this behavior, which results from the emergence of large system-spanning clusters from a collection of aggregates. We further tested the spectral clustering analysis on a Lennard-Jones system as a standard example of a system with no H-bonds, and also, in this case, we were able to detect the demixing transition.
Collapse
Affiliation(s)
- Mohsen Farshad
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Mark J DelloStritto
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Antonio Suma
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
- Dipartimento di Fisica, Università di Bari, 70121 Bari, Italy
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania 19122, United States
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
10
|
Seo J, Choi S, Singh R, Choi JH. Spatial Inhomogeneity and Molecular Aggregation behavior in Aqueous Binary Liquid Mixtures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
11
|
Deogratias G, Shadrack DM, Munissi JJE, Kinunda GA, Jacob FR, Mtei RP, Masalu RJ, Mwakyula I, Kiruri LW, Nyandoro SS. Hydrophobic π-π stacking interactions and hydrogen bonds drive self-aggregation of luteolin in water. J Mol Graph Model 2022; 116:108243. [PMID: 35777224 DOI: 10.1016/j.jmgm.2022.108243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/12/2022] [Accepted: 06/05/2022] [Indexed: 12/14/2022]
Abstract
Luteolin is a flavonoid obtained from different plant species. It is known for its versatile biological activities. However, the beneficial effects of luteolin have been limited to small concentrations as a result of poor water solubility. This study aimed at investigating the hydrophobic interaction and hydration of luteolin towards the improvement of its solubility when used as a drug. We report the aggregation properties of luteolin in water by varying the number of monomers using atomistic molecular dynamics simulation. Results show that the equilibrium structure of luteolin occurs in an aggregated state with different structural arrangements. As the monomers size increase, the antiparallel flipped conformation dominates over T-shaped antiparallel, T-shaped parallel, and antiparallel conformations. The formation of intramolecular hydrogen bonding of 0.19 nm between the keto-enol groups results in hydrophobic characteristics. A larger cluster exhibits slow hydrogen bond dynamics for luteolin-luteolin than luteolin-water interaction. Water structure at large cluster size exhibited slow dynamics and low self-diffusion of luteolin. The existence of hydrophobic π-π and hydrogen bonds between luteolin molecules drives strong self-aggregation resulting in poor water solubility. Breakage of these established interactions would result in increased solubility of luteolin in water.
Collapse
Affiliation(s)
- Geradius Deogratias
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania.
| | - Daniel M Shadrack
- Department of Chemistry, Faculty of Natural and Applied Sciences, St. John's University of Tanzania, P.O. Box 47, Dodoma, Tanzania
| | - Joan J E Munissi
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania
| | - Grace A Kinunda
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania
| | - Fortunatus R Jacob
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania
| | - Regina P Mtei
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania
| | - Rose J Masalu
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 25179, Dar es Salaam, Tanzania
| | - Issakwisa Mwakyula
- Mbeya College of Health and Allied Sciences, University of Dar es Salaam, P.O. Box 608, Mbeya, Tanzania
| | - Lucy W Kiruri
- Department of Chemistry, Kenyatta University, P.O.Box, 43844-00100, Nairobi, Kenya
| | - Stephen S Nyandoro
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania
| |
Collapse
|
12
|
Gao Z, Mu J, Zhang J, Huang Z, Lin X, Luo N, Wang F. Hydrogen Bonding Promotes Alcohol C-C Coupling. J Am Chem Soc 2022; 144:18986-18994. [PMID: 36216790 DOI: 10.1021/jacs.2c07410] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photocatalytic C-C bond formation coupled with H2 production provides a sustainable approach to producing carbon-chain-prolonged chemicals and hydrogen energy. However, the involved radical intermediates with open-shell electronic structures are highly reactive, experiencing predominant oxidative or reductive side reactions in semiconductors. Herein, we demonstrate that hydrogen bonding on the catalyst surface and in the bulk solution can inhibit oxidation and reverse reaction of α-hydroxyethyl radicals (αHRs) in photocatalytic dehydrocoupling of ethanol over Au/CdS. Intentionally added water forms surface hydrogen bonds with adsorbed αHRs and strengthens the hydrogen bonding between αHRs and ethanol while maintaining the flexibility of radicals in solution, thereby allowing for αHRs' desorption from the Au/CdS surface and their stabilization by a solvent. The coupling rate of αHR increases by 2.4-fold, and the selectivity of the target product, 2,3-butanediol (BDO), increases from 37 to 57%. This work manifests that nonchemical bonding interactions can steer the reaction paths of radicals for selective photocatalysis.
Collapse
Affiliation(s)
- Zhuyan Gao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China.,University of Chinese Academy of Sciences, Beijing100049, China
| | - Junju Mu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Jian Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Zhipeng Huang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China.,University of Chinese Academy of Sciences, Beijing100049, China
| | - Xiangsong Lin
- School of Materials and Textile Engineering, Jiaxing University, Jiaxing314001, China
| | - Nengchao Luo
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| |
Collapse
|
13
|
A subtle interplay between hydrophilic and hydrophobic hydration governs butanol (de)mixing in water. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Jukić I, Požar M, Lovrinčević B, Perera A. Lifetime distribution of clusters in binary mixtures involving hydrogen bonding liquids. Sci Rep 2022; 12:9120. [PMID: 35650231 PMCID: PMC9160284 DOI: 10.1038/s41598-022-12779-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
Hydrogen bonded liquids are associated liquids and tend to exhibit local inhomogeneity in the form of clusters and segregated sub-nano domains. It is an open question as to whether Hbonded clusters in pure water have common features with the water segregated pockets observed in various aqueous binary mixtures, such as water–alcohol mixtures, for example. In the present study, we demonstrate through classical molecular dynamics studies of the lifetime distributions of the hydrogen bonds in different types of binary mixtures, that these lifetimes exhibit the same universal features in the case of the pure liquids, independently of the species concentrations. The same types of three distinct lifetimes are observed, all of them in the sub picosecond regime. The primary lifetime concerns that of Hbonded dimers, and strongly depends on Hbonding criteria such as the bonding distance. The two others are independent of bonding criteria and appear as universal accross many liquids and mixtures. The secondary lifetime (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tau _1 \approx 20$$\end{document}τ1≈20 fs) concerns Hbonded cluster lifetimes, while the tertiary lifetime (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tau _2 \approx 50$$\end{document}τ2≈50 fs) concerns the topology of these clusters, such as chains or globules, for example. This surprizing separation in three distinct lifetimes suggests the existence of associated three distinct kinetic mechanisms in the very short sub-picosecond time scales, with, in addition, an appealing connection to the concepts of local energy and entropy.
Collapse
Affiliation(s)
- Ivo Jukić
- Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600), Sorbonne Université, 4 Place Jussieu, 75252, Paris Cedex 05, France.,Department of Physics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000, Split, Croatia.,Doctoral School of Biophysics, Faculty of Science, University of Split, Split, Croatia
| | - Martina Požar
- Department of Physics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000, Split, Croatia
| | - Bernarda Lovrinčević
- Department of Physics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000, Split, Croatia.
| | - Aurélien Perera
- Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600), Sorbonne Université, 4 Place Jussieu, 75252, Paris Cedex 05, France.
| |
Collapse
|
15
|
Temperature effects on alcohol aggregation phenomena and phase behavior in n-butanol aqueous solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Prakash S, Mishra AK. Photophysics of faecal pigments stercobilin and urobilin in aliphatic alcohols: introduction of a sensitive method for their detection using solvent phase extraction and fluorometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5573-5588. [PMID: 34787126 DOI: 10.1039/d1ay01539g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Faecal pigments (FPs) are ubiquitous in the environment and are a primary contaminant in groundwater and surface water. This article presents a new analytical paradigm by a fluorescence coupled extraction-based method involving FP fluorescence enhancement and minimization of background fluorescence for high sensitivity detection. FPs show higher fluorescence intensity in aliphatic alcohols due to the breaking down of higher-order H-aggregates into lower-order H-aggregates (dimers). DFT studies using the B3LYP functional and LANL2DZ basis set show π-π stacking and hydrogen-bonding contributions towards forming H-aggregated dimers of FPs in the implicit and explicit solvent environments of 1-hexanol. This study is the first report on the extractability of FPs using 1-hexanol as an efficient extraction medium in comparison to higher-order aliphatic alcohols (1-butanol, 1-hexanol and 1-octanol). Furthermore, FP-Zn(II) complexes in 1-hexanol medium significantly enhance the fluorescence emission intensity (∼14-17 times), and the emission intensity remains stable over time. This further helps to increase the detection limit of FPs in the picomolar to sub-picomolar concentration range. This study proposes a protocol involving extraction of FPs by 1-hexanol followed by the complexation of FPs with Zn(II) in the alcohol media and subsequent fluorimetric detection of the FP-Zn(II) complex with a high level of sensitivity, enabled by reduced interference from the background fluorescence of humic acid. The complexation behaviour of FPs with various metal salts was also examined, which provided an understanding of the fluorescence behaviour of FPs with various other metal ions commonly present in natural environmental water. The proposed analytical method has been further validated using real water samples.
Collapse
Affiliation(s)
- Swayam Prakash
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Ashok Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
17
|
Temperature-dependent structure of 1-propanol/water mixtures: X-ray diffraction experiments and computer simulations at low and high alcohol contents. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Pothoczki S, Pethes I, Pusztai L, Temleitner L, Ohara K, Bakó I. Properties of Hydrogen-Bonded Networks in Ethanol-Water Liquid Mixtures as a Function of Temperature: Diffraction Experiments and Computer Simulations. J Phys Chem B 2021; 125:6272-6279. [PMID: 34078085 PMCID: PMC8279560 DOI: 10.1021/acs.jpcb.1c03122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
New X-ray and neutron
diffraction experiments have been performed
on ethanol–water mixtures as a function of decreasing temperature,
so that such diffraction data are now available over the entire composition
range. Extensive molecular dynamics simulations show that the all-atom
interatomic potentials applied are adequate for gaining insight into
the hydrogen-bonded network structure, as well as into its changes
on cooling. Various tools have been exploited for revealing details
concerning hydrogen bonding, as a function of decreasing temperature
and ethanol concentration, like determining the H-bond acceptor and
donor sites, calculating the cluster-size distributions and cluster
topologies, and computing the Laplace spectra and fractal dimensions
of the networks. It is found that 5-membered hydrogen-bonded cycles
are dominant up to an ethanol mole fraction xeth = 0.7 at room temperature, above which the concentrated
ring structures nearly disappear. Percolation has been given special
attention, so that it could be shown that at low temperatures, close
to the freezing point, even the mixture with 90% ethanol (xeth = 0.9) possesses a three-dimensional (3D)
percolating network. Moreover, the water subnetwork also percolates
even at room temperature, with a percolation transition occurring
around xeth = 0.5.
Collapse
Affiliation(s)
- Szilvia Pothoczki
- Wigner Research Centre for Physics, Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary
| | - Ildikó Pethes
- Wigner Research Centre for Physics, Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary
| | - László Pusztai
- Wigner Research Centre for Physics, Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary.,International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - László Temleitner
- Wigner Research Centre for Physics, Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary
| | - Koji Ohara
- Diffraction and Scattering Division, JASRI, SPring-8, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Imre Bakó
- Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| |
Collapse
|
19
|
Choi S, Parameswaran S, Choi JH. Effects of molecular shape on alcohol aggregation and water hydrogen bond network behavior in butanol isomer solutions. Phys Chem Chem Phys 2021; 23:12976-12987. [PMID: 34075966 DOI: 10.1039/d1cp00634g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Despite butanol isomers such as n-butanol, sec-butanol, isobutanol and tert-butanol having the same chemical formula, their liquid-liquid phase diagrams are distinct. That is, tert-butanol is miscible in water at all concentrations, while the other three butanol isomers are partially miscible under ambient conditions. The molecular shape of tert-butanol is close to globular and differs from the other three butanol molecules with a relatively long carbon chain. By performing molecular dynamics simulations and graph theoretical analysis of the four water-butanol isomer mixtures at varying concentrations, we show how distinct butanol aggregates are formed which depend upon the molecular shape and affect the water H-bond network structure and phase diagram in the binary liquid. The three butanol isomers of n-butanol, sec-butanol and isobutanol at concentrated solutions form chain-like alcohol aggregates, but tert-butanol forms small aggregates due to the distinct packing behavior caused by its globular molecular shape. By employing the graph theoretical analysis such as the degree distribution and the eigenvalue spectrum from the adjacency matrix in the graphical representation of the alcohol H-bond network, we show that the tert-butanol aggregates have a different morphological structure from that of the other three butanol isomers in aqueous solution. The graph theoretically distinct butanol aggregates are categorized into two groups, water-compatible and water-incompatible, depending upon the interaction between the alcohol and water molecules. Based upon our observations, we propose that the water-incompatible networks of n-butanol, sec-butanol and isobutanol aggregates do not change the water structure significantly, forming two separate liquid phases that are alcohol-rich and water-rich. However, the water-compatible network of tert-butanol aggregates has a considerable interaction with the water molecules and causes significant disruption of the water H-bond network, forming a homogeneous solution. Understanding the alcohol aggregation behavior and water structure in butanol-water mixtures provides a critical clue in appreciating fundamental issues such as miscibility and phase separation in aqueous solution systems.
Collapse
Affiliation(s)
- Seungeui Choi
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Saravanan Parameswaran
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
20
|
Servis MJ, Piechowicz M, Skanthakumar S, Soderholm L. Molecular-scale origins of solution nanostructure and excess thermodynamic properties in a water/amphiphile mixture. Phys Chem Chem Phys 2021; 23:8880-8890. [PMID: 33876047 DOI: 10.1039/d1cp00082a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The molecular and nanoscale origins of nonideality in excess thermodynamic properties are essential to understanding cosolvent mixtures, yet they remain challenging to determine. Here, we consider a binary mixture of water and an amphiphile, N,N,N',N'-tetramethylmalonamide (TMMA), which is characterized by strong hydrogen bonding between the two components and no hydrogen bonding between amphiphiles. Using molecular dynamics simulation, validated with excess volume measurements and X-ray scattering, we identify three distinct solution regimes across the composition range of the binary mixture and find that the transition between two of these regimes, marked by the water percolation threshold, is closely correlated with minima in the excess volume and excess enthalpy. Structural analysis of the simulations reveals an interplay between local interactions and solution nanostructure, determined by the relative strength of the water-water and water-amphiphile hydrogen bonding interactions. By comparison with other amphiphiles, such as linear alcohols, the relative strength of like and unlike interactions between water and amphiphile affects the relationship between thermodynamics and structural regimes. This provides insight into how molecular forces of mutual solvation interact across length scales and how they manifest in excess thermodynamic properties.
Collapse
Affiliation(s)
- Michael J Servis
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
| | | | | | | |
Collapse
|