1
|
Li Y, Lau JKC, van Wieringen T, Martens J, Berden G, Oomens J, Hopkinson AC, Siu KWM, Chu IK. Structure and fragmentation chemistry of the peptide radical cations of glycylphenylalanylglycine (GFG). PLoS One 2024; 19:e0308164. [PMID: 39137228 PMCID: PMC11321575 DOI: 10.1371/journal.pone.0308164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
Herein, we explore the generation and characterization of the radical cations of glycylphenylalanylglycine, or [GFG]•+, formed via dissociative electron-transfer reaction from the tripeptide to copper(II) within a ternary complex. A comprehensive investigation employing isotopic labeling, infrared multiple-photon dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations elucidated the details and energetics in formation of the peptide radical cations as well as their dissociation products. Unlike conventional aromatic-containing peptide radical cations that primarily form canonical π-radicals, our findings reveal that 75% of the population of the experimentally produced [GFG]•+ precursors are [GFα•G]+, where the radical resides on the middle α-carbon of the phenylalanyl residue. This unexpected isomeric ion has an enthalpy of 6.8 kcal/mol above the global minimum, which has an N-terminal captodative structure, [Gα•FG]+, comprising 25% of the population. The [b₂-H]•+ product ions are also present in a ratio of 75/25 from [GFα•G]+/ [Gα•FG]+, the results of which are obtained from matches between the IRMPD action spectrum and predicted IR absorption spectra of the [b₂-H]•+ candidate structures, as well as from IRMPD isomer population analyses.
Collapse
Affiliation(s)
- Yinan Li
- Department of Chemistry, University of Hong Kong, Hong Kong, China
| | - Justin Kai-Chi Lau
- Department of Chemistry, York University, Toronto, ON, Canada
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Teun van Wieringen
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Jonathan Martens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Giel Berden
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Jos Oomens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | | | - K. W. Michael Siu
- Department of Chemistry, York University, Toronto, ON, Canada
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
- Center for Mass Spectrometry Research and Clinical Application, Shandong Public Health Clinical Center Affiliated to Shandong University, Jinan, Shandong, China
| | - Ivan K. Chu
- Department of Chemistry, University of Hong Kong, Hong Kong, China
- Center for Mass Spectrometry Research and Clinical Application, Shandong Public Health Clinical Center Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Lau JKC, Esuon F, Berden G, Oomens J, Hopkinson AC, Ryzhov V, Siu KWM. Generation, Characterization, and Dissociation of Radical Cations Derived from Prolyl-glycyl-glycine. J Phys Chem B 2021; 125:6121-6129. [PMID: 34097420 DOI: 10.1021/acs.jpcb.1c01732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Radical cations of an aliphatic tripeptide prolyl-glycyl-glycine (PGG•+) and its sequence ions [a3 + H]•+ and [b2 - H]•+ have been generated by collision-induced dissociation of the [Cu(Phen)(PGG)]•2+ complex, where Phen = 1,10-phenanthroline. Infrared multiple photon dissociation spectroscopy, ion-molecule reaction experiments, and theoretical calculations have been used to investigate the structures of these ions. The unpaired electron in these three radical cations is located at different α-carbons. The PGG•+ radical cation has a captodative structure with the radical at the α-carbon of the proline residue and the proton on the oxygen of the first amide group. This structure is at the global minimum on the potential energy surface (PES). By contrast, the [a3 + H]•+ and [b2 - H]•+ ions are not the lowest-energy structures on their respective PESs, and their radicals are formally located at the C-terminal and second α-carbons, respectively. Density functional theory calculations on the structures of the ternary copper(II) complex ion suggest that the charge-solvated isomer of the metal complex is the precursor ion that dissociates to give the PGG•+ radical cation. The isomer of the complex in which PGG is bound as a zwitterion dissociates to give the [a3 + H]•+ and [b2 - H]•+ ions.
Collapse
Affiliation(s)
- Justin Kai-Chi Lau
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.,Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - Francis Esuon
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Giel Berden
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, the Netherlands
| | - Jos Oomens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, the Netherlands
| | - Alan C Hopkinson
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - K W Michael Siu
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.,Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
3
|
Li Y, Li M, Spencer DM, Martens J, Berden G, Oomens J, Siu CK, Chu IK. Mechanistic examination of C α -C β tyrosyl bond cleavage: Spectroscopic investigation of the generation of α-glycyl radical cations from tyrosyl (glycyl/alanyl)tryptophan. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 56:e4630. [PMID: 32812311 DOI: 10.1002/jms.4630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
In this study, dissociative one-electron transfer dissociation of [CuII (dien)Y(G/A)W]•2+ [dien = diethylenetriamine; Y(G/A)W = tyrosyl (glycyl/alanyl)tryptophan] was used to generate the tripeptide radical cations [Y(G/A)W]•+ ; subsequent loss of the Tyr side chain formed [Gα • (G/A)W]+ . The π-centered species [YGWπ • ]+ generated the α-centered species [Gα • GW]+ through Cα -Cβ bond cleavage, as revealed using infrared multiple photon dissociation (IRMPD) measurements and density functional theory (DFT) calculations. Comparisons of experimental and theoretical IR spectra confirmed that both the charge and spin densities of [Y(G/A)Wπ • ]+ were delocalized initially at the tryptophan indolyl ring; subsequent formation of the final [Gα • (G/A)W]+ structure gave the highest spin density at the α-carbon atom of the N-terminal glycine residue, with a proton solvated by the first amide oxygen atom. The IRMPD mass spectra and action spectra of the [Gα • (G/A)W]+ species were all distinctly different from those of their isomeric [G(G/A)Wπ • ]+ species. The mechanism of formation of the captodative [Gα • (G/A)W]+ species-with the charge site separated from the radical site-from [Y(G/A)Wπ • ]+ has been elucidated. DFT calculations suggested that the Cα -Cβ bond cleavage of the tyrosine residue in the radical cationic [Y(G/A)Wπ • ]+ precursor involves (a) through-space electron transfer between the indolyl and phenolic groups; (b) formation of proton-bound dimers through Cα -Cβ cleavage of the tyrosine residue; and (c) a concerted proton rearrangement from the phenolic OH group to the carboxyl group and formation of the α-carbon-centered product [Gα • (G/A)W]+ through hydrogen bond cleavage. The barriers for the electron transfer (a), the Cα -Cβ cleavage (b), and the protonation rearrangement (c) were 12.8, 26.5, and 10.3 kcal mol-1 , respectively.
Collapse
Affiliation(s)
- Yinan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Mengzhu Li
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Daniel M Spencer
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jonathan Martens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Giel Berden
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Jos Oomens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Chi-Kit Siu
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Ivan K Chu
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|