1
|
Đorić I, Todorović A, Gnjatović M, Golubović S, Žarković M, Janković Miljuš J, Išić Denčić T, Šelemetjev S. Advancing Immunoassay Precision: A Novel Preanalytical Method for Enhancing Thyroglobulin Measurement in the Presence of Tg Antibodies. Int J Mol Sci 2024; 25:13252. [PMID: 39769016 PMCID: PMC11675399 DOI: 10.3390/ijms252413252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/27/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Thyroglobulin (Tg) is a reliable marker for detecting recurrence in differentiated thyroid cancer (DTC) patients, but frequently occurring Tg antibodies (TgAbs) can hinder accurate measurement. We aimed to develop a preanalytical protocol for precise Tg detection in TgAb presence using the immunoradiometric assay (IRMA) platform. This study involved forty-five patients who underwent IRMA Tg and radioimmunoassay (RIA) TgAb measurements, including two patients monitored for recurrence and one with confirmed recurrence. All three had undetectable Tg levels. We evaluated three preanalytical methods in aiming to separate Tg from TgAbs: buffer only (Protocol 1), micro-spin filters only (Protocol 2), and a combination of both (Protocol 3). All preanalytical protocols showed high concordance with the original test (r = 0.981, 0.985, 0.971, respectively, p < 0.001), regardless of TgAb values. Protocols 1 and 3 yielded higher Tg levels than the original test (p < 0.001), especially in the group with a high TgAb titer. Protocol 1 managed to detect Tg in two patients under follow up with initially unmeasurable Tg and high TgAb titers and in one confirmed recurrent case. Sample pre-processing positively influenced Tg detection in TgAb-positive cases. These preanalytical approaches show promise, but further testing with larger sample sizes and more investigated conditions is warranted.
Collapse
Affiliation(s)
- Ilona Đorić
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (I.Đ.); (A.T.); (M.G.); (S.G.); (J.J.M.); (T.I.D.)
| | - Aleksandra Todorović
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (I.Đ.); (A.T.); (M.G.); (S.G.); (J.J.M.); (T.I.D.)
| | - Marija Gnjatović
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (I.Đ.); (A.T.); (M.G.); (S.G.); (J.J.M.); (T.I.D.)
| | - Snežana Golubović
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (I.Đ.); (A.T.); (M.G.); (S.G.); (J.J.M.); (T.I.D.)
| | - Miloš Žarković
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Centre of Serbia, Doktora Subotića 13, 11000 Belgrade, Serbia;
| | - Jelena Janković Miljuš
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (I.Đ.); (A.T.); (M.G.); (S.G.); (J.J.M.); (T.I.D.)
| | - Tijana Išić Denčić
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (I.Đ.); (A.T.); (M.G.); (S.G.); (J.J.M.); (T.I.D.)
| | - Sonja Šelemetjev
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (I.Đ.); (A.T.); (M.G.); (S.G.); (J.J.M.); (T.I.D.)
| |
Collapse
|
2
|
Ling J, Du Y, Wuelfing WP, Buist N, Krishnamachari Y, Xi H, Templeton AC, Su Y. Molecular mechanisms for stabilizing biologics in the solid state. J Pharm Sci 2024:S0022-3549(24)00543-4. [PMID: 39617053 DOI: 10.1016/j.xphs.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024]
Abstract
Protein drugs exhibit challenges of biophysical and biochemical instability due to their structural complexity and rich dynamics. Solid-state biologics aim to enhance stability by increasing molecular rigidity within the formulation matrix, representing a primary category of drug products alongside sterile liquid formulations. Understanding the molecular mechanisms behind the stabilization and destabilization of protein drugs, influenced by formulation composition and drying processes, provides scientific rationale for drug product design. This review aims to elaborate on the two primary models of water-to-sugar substitution and matrix vitrification, respectively, via thermodynamic and kinetic stabilization. It offers an up-to-date review of experimental investigations into these hypotheses, specifically elucidating protein structure and protein-excipient interactions at the molecular level, molecular dynamics across a broad range of motion regimes, and microscopic attributes such as protein-sugar and protein-salt miscibility and microenvironmental acidity, in relevant liquid, frozen, and solid states, using advanced biophysical techniques for solid-state analysis. Moreover, we discuss how these mechanistic understandings facilitate the investigation and prediction of critical stability behaviors and enables the design of solid biological drug products.
Collapse
Affiliation(s)
- Jing Ling
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Yong Du
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - W Peter Wuelfing
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Nicole Buist
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Yogita Krishnamachari
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Hanmi Xi
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Allen C Templeton
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, USA.
| | - Yongchao Su
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, USA; Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA.
| |
Collapse
|
3
|
Martins Fraga R, Beretta M, Pinto JF, Spoerk M, Zupančič O, Pinto JT, Paudel A. Effect of processing and formulation factors on Catalase activity in tablets. Int J Pharm 2024; 664:124626. [PMID: 39208952 DOI: 10.1016/j.ijpharm.2024.124626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
The manufacturing of tablets containing biologics exposes the biologics to thermal and shear stresses, which are likely to induce structural changes (e.g., aggregation and denaturation), leading to the loss of their activity. Saccharides often act as stabilizers of proteins in formulations, yet their stabilizing ability throughout solid oral dosage processing, such as tableting, has been barely studied. This work aimed to investigate the effects of formulation and process (tableting and spray-drying) variables on catalase tablets containing dextran, mannitol, and trehalose as potential stabilizers. Non-spray-dried and spray-dried formulations were prepared and tableted (100, 200, and 400 MPa). The enzymatic activity, number of aggregates, reflecting protein aggregation and structure modifications were studied. A principal component analysis was performed to reveal underlying correlations. It was found that tableting and spray-drying had a notable negative effect on the activity and number of aggregates formed in catalase formulations. Overall, dextran and mannitol failed to preserve the catalase activity in any unit operation studied. On the other hand, trehalose was found to preserve the activity during spray-drying but not necessarily during tableting. The study demonstrated that formulation and process variables must be considered and optimized together to preserve the characteristics of catalase throughout processing.
Collapse
Affiliation(s)
- Rúben Martins Fraga
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Michela Beretta
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - João F Pinto
- iMed.UL - Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Martin Spoerk
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria; Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| | - Ožbej Zupančič
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Joana T Pinto
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria; Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria.
| |
Collapse
|
4
|
Jonsson O, Lundell A, Rosell J, You S, Ahlgren K, Swenson J. Comparison of Sucrose and Trehalose for Protein Stabilization Using Differential Scanning Calorimetry. J Phys Chem B 2024; 128:4922-4930. [PMID: 38733344 PMCID: PMC11129304 DOI: 10.1021/acs.jpcb.4c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
The disaccharide trehalose is generally acknowledged as a superior stabilizer of proteins and other biomolecules in aqueous environments. Despite many theories aiming to explain this, the stabilization mechanism is still far from being fully understood. This study compares the stabilizing properties of trehalose with those of the structurally similar disaccharide sucrose. The stability has been evaluated for the two proteins, lysozyme and myoglobin, at both low and high temperatures by determining the glass transition temperature, Tg, and the denaturation temperature, Tden. The results show that the sucrose-containing samples exhibit higher Tden than the corresponding trehalose-containing samples, particularly at low water contents. The better stabilizing effect of sucrose at high temperatures may be explained by the fact that sucrose, to a greater extent, binds directly to the protein surface compared to trehalose. Both sugars show Tden elevation with an increasing sugar-to-protein ratio, which allows for a more complete sugar shell around the protein molecules. Finally, no synergistic effects were found by combining trehalose and sucrose. Conclusively, the exact mechanism of protein stabilization may vary with the temperature, as influenced by temperature-dependent interactions between the protein, sugar, and water. This variability can make trehalose to a superior stabilizer under some conditions and sucrose under others.
Collapse
Affiliation(s)
| | | | | | | | - Kajsa Ahlgren
- Department of Physics, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Jan Swenson
- Department of Physics, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| |
Collapse
|
5
|
Yamazaki S, Shirata I, Mizuno M, Amano Y. Promotion of Thermal Inactivation Treatment of Apple Polyphenol Oxidase in the Presence of Trehalose. J Appl Glycosci (1999) 2024; 71:1-7. [PMID: 38799413 PMCID: PMC11116086 DOI: 10.5458/jag.jag.jag-2023_0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/07/2023] [Indexed: 05/29/2024] Open
Abstract
Trehalose is known to protect enzymes from denaturation. In the present study, we observed promotion of apple polyphenol oxidase (PPO) inactivation in a trehalose solution with thermal treatment. Crude PPO from Fuji apple was mixed with either sucrose or trehalose solutions, then the samples treated at 25 or 65 °C. In the presence of trehalose, PPO activities were markedly decreased upon treatment at 65 °C with increasing trehalose concentration. Furthermore, the reduction in PPO activity in the presence of trehalose was proportional to storage time after thermal treatment and thermal treatment time. Comparing PPO activities between treatment time 0 and 90 min at 65 °C, activities decreased 89 % for trehalose concentration of 0.2 M. These results indicates that trehalose acts not only as inhibitor but as promoter of inactivation of PPO. The Lineweaver-Burk plot indicated that trehalose acts on PPO as a non-competitive inhibitor during the 65 °C treatment. Two mechanisms of PPO inactivation in the presence of trehalose were suggested; one is the suppression of PPO activation cause by a thermal treatment, and another is the conformational change to inactivation form of PPO in conjunction with trehalose and a thermal treatment. Additionally, apple juice including 0.2 or 0.5 M trehalose with 65 °C treatment indicated slow browning than the juice with 0.2 or 0.5 M sucrose or without sugars. This result demonstrates that the preventing of browning with trehalose is a viable industrial food process.
Collapse
Affiliation(s)
- Shinya Yamazaki
- Food Technology Department, Nagano Prefecture General Industrial Technology Center
- Graduate School of Medicine, Science and Technology, Department of Biomedical Engineering, Shinshu University
| | - Ibuki Shirata
- Graduate School of Medicine, Science and Technology, Department of Biomedical Engineering, Shinshu University
| | - Masahiro Mizuno
- Graduate School of Medicine, Science and Technology, Department of Biomedical Engineering, Shinshu University
| | - Yoshihiko Amano
- Graduate School of Medicine, Science and Technology, Department of Biomedical Engineering, Shinshu University
| |
Collapse
|
6
|
Halder S, Jaiswal N, Koley H, Mahata N. Cloning, improved expression and purification of invasion plasmid antigen D (IpaD): an effector protein of enteroinvasive Escherichia coli (EIEC). Biotechnol Genet Eng Rev 2024; 40:409-435. [PMID: 36871167 DOI: 10.1080/02648725.2023.2184027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023]
Abstract
The widespread increase in broad-spectrum antimicrobial resistance is making it more difficult to treat gastrointestinal infections. Enteroinvasive Escherichia coli is a prominent etiological agent of bacillary dysentery, invading via the fecal-oral route and exerting virulence on the host via the type III secretion system. IpaD, a surface-exposed protein on the T3SS tip that is conserved among EIEC and Shigella, may serve as a broad immunogen for bacillary dysentery protection. For the first time, we present an effective framework for improving the expression level and yield of IpaD in the soluble fraction for easy recovery, as well as ideal storage conditions, which may aid in the development of new protein therapies for gastrointestinal infections in the future. To achieve this, uncharacterized full length IpaD gene from EIEC was cloned into pHis-TEV vector and induction parameters were optimized for enhanced expression in the soluble fraction. After affinity-chromatography based purification, 61% pure protein with a yield of 0.33 mg per litre of culture was obtained. The purified IpaD was retained its secondary structure with a prominent α-helical structure as well as functional activity during storage, at 4°C, -20°C and -80°C using 5% sucrose as cryoprotectants, which is a critical criterion for protein-based treatments.
Collapse
Affiliation(s)
- Sudeshna Halder
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, India
| | - Namita Jaiswal
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, India
| | - Hemanta Koley
- Department Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Nibedita Mahata
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, India
| |
Collapse
|
7
|
Vallaster B, Engelsing F, Grohganz H. Influence of water and trehalose on α- and β-relaxation of freeze-dried lysozyme formulations. Eur J Pharm Biopharm 2024; 194:1-8. [PMID: 38029940 DOI: 10.1016/j.ejpb.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Molecular mobility in form of alpha and beta relaxations is considered crucial for characterization of amorphous lyophilizates and reflected in the transition temperatures Tgα and Tgβ. Based on an overview of applied methods to study beta relaxations, Dynamic Mechanical analysis was used to measure Tgα and Tgβ in amorphous freeze-dried samples. Lysozyme and trehalose as well as their mixtures in varying ratios were investigated. Three different residual moisture levels, ranging from roughly 0.5-7 % (w/w), were prepared via equilibration of the freeze-dried samples. Known plasticising effects of water on Tgα were confirmed, also via differential scanning calorimetry. In addition and contrary to expectations, an influence of water on the Tgβ also was observed. On the other hand, an increasing amount of trehalose lowered Tgα but increased Tgβ showing that Tgα and Tgβ are not paired. The findings were interpreted with regard to their underlying molecular mechanisms and a correlation with the known influences of water and trehalose on stability. The results provide encouraging hints for future stability studies of freeze-dried protein formulations, which are urgently needed, not least for reasons of sustainability.
Collapse
Affiliation(s)
- Bernadette Vallaster
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2 2100, Copenhagen, Denmark
| | - Florian Engelsing
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2 2100, Copenhagen, Denmark
| | - Holger Grohganz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2 2100, Copenhagen, Denmark.
| |
Collapse
|
8
|
Ahlgren K, Olsson C, Ermilova I, Swenson J. New insights into the protein stabilizing effects of trehalose by comparing with sucrose. Phys Chem Chem Phys 2023; 25:21215-21226. [PMID: 37534799 DOI: 10.1039/d3cp02639f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Disaccharides are well known to be efficient stabilizers of proteins, for example in the case of lyophilization or cryopreservation. However, although all disaccharides seem to exhibit bioprotective and stabilizing properties, it is clear that trehalose is generally superior compared to other disaccharides. The aim of this study was to understand this by comparing how the structural and dynamical properties of aqueous trehalose and sucrose solutions influence the protein myoglobin (Mb). The structural studies were based on neutron and X-ray diffraction in combination with empirical potential structure refinement (EPSR) modeling, whereas the dynamical studies were based on quasielastic neutron scattering (QENS) and molecular dynamics (MD) simulations. The results show that the overall differences in the structure and dynamics of the two systems are small, but nevertheless there are some important differences which may explain the superior stabilizing effects of trehalose. It was found that in both systems the protein is preferentially hydrated by water, but that this effect is more pronounced for trehalose, i.e. trehalose forms less hydrogen bonds to the protein surface than sucrose. Furthermore, the rotational motion around dihedrals between the two glucose rings of trehalose is slower than in the case of the dihedrals between the glucose and fructose rings of sucrose. This leads to a less perturbed protein structure in the case of trehalose. The observations indicate that an aqueous environment closest to the protein molecules is beneficial for an efficient bioprotective solution.
Collapse
Affiliation(s)
- Kajsa Ahlgren
- Division of Nano-Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg SE-412 96, Sweden.
| | - Christoffer Olsson
- Division of Biomedical imaging, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm SE-114 28, Sweden
| | - Inna Ermilova
- Division of Nano-Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg SE-412 96, Sweden.
| | - Jan Swenson
- Division of Nano-Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg SE-412 96, Sweden.
| |
Collapse
|
9
|
Perez R, Aron S. Protective role of trehalose in the Namib desert ant, Ocymyrmex robustior. J Exp Biol 2023; 226:286983. [PMID: 36695637 DOI: 10.1242/jeb.245149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023]
Abstract
Over recent decades, increasing attention has been paid to how low-molecular-weight molecules affect thermal tolerance in animals. Although the disaccharide sugar trehalose is known to serve as a thermal protectant in unicellular organisms, nothing is known about its potential role in insects. In this study, we investigated the effect of trehalose on heat tolerance in the Namib desert ant, Ocymyrmex robustior, one of the most thermotolerant animals found in terrestrial ecosystems. First, we tested whether a trehalose-supplemented diet increased worker survival following exposure to heat stress. Second, we assessed the degree of protein damage by comparing protein aggregation levels for trehalose-supplemented workers and control workers. Third, we compared the expression levels of three genes involved in trehalose metabolism. We found that trehalose supplementation significantly enhanced worker heat tolerance, increased metabolic levels of trehalose and reduced protein aggregation under conditions of heat stress. Expression levels of the three genes varied in a manner that was consistent with the maintenance of trehalose in the hemolymph and tissues under conditions of heat stress. Altogether, these results suggest that increased trehalose concentration may help protect Namib desert ant individuals against heat stress. More generally, they highlight the role played by sugar metabolites in boosting tolerance in extremophiles.
Collapse
Affiliation(s)
- Rémy Perez
- Department of Evolutionary Biology & Ecology, Université Libre de Bruxelles, 50 Avenue F. D. Roosevelt, B-1050 Brussels, Belgium
| | - Serge Aron
- Department of Evolutionary Biology & Ecology, Université Libre de Bruxelles, 50 Avenue F. D. Roosevelt, B-1050 Brussels, Belgium
| |
Collapse
|
10
|
Toiber-Estrella AL, Quintero-Martínez A, Rodríguez-Romero A, Riveros-Rosas H, Hernández-Santoyo A. Structural and evolutionary insights into the multidomain galectin from the red abalone Haliotis rufescens with specificity for sulfated glycans. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1264-1274. [PMID: 36400370 DOI: 10.1016/j.fsi.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Galectins are an evolutionarily ancient family of lectins characterized by their affinity for β-galactosides and a conserved binding site in the carbohydrate recognition domain (CRD). These lectins are involved in multiple physiological functions, including the recognition of glycans on the surface of viruses and bacteria. This feature supports their role in innate immune responses in marine mollusks. Here, we identified and characterized a galectin, from the mollusk Haliotis rufescens (named HrGal), with four CRDs that belong to the tandem-repeat type. HrGal was purified by affinity chromatography in a galactose-agarose resin and exhibited a molecular mass of 64.11 kDa determined by MALDI-TOF mass spectrometry. The identity of HrGal was verified by sequencing, confirming that it is a 555 amino acid protein with a mass of 63.86 kDa. This protein corresponds to a galectin reported in GenBank with accession number AHX26603. HrGal is stable in the presence of urea, reducing agents, and ions such as Cu2+ and Zn2+. The recombinant galectin (rHrGal) was purified from inclusion bodies in the presence of these ions. A theoretical model obtained with the AlphaFold server exhibits four non-identical CRDs, with a β sandwich folding and the representative motifs for binding β-galactosides. This allows us to classify HrGal within the tandem repeat galectin family. On the basis of a phylogenetic analysis, we found that the mollusk sequences form a monophyletic group of tetradomain galectins unrelated to vertebrate galectins. HrGal showed specificity for galactosides and glucosides but only the sulfated sugars heparin and ι-carrageenan inhibited its hemagglutinating activity with a minimum inhibitory concentration of 4 mM and 6.25 X 10-5% respectively. The position of the sulfate groups seemed crucial for binding, both by carrageenans and heparin.
Collapse
Affiliation(s)
| | - Adrián Quintero-Martínez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Coyoacán, 04510, Mexico
| | - Adela Rodríguez-Romero
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Coyoacán, 04510, Mexico
| | - Héctor Riveros-Rosas
- Depto. Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Coyoacán, 04510, Mexico
| | | |
Collapse
|
11
|
A Long Journey into the Investigation of the Structure–Dynamics–Function Paradigm in Proteins through the Activities of the Palermo Biophysics Group. BIOPHYSICA 2022. [DOI: 10.3390/biophysica2040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An overview of the biophysics activity at the Department of Physics and Chemistry Emilio Segrè of the University of Palermo is given. For forty years, the focus of the research has been on the protein structure–dynamics–function paradigm, with the aim of understanding the molecular basis of the relevant mechanisms and the key role of solvent. At least three research lines are identified; the main results obtained in collaboration with other groups in Italy and abroad are presented. This review is dedicated to the memory of Professors Massimo Ugo Palma, Maria Beatrice Palma Vittorelli, and Lorenzo Cordone, which were the founders of the Palermo School of Biophysics. We all have been, directly or indirectly, their pupils; we miss their enthusiasm for scientific research, their deep physical insights, their suggestions, their strict but always constructive criticisms, and, most of all, their friendship. This paper is dedicated also to the memory of Prof. Hans Frauenfelder, whose pioneering works on nonexponential rebinding kinetics, protein substates, and energy landscape have inspired a large part of our work in the field of protein dynamics.
Collapse
|
12
|
Chen A, Tapia H, Goddard JM, Gibney PA. Trehalose and its applications in the food industry. Compr Rev Food Sci Food Saf 2022; 21:5004-5037. [PMID: 36201393 DOI: 10.1111/1541-4337.13048] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/29/2022] [Accepted: 08/31/2022] [Indexed: 01/28/2023]
Abstract
Trehalose is a nonreducing disaccharide composed of two glucose molecules linked by α, α-1,1-glycosidic bond. It is present in a wide variety of organisms, including bacteria, fungi, insects, plants, and invertebrate animals. Trehalose has distinct physical and chemical properties that have been investigated for their biological importance in a range of prokaryotic and eukaryotic species. Emerging research on trehalose has identified untapped opportunities for its application in the food, medical, pharmaceutical, and cosmetics industries. This review summarizes the chemical and biological properties of trehalose, its occurrence and metabolism in living organisms, its protective role in molecule stabilization, and natural and commercial production methods. Utilization of trehalose in the food industry, in particular how it stabilizes protein, fat, carbohydrate, and volatile compounds, is also discussed in depth. Challenges and opportunities of its application in specific applications (e.g., diagnostics, bioprocessing, ingredient technology) are described. We conclude with a discussion on the potential of leveraging the unique molecular properties of trehalose in molecular stabilization for improving the safety, quality, and sustainability of our food systems.
Collapse
Affiliation(s)
- Anqi Chen
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Hugo Tapia
- Biology Program, California State University - Channel Islands, Camarillo, California, USA
| | - Julie M Goddard
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Patrick A Gibney
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
13
|
Guerrero Sanchez M, Passot S, Campoy S, Olivares M, Fonseca F. Effect of protective agents on the storage stability of freeze-dried Ligilactobacillus salivarius CECT5713. Appl Microbiol Biotechnol 2022; 106:7235-7249. [PMID: 36192613 DOI: 10.1007/s00253-022-12201-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
Ligilactobacillus salivarius is a lactic acid bacterium exhibiting several health benefits but remains commercially underexploited due to its inability to survive during long-term storage in the dried state. Our objective was to study the effect of various protective molecules (maltodextrin, trehalose, antioxidants, and fructooligosaccharides), being efficient on other bacteria, on the freeze-dried stability of L. salivarius CECT5713. The culturability was evaluated after freezing, freeze-drying, and subsequent storage at 37 °C, as well as the biochemical composition of cells in an aqueous environment using Fourier transform infrared (FTIR) micro-spectroscopy. The assignment of principal absorption bands to cellular components was performed using data from the literature on bacteria. The membrane fatty acid composition was determined after freeze-drying and storage. Glass transition temperature of the liquid and freeze-dried bacterial suspensions and water activity of the freeze-dried samples were measured. The best storage stability was observed for the formulations involving maltodextrin and antioxidants. The analysis of the FTIR spectra of freeze-thawed cells and rehydrated cells after freeze-drying and storage revealed that freeze-drying induced damage to proteins, peptidoglycans of the cell wall and nucleic acids. Storage stability appeared to be dependent on the ability of the protective molecules to limit damage during freeze-drying. The inactivation rates of bacteria during storage were analyzed as a function of the temperature difference between the product temperature during sublimation or during storage and the glass transition temperature, allowing a better insight into the stabilization mechanisms of freeze-dried bacteria. Maintaining during the process a product temperature well below the glass transition temperature, especially during storage, appeared essential for L. salivarius CECT5713 storage stability. KEY POINTS: • L. salivarius CECT5713 highly resisted freezing but was sensitive to freeze-drying and storage. • Freeze-drying and storage mainly altered cell proteins, peptidoglycans, and nucleic acids. • A glassy matrix containing maltodextrin and an antioxidant ensured the highest storage stability.
Collapse
Affiliation(s)
| | - Stéphanie Passot
- UMR SayFood, Université Paris-Saclay, INRAE, AgroParisTech, 91120, Palaiseau, France
| | - Sonia Campoy
- R&D Department, Biosearch S.A.U (a Kerry® Company), 18004, Granada, Spain
| | - Monica Olivares
- R&D Department, Biosearch S.A.U (a Kerry® Company), 18004, Granada, Spain
| | - Fernanda Fonseca
- UMR SayFood, Université Paris-Saclay, INRAE, AgroParisTech, 91120, Palaiseau, France.
| |
Collapse
|
14
|
Stabilization Effects Induced by Trehalose on Creatine Aqueous Solutions Investigated by Infrared Spectroscopy. Molecules 2022; 27:molecules27196310. [PMID: 36234846 PMCID: PMC9573458 DOI: 10.3390/molecules27196310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Creatine is a very popular amino acid widely utilized in the sports world due to its functions mainly related to muscle building and increasing performance. The present work investigates the behavior of creatine aqueous solutions and of creatine aqueous in the presence of trehalose as a function of time changes by means of Infrared spectroscopy. Infrared spectra have been gathered and studied over time for both the full spectrum and the intramolecular OH-stretching region for the two mixtures. This latter region was studied more specifically using a cutting-edge technique called Spectral Distance (SD). From this analysis of the spectral features of the investigated samples, it emerges that trehalose has a significant stabilizing effect on creatine aqueous solutions.
Collapse
|
15
|
Bourgeat L, Pacini L, Serghei A, Lesieur C. A protocol to measure slow protein dynamics of the cholera toxin B pentamers using broadband dielectric spectroscopy. STAR Protoc 2022; 3:101561. [PMID: 35874473 PMCID: PMC9304676 DOI: 10.1016/j.xpro.2022.101561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The present protocol describes how to measure experimentally the slow protein dynamics that take place upon the thermal unfolding of the B subunit cholera toxin pentamers using broadband dielectric spectroscopy (BDS) in weakly hydrated and nanoconfined conditions. Transient unfolding intermediates, rarely identified otherwise, are revealed thanks to the B subunit's remarkable heat resistance up to 180°C and distinct molecular dynamics. The frequencies detected experimentally are consistent with the spatiotemporal scales of motions of molecular dynamics simulation. For complete details on the use and execution of this protocol, please refer to Bourgeat et al. (2021, 2019). Measure protein dynamics experimentally using BDS in nanoconfined conditions Identify rare cholera toxin B subunit assembly and unfolding intermediates Detect cholera toxin B subunits in temperatures up to 180°C Match between protein molecular dynamics from experiments and simulations
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
|
16
|
Di Gioacchino M, Bruni F, Alderman OL, Ricci MA. Interaction of trehalose and glucose with a peptide β-turn in aqueous solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
GPG-NH2 solutions: A model system for β-turns formation. Possible role of trehalose against drought. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Bogdanova E, Millqvist Fureby A, Kocherbitov V. Hydration enthalpies of amorphous sucrose, trehalose and maltodextrins and their relationship with heat capacities. Phys Chem Chem Phys 2021; 23:14433-14448. [PMID: 34180926 DOI: 10.1039/d1cp00779c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanisms of glass transitions and the behavior of small solute molecules in a glassy matrix are some of the most important topics of modern thermodynamics. Water plays an important role in the physical and chemical stability of lyophilized biologics formulations, in which glassy carbohydrates act as cryoprotectants and stabilizers. In this study, sorption calorimetry was used for simultaneous measurements of water activity and the enthalpy of water sorption by amorphous sucrose, trehalose and maltodextrins. Moreover, the heat capacity of these carbohydrates in mixtures with water was measured by DSC in a broad range of water contents. The hydration enthalpies of glassy sucrose, trehalose and maltodextrins are exothermic, and the enthalpy change of water-induced isothermal glass transitions is higher for small molecules. The partial molar enthalpy of mixing of water in slow experiments is about -18 kJ mol-1, but less exothermic in the case of small molecules at fast hydration scan rates. By measuring the heat capacities of disaccharides and maltodextrins as a function of water content, we separated the contributions of carbohydrates and water to the total heat capacities of the mixtures. The combination of these data allowed testing of thermodynamic models describing the hydration-induced glass transitions. The heat capacity changes calculated by the fitting of the hydration enthalpy data for disaccharides are in good agreement with the heat capacity data obtained by DSC, while for maltodextrins, the effect of sub-Tg transitions should be taken into account. Combining the data obtained by different techniques, we found a distinct difference in the behavior of water in glassy polymers compared to that in glassy disaccharides. By understanding the behavior of water in glassy carbohydrates, these results can be used to improve the design of freeze-dried formulations of proteins and probiotics.
Collapse
Affiliation(s)
- Ekaterina Bogdanova
- Biomedical Science, Malmö University, SE-20506, Malmö, Sweden. and Biofilms research center for Biointerfaces, Malmö, Sweden
| | | | - Vitaly Kocherbitov
- Biomedical Science, Malmö University, SE-20506, Malmö, Sweden. and Biofilms research center for Biointerfaces, Malmö, Sweden
| |
Collapse
|
19
|
Bourgeat L, Pacini L, Serghei A, Lesieur C. Experimental diagnostic of sequence-variant dynamic perturbations revealed by broadband dielectric spectroscopy. Structure 2021; 29:1419-1429.e3. [PMID: 34051139 DOI: 10.1016/j.str.2021.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/23/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023]
Abstract
Genetic diversity leads to protein robustness, adaptability, and failure. Some sequence variants are structurally robust but functionally disturbed because mutations bring the protein onto unfolding/refolding routes resulting in misfolding diseases (e.g., Parkinson). We assume dynamic perturbations introduced by mutations foster the alternative unfolding routes and test this possibility by comparing the unfolding dynamics of the heat-labile enterotoxin B pentamers and the cholera toxin B pentamers, two pentamers structurally and functionally related and robust to 17 sequence variations. The B-subunit thermal unfolding dynamics are monitored by broadband dielectric spectroscopy in nanoconfined and weakly hydrated conditions. Distinct dielectric signals reveal the different B-subunits unfolding dynamics. Combined with network analyses, the experiments pinpoint the role of three mutations A1T, E7D, and E102A, in diverting LTB5 to alternative unfolding routes that protect LTB5 from dissociation. Altogether, the methodology diagnoses dynamics faults that may underlie functional disorder, drug resistance, or higher virulence of sequence variants.
Collapse
Affiliation(s)
- Laëtitia Bourgeat
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69622 Villeurbanne, France; Univ Lyon, CNRS, IMP, 69622, Villeurbanne, France
| | - Lorenza Pacini
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69622 Villeurbanne, France; Institut Rhônalpin des systèmes complexes, IXXI-ENS-Lyon, 69007, Lyon, France
| | | | - Claire Lesieur
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69622 Villeurbanne, France; Institut Rhônalpin des systèmes complexes, IXXI-ENS-Lyon, 69007, Lyon, France.
| |
Collapse
|
20
|
Giuffrida S, Cupane A, Cottone G. "Water Association" Band in Saccharide Amorphous Matrices: Role of Residual Water on Bioprotection. Int J Mol Sci 2021; 22:2496. [PMID: 33801421 PMCID: PMC7958616 DOI: 10.3390/ijms22052496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
Saccharides protect biostructures against adverse environmental conditions mainly by preventing large scale motions leading to unfolding. The efficiency of this molecular mechanism, which is higher in trehalose with respect to other sugars, strongly depends on hydration and sugar/protein ratio. Here we report an Infrared Spectroscopy study on dry amorphous matrices of the disaccharides trehalose, maltose, sucrose and lactose, and the trisaccharide raffinose. Samples with and without embedded protein (Myoglobin) are investigated at different sugar/protein ratios, and compared. To inspect matrix properties we analyse the Water Association Band (WAB), and carefully decompose it into sub-bands, since their relative population has been shown to effectively probe water structure and dynamics in different matrices. In this work the analysis is extended to investigate the structure of protein-sugar-water samples, for the first time. Results show that several classes of water molecules can be identified in the protein and sugar environment and that their relative population is dependent on the type of sugar and, most important, on the sugar/protein ratio. This gives relevant information on how the molecular interplay between residual waters, sugar and protein molecules affect the biopreserving properties of saccharides matrices.
Collapse
Affiliation(s)
- Sergio Giuffrida
- Correspondence: (S.G.); (G.C.); Tel.: +39-06-5024-4070 (S.G.); +39-091-238-91713 (G.C.)
| | | | - Grazia Cottone
- Dipartimento di Fisica e Chimica Emilio Segrè, Università di Palermo, Viale delle Scienze 17-18, I-90128 Palermo, Italy;
| |
Collapse
|