1
|
Broadhurst E, Wilson CJG, Zissimou GA, Padrón Gómez MA, Vasconcelos DML, Constantinides CP, Koutentis PA, Ayala AP, Parsons S. The Effect of High Pressure on Polymorphs of a Derivative of Blatter's Radical: Identification of the Structural Signatures of Subtle Phase Transitions. CRYSTAL GROWTH & DESIGN 2023; 23:1915-1924. [PMID: 36879770 PMCID: PMC9983015 DOI: 10.1021/acs.cgd.2c01422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The effect of pressure on the α and β polymorphs of a derivative of Blatter's radical, 3-phenyl-1-(pyrid-2-yl)-1,4-dihydrobenzo[e][1,2,4]triazin-4-yl, has been investigated using single-crystal X-ray diffraction to maximum pressures of 5.76 and 7.42 GPa, respectively. The most compressible crystallographic direction in both structures lies parallel to π-stacking interactions, which semiempirical Pixel calculations indicate are also the strongest interactions present. The mechanism of compression in perpendicular directions is determined by void distributions. Discontinuities in the vibrational frequencies observed in Raman spectra measured between ambient pressure and ∼5.5 GPa show that both polymorphs undergo phase transitions, the α phase at 0.8 GPa and the β phase at 2.1 GPa. The structural signatures of the transitions, which signal the onset of compression of initially more rigid intermolecular contacts, were identified from the trends in the occupied and unoccupied volumes of the unit cell with pressure and in the case of the β phase by deviations from an ideal model of compression defined by Birch-Murnaghan equations of state.
Collapse
Affiliation(s)
- Edward
T. Broadhurst
- EaStCHEM
School of Chemistry and Centre for Science at Extreme Conditions, The University of Edinburgh, King’s Buildings, West Mains
Road, Edinburgh, EH9 3FJ, Scotland
| | - Cameron J. G. Wilson
- EaStCHEM
School of Chemistry and Centre for Science at Extreme Conditions, The University of Edinburgh, King’s Buildings, West Mains
Road, Edinburgh, EH9 3FJ, Scotland
| | | | | | | | - Christos P. Constantinides
- Department
of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128-1491, United States
| | | | - Alejandro P. Ayala
- Federal
University of Ceará, Physics Department, 65455-900, Fortaleza, CE, Brazil
| | - Simon Parsons
- EaStCHEM
School of Chemistry and Centre for Science at Extreme Conditions, The University of Edinburgh, King’s Buildings, West Mains
Road, Edinburgh, EH9 3FJ, Scotland
| |
Collapse
|
2
|
Broadhurst ET, Wilson CJG, Zissimou GA, Nudelman F, Constantinides CP, Koutentis PA, Parsons S. A first-order phase transition in Blatter's radical at high pressure. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2022; 78:107-116. [PMID: 35411850 DOI: 10.1107/s2052520622000191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The crystal structure of Blatter's radical (1,3-diphenyl-1,4-dihydrobenzo[e][1,2,4]triazin-4-yl) has been investigated between ambient pressure and 6.07 GPa. The sample remains in a compressed form of the ambient-pressure phase up to 5.34 GPa, the largest direction of strain being parallel to the direction of π-stacking interactions. The bulk modulus is 7.4 (6) GPa, with a pressure derivative equal to 9.33 (11). As pressure increases, the phenyl groups attached to the N1 and C3 positions of the triazinyl moieties of neighbouring pairs of molecules approach each other, causing the former to begin to rotate between 3.42 to 5.34 GPa. The onset of this phenyl rotation may be interpreted as a second-order phase transition which introduces a new mode for accommodating pressure. It is premonitory to a first-order isosymmetric phase transition which occurs on increasing pressure from 5.34 to 5.54 GPa. Although the phase transition is driven by volume minimization, rather than relief of unfavourable contacts, it is accompanied by a sharp jump in the orientation of the rotation angle of the phenyl group. DFT calculations suggest that the adoption of a more planar conformation by the triazinyl moiety at the phase transition can be attributed to relief of intramolecular H...H contacts at the transition. Although no dimerization of the radicals occurs, the π-stacking interactions are compressed by 0.341 (3) Å between ambient pressure and 6.07 GPa.
Collapse
Affiliation(s)
- Edward T Broadhurst
- EaStCHEM School of Chemistry and Centre for Science at Extreme Conditions, The University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Cameron J G Wilson
- EaStCHEM School of Chemistry and Centre for Science at Extreme Conditions, The University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Georgia A Zissimou
- Department of Chemistry, University of Cyprus, PO Box 20537, 1678 Nicosia, Cyprus
| | - Fabio Nudelman
- EaStCHEM School of Chemistry and Centre for Science at Extreme Conditions, The University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Christos P Constantinides
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, Michigan, 48128-1491, USA
| | | | - Simon Parsons
- EaStCHEM School of Chemistry and Centre for Science at Extreme Conditions, The University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3FJ, United Kingdom
| |
Collapse
|
3
|
Zissimou GA, Bartos P, Pietrzak A, Kaszyński P. "Upper" Ring Expansion of the Planar Blatter Radical via Photocyclization: Limitations and Impact on the Electronic Structure. J Org Chem 2022; 87:4829-4837. [PMID: 35290052 DOI: 10.1021/acs.joc.2c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photocyclization of 8-aryloxybenzo[e][1,2,4]triazines leads to the formation of π-expanded flat Blatter radicals for three phenanthryloxy and pyren-1-yloxy derivatives, whereas no photoreaction is observed for the perylen-3-yloxy precursor. Two of the new radicals are nonplanar, out of which one is unstable to isolation. The radical with the fused pyrene ring constitutes the largest thus far paramagnetic polycyclic π-system containing seven fused rings with 27 sp2-hybridized atoms and 29 π-delocalized electrons. The investigation of the reaction conditions demonstrated the higher efficiency of photoformation of the parent radical in polar solvents, which suggests a polar transition state and the S1 photoreactive state. The effect of π expansion on the electronic structure was investigated with spectroscopic (UV-vis, electron paramagnetic resonance) and electrochemical methods augmented with density functional theory computational studies. The molecular structure of one of the radicals was determined with a single-crystal X-ray diffraction method.
Collapse
Affiliation(s)
- Georgia A Zissimou
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Łódź, Poland
| | - Paulina Bartos
- Faculty of Chemistry, University of Łódź, 91-403 Łódź, Poland
| | - Anna Pietrzak
- Faculty of Chemistry, Łódź University of Technology, Żeromskiego 116, 90-926 Łódź, Poland
| | - Piotr Kaszyński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Łódź, Poland.,Faculty of Chemistry, University of Łódź, 91-403 Łódź, Poland.,Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| |
Collapse
|
4
|
Bartos P, Celeda M, Pietrzak A, Kaszyński P. Planar Blatter radicals through Bu 3SnH- and TMS 3SiH-assisted cyclization of aryl iodides: azaphilic radical addition. Org Chem Front 2022. [DOI: 10.1039/d1qo01742j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Radical chain cyclization of aryl iodides provides an efficient synthesis of planar Blatter radicals, and, for the first time, access to functionalized sulphur-containing analogues.
Collapse
Affiliation(s)
- Paulina Bartos
- Faculty of Chemistry, University of Łódź, 91-403 Łódź, Poland
| | | | - Anna Pietrzak
- Faculty of Chemistry, Łódź University of Technology, 90-924 Łódź, Poland
| | - Piotr Kaszyński
- Faculty of Chemistry, University of Łódź, 91-403 Łódź, Poland
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Łódź, Poland
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, USA
| |
Collapse
|
5
|
Witwicki M, Lewińska A, Ozarowski A. o-Semiquinone radical anion isolated as an amorphous porous solid. Phys Chem Chem Phys 2021; 23:17408-17419. [PMID: 34351330 DOI: 10.1039/d1cp01596f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of metal cations is a commonly applied strategy to create S > 1/2 stable molecular systems containing semiquinone radicals. Persistent mono-semiquinonato complexes of diamagnetic metal ions (S = 1/2) have been hitherto less common and mostly limited to the complexes of heavy metal ions. In this work, a mono-semiquinonato complex of aluminum, derived from 1,2-dihydroxybenzene, is obtained using a surprisingly short and uncomplicated procedure. The isolated product is an amorphous and porous solid that exhibits very good stability under ambient conditions. To characterise its molecular and electronic structure, 9.7, 34 and 406 GHz EPR spectroscopy was used in concert with computational techniques (DFT and DLPNO-CCSD). It was revealed that the radical complex is composed of two chemically equivalent aluminum cations and two catechol-like ligands with the unpaired electron uniformly distributed between the two organic molecules. The good stability and porous structure make this complex applicable in heterogeneous aerobic reactions.
Collapse
Affiliation(s)
- Maciej Witwicki
- Faculty of Chemistry, Wroclaw University, Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | | | | |
Collapse
|
6
|
Bartos P, Hande AA, Pietrzak A, Chrostowska A, Kaszyński P. Substituent effects on the electronic structure of the flat Blatter radical: correlation analysis of experimental and computational data. NEW J CHEM 2021. [DOI: 10.1039/d1nj05137g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Functionalized flat Blatter radicals were obtained and substituent effects on spectroscopy, electrochemistry, and stability were investigated by correlation and DFT methods.
Collapse
Affiliation(s)
- Paulina Bartos
- Faculty of Chemistry, University of Łódź, 91-403 Łódź, Poland
| | - Aniket A. Hande
- Faculty of Chemistry, University of Łódź, 91-403 Łódź, Poland
- Université de Pau et des Pays de l’Adour E2S UPPA, CNRS, IPREM 64000, Pau, France
| | - Anna Pietrzak
- Faculty of Chemistry, Łódź University of Technology, Żeromskiego 116, 90-024, Łódź, Poland
| | - Anna Chrostowska
- Université de Pau et des Pays de l’Adour E2S UPPA, CNRS, IPREM 64000, Pau, France
| | - Piotr Kaszyński
- Faculty of Chemistry, University of Łódź, 91-403 Łódź, Poland
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Łódź, Poland
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| |
Collapse
|
7
|
Hande AA, Baylère P, Kaszyński P, Chrostowska A. Effect of π-System Extension on the Ionization Energy of the Planar Blatter Radical: Experimental and Theoretical Studies. J Phys Chem A 2020; 124:9777-9782. [PMID: 33198459 DOI: 10.1021/acs.jpca.0c07900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fusion of benzene, naphthalene, and phenalene rings with the D ring of the planar Blatter radical leads to extension of the π-system and increased spin delocalization. The effect of this π-extension and the position of the ring fusion on the electronic structure of the radicals was investigated by UV-photoelectron spectroscopy and DFT CAM-B3LYP/6-311G(d,p) method. The experimental data obtained for 3 out of 8 derivatives were correlated with DFT-derived ionization energies.
Collapse
Affiliation(s)
- Aniket A Hande
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 64000, UMR 5254, Pau, France
| | - Patrick Baylère
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 64000, UMR 5254, Pau, France
| | - Piotr Kaszyński
- Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland.,Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland.,Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37130, United States
| | - Anna Chrostowska
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 64000, UMR 5254, Pau, France
| |
Collapse
|