1
|
Zhang J, Xu H, Zheng Y, Shen Y, Mu C, Wang Y, Niyazi A, He Z, Zhang Z, Zhang L, Xue J. Visible light photocatalytic degradation of oxytetracycline hydrochloride using chitosan-loaded Z-scheme heterostructured material BiOCOOH/O-gC 3N 4. Int J Biol Macromol 2024; 275:133373. [PMID: 38945717 DOI: 10.1016/j.ijbiomac.2024.133373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
In this work, a Z-scheme heterostructured BiOCOOH/O-gC3N4 material was synthesized and immobilized on chitosan (CTS) to obtain the BiOCOOH/O-gC3N4/CTS photocatalytic material for photocatalytic degradation of oxytetracycline hydrochloride (CTC).Our findings indicate that the composite material BiOCOOH/O-gC3N4, as well as the BiOCOOH/O-gC3N4/CTS composite membrane, displayed a significantly higher efficiency in photocatalytic degradation of CTC compared to BiOCOOH alone, owing to the synergistic effect of adsorption and photocatalysis. Following four cycles of use, the composite material retained around 96 % of its initial photocatalytic degradation activity. The addition of CTS in the photocatalytic material resolved issues such as aggregation and difficult recovery commonly encountered with powder materials, thereby facilitating effective collision between the photocatalytic active sites and CTC. Experimental and theoretical calculations provided confirmation that the combination of BiOCOOH and O-gC3N4 effectively enhanced the light absorption capacity and photocatalytic performance. Furthermore, we investigated the influence of environmental factors such as pH value and anions on the photocatalytic degradation experiment, which offers valuable insights for the application of composite catalysts in wastewater treatment.
Collapse
Affiliation(s)
- Jiawen Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| | - Haoyang Xu
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| | - Yage Zheng
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| | - Yue Shen
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| | - Chaoqun Mu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| | - Yao Wang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China.
| | - Aili Niyazi
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| | - Zhixian He
- Instrumental Analysis Center, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, People's Republic of China
| | - Zhiqiang Zhang
- Department of Material and Chemical engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450002, People's Republic of China
| | - Liang Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China; College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China.
| | - Juanqin Xue
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| |
Collapse
|
2
|
Zeng Q, Xu L, Xiong SX, Zhang Y, Cao L, Tao J, Li Z, Wang LL, Dong K. Two-Dimensional Sc 2CCl 2/XSe 2(X=Mo, Pt) van der Waals Heterojunctions: Promising Photocatalytic Hydrogen Evolution Materials. Chemphyschem 2024; 25:e202400304. [PMID: 38622796 DOI: 10.1002/cphc.202400304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
In the field of photocatalysis, new heterojunction materials are increasingly explored to achieve efficient energy conversion and environmental catalysis under visible light and sunlight. This paper presents a study on two newly constructed two-dimensional van der Waals heterojunctions, Sc2CCl2/MoSe2 and Sc2CCl2/PtSe2, using density-functional theory. The study includes a systematic investigation of their geometrical structure, electronic properties, and optical properties. The results indicate that both heterojunctions are thermodynamically, kinetically, and mechanically stable. Additionally, Bader charge analysis reveals that both heterojunctions exhibit typical type II band properties. However, the band gap of the Sc2CCl2/MoSe2 heterojunction is only 1.18 eV, which is insufficient to completely cross the reduction and oxidation (REDOX) potential of 1.23 eV, whereas the band gap of Sc2CCl2/PtSe2 heterojunction is 1.49 eV, which is theoretically capable for water decomposition. The subsequent calculation of the Sc2CCl2/PtSe2 heterojunction demonstrate excellent hole carrier mobility and high efficiency light absorption in the visible light range, facilitating the separation of photogenerated electrons and holes. More importantly, Sc2CCl2/PtSe2 vdW type II heterojunction can achieve full water decomposition from pH 1 to pH 4, and its thermodynamic feasibility is confirmed by Gibbs free energy results. The aim of this study is to develop materials and analyses that will result in optoelectronic devices that are more efficient, stable, and sustainable.
Collapse
Affiliation(s)
- Qionghui Zeng
- Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi Province, P.R. China
| | - Liang Xu
- Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi Province, P.R. China
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - S X Xiong
- Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi Province, P.R. China
| | - Ying Zhang
- Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi Province, P.R. China
| | - Lei Cao
- Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi Province, P.R. China
| | - Ji Tao
- Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi Province, P.R. China
| | - Zhengquan Li
- Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi Province, P.R. China
| | - Ling-Ling Wang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Kejun Dong
- Centre for Infrastructure Engineering, School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW-2751, Australia
| |
Collapse
|
3
|
Yin F, Wang H, Zhao Z, Luo L, Tang Y, Zhang Y, Xue Q. Doping and strain modulation of the electronic, optical and photocatalytic properties of the GaN/C 2N heterostructure. Phys Chem Chem Phys 2024; 26:17223-17231. [PMID: 38855975 DOI: 10.1039/d4cp01836b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The electronic, optical and photocatalytic properties of GaN/C2N van der Waals heterostructures are investigated using the first-principles theory, and effective regulation through element doping or strain is achieved further. The results show that the GaN/C2N heterostructure exhibits a type-II band alignment with an indirect band gap of 2.25 eV, which benefits photocatalytic water splitting. In this study, both type-I and type-II band alignments can be obtained through doping or strain modulation. Doping with P or As atoms reduces the band gap of the GaN/C2N heterostructure and transforms it to a type-I direct bandgap semiconductor, which makes the doped GaN/C2N heterostructure more suitable for optoelectronic devices. In addition, the GaN/C2N heterostructure retains type-II band alignment and has a decreased band gap under tensile strain (0 to +4%), which is more favorable for photocatalytic water splitting. Compressive strain (0 to -4%) converts the type-II band alignment to type-I, resulting in a wider light absorption range, making the GaN/C2N heterostructure more suitable for optoelectronic devices. These theoretical results are helpful for the design of GaN/C2N vdW heterostructures in the fields of optoelectronic devices and photocatalysts.
Collapse
Affiliation(s)
- Fu Yin
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Hui Wang
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Zhengqin Zhao
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - LiJia Luo
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Yongliang Tang
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Yanbo Zhang
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Qiang Xue
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| |
Collapse
|
4
|
Xu Y, Li D, Zeng Q, Sun H, Li P. Type-II 2D AgBr/SiH van der Waals heterostructures with tunable band edge positions and enhanced optical absorption coefficients for photocatalytic water splitting. RSC Adv 2023; 13:27676-27685. [PMID: 37731832 PMCID: PMC10507427 DOI: 10.1039/d3ra05079c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
Utilizing two-dimensional (2D) heterostructures in photocatalysis can enhance optical ab-sorption and charge separation, thereby increasing solar energy conversion efficiency and tackling environmental issues. Density functional theory (DFT) was employed in this study to investigate the structural and optoelectronic properties of the AgBr/SiH van der Waals (vdW) heterostructures. All three configurations (A1, A2, and A3) were stable, with direct bandgaps of 1.83 eV, 0.99 eV, and 1.36 eV, respectively. The type-II band alignment in these structures enables electrons to be transferred from the SiH layer to the AgBr layer, and holes to move in the opposite direction. In the ultraviolet region, the optical absorption coefficients of the A1, A2, and A3 configurations are approximately 4.0 × 105 cm-1, significantly higher than that of an isolated AgBr monolayer (2.4 × 104 cm-1). In the visible light region, the A1 configuration has an absorption coefficient of 4 × 104 cm-1, higher than that of an isolated AgBr (2.2 × 104 cm-1). The band edges of the A1 configuration satisfy the redox potential for photocatalytic water splitting at pH 0-7. When the biaxial tensile strain is 5% for the A2 configuration and 2% for the A3 configuration, it can allow photocatalytic water splitting from half-reactions without strain to photocatalytic overall water splitting at pH 0-7. With a 5% biaxial tensile strain in the visible light region, the A1 and A3 configurations experience a rise in the maximum absorption coefficient of 5.7 × 104 cm-1 and 4.6 × 104 cm-1, respectively. The findings indicate that the AgBr/SiH vdW heterostructure configurations could be utilized in photocatalytic water-splitting processes with great potential.
Collapse
Affiliation(s)
- Yuehua Xu
- School of Microelectronics and Control Engineering, Changzhou University Changzhou 213164 Jiangsu China
| | - Dongze Li
- School of Microelectronics and Control Engineering, Changzhou University Changzhou 213164 Jiangsu China
| | - Qiang Zeng
- School of Microelectronics and Control Engineering, Changzhou University Changzhou 213164 Jiangsu China
| | - He Sun
- School of Microelectronics and Control Engineering, Changzhou University Changzhou 213164 Jiangsu China
| | - Pengfei Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences Hefei 230031 China
| |
Collapse
|
5
|
Jia M, Ren F, Han W, Liu P, Jin C, Chen X, Peng C, Wang B. The polarized electric field of CdTe/B 4C 3 heterostructure efficiently promotes its photocatalytic overall water splitting. Phys Chem Chem Phys 2023; 25:22979-22988. [PMID: 37593965 DOI: 10.1039/d3cp01870a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Inspired by natural photosynthesis, two-dimensional van der Waals (vdW) heterostructures are considered as promising photocatalysts for solar-driven water splitting and they attract ever-growing interest. A type-II vdW hetero-photocatalyst (CdTe/B4C3) integrating the polarized CdTe into metal-free B4C3 was constructed, which could achieve solar-driven spontaneous overall water splitting at pH = 0-7 and exhibit a high solar-to-hydrogen (STH) efficiency of 19.64%. Our calculation results show that the interlayer interaction between the CdTe and B4C3 monolayers in the heterostructure creates an interfacial electric field enhanced by the intrinsic dipole of polarized CdTe, which accelerates the effective separation of photogenerated carriers and makes the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) take place separately on the B4C3 and CdTe layers. Furthermore, the CdTe/B4C3 heterostructure has decent band edge positions to promote the redox reaction to decompose water due to the significant electrostatic potential difference in the CdTe/B4C3 heterostructure and it could trigger spontaneous redox reaction under light at pH = 0-7. This work is helpful for us to design type-II heterojunction photocatalysts with high efficiency of photogenerated carrier separation for overall water splitting.
Collapse
Affiliation(s)
- Minglei Jia
- Institute for Computational Materials Science, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Fengzhu Ren
- Institute for Computational Materials Science, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Wenna Han
- Institute for Computational Materials Science, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Pengyu Liu
- Institute for Computational Materials Science, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Chao Jin
- Institute for Computational Materials Science, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Xuefeng Chen
- Institute for Computational Materials Science, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Chengxiao Peng
- Institute for Computational Materials Science, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Bing Wang
- Institute for Computational Materials Science, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| |
Collapse
|
6
|
Doustkhah E, Hassandoost R, Yousef Tizhoosh N, Esmat M, Guselnikova O, Hussein N Assadi M, Khataee A. Ultrasonically-assisted synthesis of CeO 2 within WS 2 interlayers forming type II heterojunction for a VOC photocatalytic oxidation. ULTRASONICS SONOCHEMISTRY 2023; 92:106245. [PMID: 36463784 PMCID: PMC9719093 DOI: 10.1016/j.ultsonch.2022.106245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Here, we investigate the band structure, density of states, photocatalytic activity, and heterojunction mechanism of WS2 with CeO2 (CeO2@WS2) as a photoactive heterostructure. In this heterostructure, CeO2's growth within WS2 layers is achieved through ultrasonicating WS2 and intercalating CeO2's precursor within the WS2 interlayers, followed by hydrothermal treatment. Through a set of density functional calculations, we demonstrate that CeO2 and WS2 form an interface through a covalent bonding that can be highly stable. The electrochemical impedance spectroscopy (EIS) found that the CeO2@WS2 heterostructure exhibits a remarkably higher conductivity (22.23 mS cm-2) compared to either WS2 and CeO2, assignable to the interface in CeO2@WS2. Furthermore, in a physically mixed CeO2-WS2 where the interaction between particles is noncovalent, the resistance was significantly higher (0.67 mS cm-2), confirming that the heterostructure in the interface is covalently bonded. In addition, Mott-Schottky and the bandgap measurements through Tauc plots demonstrate that the heterojunction in CeO2 and WS2 is type II. Eventually, the CeO2@WS2 heterostructure indicated 446.7 µmol g -1 CO2 generation from photocatalytic oxidation of a volatile organic compound (VOC), formic acid, compared to WS2 and CeO2 alone.
Collapse
Affiliation(s)
- Esmail Doustkhah
- Koç University Tüpraş Energy Center (KUTEM), Department of Chemistry, Koç University, 34450 Istanbul, Turkey.
| | - Ramin Hassandoost
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Negar Yousef Tizhoosh
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Mohamed Esmat
- International Center for Materials Nanoarchitechtonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University (BSU), Beni-Suef 62511, Egypt
| | - Olga Guselnikova
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia
| | - M Hussein N Assadi
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey.
| |
Collapse
|
7
|
Semiconductor photocatalysts: A critical review highlighting the various strategies to boost the photocatalytic performances for diverse applications. Adv Colloid Interface Sci 2023; 311:102830. [PMID: 36592501 DOI: 10.1016/j.cis.2022.102830] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/23/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
The photocatalytic technology illustrates an eco-friendly and sustainable route to overcome environmental and energy issues. The successful construction of a photocatalyst depends on four key elements: light absorption ability, the density of active sites, redox capacity, and photoinduced electron-hole recombination rate. Sincemost of intrinsic semiconductor photocatalysts cannot meet all these requirements, they are often modified to boost their photocatalytic properties. Many strategies have been adopted to design novel and efficient photocatalysts for diverse applications. Herein, we review the most efficient of these strategies and methods focused on effectively overcoming the efficiency limitations of photocatalysts to promote their large-scale application. Subsequently, a particular aim is put on the most current studies for photocatalytic applications, including CO2 reduction, N2 fixation, H2 evolution, and pollutants degradation. Finally, key challenges and future perspectives in designing and implementing semiconductor photocatalysts for large-scale applications are discussed. Therefore, it is foreseen that this review will work as a guide for future research and provides a variety of strategies to develop novel and high-performance photocatalysts for various applications.
Collapse
|
8
|
Schumacher L, Marschall R. Recent Advances in Semiconductor Heterojunctions and Z-Schemes for Photocatalytic Hydrogen Generation. Top Curr Chem (Cham) 2022; 380:53. [PMID: 36269440 PMCID: PMC9587104 DOI: 10.1007/s41061-022-00406-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022]
Abstract
The formation of semiconductor heterojunctions and Z-schemes is still a very prominent and efficient strategy of materials chemists to extend the absorption range of semiconductor combinations. Moreover, the spatial separation of photoexcited charge carriers and thereby the reduction of their recombination ultimately lead to increased photocatalytic activities. The present article reviews recent trends in semiconductor heterojunctions and Z-schemes with a focus on hydrogen generation and water splitting, exhibiting specific needs for charge carrier separation. We also included recent material trends, i.e. 2D/2D combinations, direct Z-schemes, MOFs and COFs, and combinations with upconversion materials.
Collapse
Affiliation(s)
- Lion Schumacher
- Department of Chemistry, University of Bayreuth, 95447, Bayreuth, Germany
| | - Roland Marschall
- Department of Chemistry, University of Bayreuth, 95447, Bayreuth, Germany.
| |
Collapse
|
9
|
Zhang G, Ke X, Liu X, Liao H, Wang W, Yu H, Wang K, Yang S, Tu C, Gu H, Luo D, Huang L, Zhang M. Interfacial Engineering of Semicoherent Interface at Purified CsPbBr 3 Quantum Dots/2D-PbSe for Optimal CO 2 Photoreduction Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44909-44921. [PMID: 36150167 DOI: 10.1021/acsami.2c09711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Heterogeneous photocatalysts are extensively used to achieve interfacial electric fields for acceleration of oriented charge carrier transport and further promotion of photocatalytic redox reactions. Unfortunately, the incoherent interfaces are almost present in the heterostructures owing to large lattice mismatch accompanied by the interfacial defects and high density of gap states, acting as high energy barriers for charge migration. In this work, we report the atomic engineering of CsPbBr3/PbSe heterogeneous interfaces and conversion from incoherent features to semicoherent characters via methyl acetate (MeOAc) purification of CsPbBr3 quantum dots (QDs) before composited with two-dimensional (2D)-PbSe, which is confirmed by high-resolution transmission electron microscopy. The photocatalytic performances and theoretical calculations indicate that semicoherent interfaces are favorable for improving the activity and reactivity of the heterostructure, triggering 3 times enhanced photocatalytic CO2 reduction rate with 91% selectivity and satisfactory stability. This study proposes a facile method for photocatalytic heterojunctions to transform incoherent interfaces to photocatalytically beneficial semicoherent boundaries, accompanying with a systematic analysis of the consequent chemical dynamics to demonstrate the mechanism of the semicoherent interface for supporting photocatalysis. The understandings gained from this work are valuable for rational interfacial lattice engineering of heterogeneous photocatalysts for efficient solar fuel production.
Collapse
Affiliation(s)
- Gaotian Zhang
- School of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, P. R. China
| | - Xi Ke
- School of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, P. R. China
| | - Xiao Liu
- School of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, P. R. China
| | - Haijun Liao
- School of Materials of Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Weizhe Wang
- School of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, P. R. China
| | - He Yu
- School of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, P. R. China
| | - Kunqiang Wang
- School of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, P. R. China
| | - Shuhui Yang
- School of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, P. R. China
| | - Chen Tu
- School of Chemistry, Faculty of Science, Chemistry Building F11, Camperdown 2050, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Huaimin Gu
- School of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, P. R. China
| | - Dongxiang Luo
- School of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, P. R. China
- Huangpu Hydrogen Innovation Center/Guangzhou Key Laboratory for Clean Energy and Materials, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Le Huang
- School of Materials of Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Menglong Zhang
- School of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, P. R. China
| |
Collapse
|
10
|
Zheng L, Zhong Y, He T, Peng S, Yang L. A Codispersed Nanosystem of Silver-anchored MoS 2 Enhances Antibacterial and Antitumor Properties of Selective Laser Sintered Scaffolds. Int J Bioprint 2022; 8:577. [PMID: 36105125 PMCID: PMC9468948 DOI: 10.18063/ijb.v8i43.577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/17/2022] [Indexed: 11/23/2022] Open
Abstract
Tumor recurrence and bacterial infection are common problems during bone repair and reconstruction after bone tumor surgery. In this study, silver-anchored MoS2 nanosheets (Ag@PMoS2) were synthesized by in situ reduction, then a composite polymer scaffold (Ag@PMoS2/PGA) with sustained antitumor and antibacterial activity was successfully constructed by selective laser sintering technique. In the Ag@PMoS2 nanostructures, silver nanoparticles (Ag NPs) were sandwiched between adjacent MoS2 nanosheets (MoS2 NSs), which restrained the restacking of the MoS2 NSs. In addition, the MoS2 NSs acted as steric hindrance layers, which prevented the aggregation of Ag NPs. More importantly, MoS2 NSs can provide a barrier layer for Ag NPs, hindering Ag NPs from reacting with the external solution to prevent its quick release. The results showed that Ag@PMoS2/PGA scaffolds have stronger photothermal effect and antitumor function. Meanwhile, the Ag@PMoS2/PGA scaffolds also demonstrated slow control of silver ion (Ag+) release and more efficient long-term antibacterial ability. Besides, composite scaffolds have been proved to kill the MG-63 cells by inducing apoptosis and inhibit bacterial proliferation by upregulating the level of bacterial reactive oxygen species. This kind of novel bifunctional implants with antitumor and antibacterial properties provides better choice for the artificial bone transplantation after primary bone tumor resection.
Collapse
Affiliation(s)
- Leliang Zheng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan China.,Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yancheng Zhong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan China.,Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tiantian He
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan China.,Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan China.,Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liuyimei Yang
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
| |
Collapse
|
11
|
Xu L, Zeng J, Li Q, Luo X, Chen T, Liu J, Wang LL. Multifunctional silicene/CeO2 heterojunctions: Desirable electronic material and promising water-splitting photocatalyst. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Removal of Elemental Mercury from Simulated Flue Gas by a Copper-Based ZSM-5 Molecular Sieve. COATINGS 2022. [DOI: 10.3390/coatings12060772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A series of Cu-ZSM-5 molecular sieve adsorbents were prepared by the impregnation method. The experimental results revealed that the mercury removal efficiency of the 2.5 wt% CuCl2-ZSM-5 can reach up to 99%. Furthermore, both the crystal type and pore size distribution of the ZSM-5 molecular sieve remain the same after the process of copper-based active materials impregnated modification, and its specific surface area decreases as the load increases. Importantly, the surface of ZSM-5 modified by CuCl2 equips many more Cu-O functional groups, which are beneficial to the catalytic oxidation of mercury and can even oxidize Hg0 to Hg2+. The adsorption process strictly follows the Mars–Maessen reaction mechanism.
Collapse
|
13
|
Feng Z, Pu J, Liu M, Zhang W, Zhang X, Cui L, Liu J. Facile construction of hierarchical Co3S4/CeO2 heterogeneous nanorod array on cobalt foam for electrocatalytic overall water splitting. J Colloid Interface Sci 2022; 613:806-813. [DOI: 10.1016/j.jcis.2022.01.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/16/2023]
|
14
|
Jakhar M, Kumar A, Ahluwalia PK, Tankeshwar K, Pandey R. Engineering 2D Materials for Photocatalytic Water-Splitting from a Theoretical Perspective. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2221. [PMID: 35329672 PMCID: PMC8954018 DOI: 10.3390/ma15062221] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022]
Abstract
Splitting of water with the help of photocatalysts has gained a strong interest in the scientific community for producing clean energy, thus requiring novel semiconductor materials to achieve high-yield hydrogen production. The emergence of 2D nanoscale materials with remarkable electronic and optical properties has received much attention in this field. Owing to the recent developments in high-end computation and advanced electronic structure theories, first principles studies offer powerful tools to screen photocatalytic systems reliably and efficiently. This review is organized to highlight the essential properties of 2D photocatalysts and the recent advances in the theoretical engineering of 2D materials for the improvement in photocatalytic overall water-splitting. The advancement in the strategies including (i) single-atom catalysts, (ii) defect engineering, (iii) strain engineering, (iv) Janus structures, (v) type-II heterostructures (vi) Z-scheme heterostructures (vii) multilayer configurations (viii) edge-modification in nanoribbons and (ix) the effect of pH in overall water-splitting are summarized to improve the existing problems for a photocatalytic catalytic reaction such as overcoming large overpotential to trigger the water-splitting reactions without using cocatalysts. This review could serve as a bridge between theoretical and experimental research on next-generation 2D photocatalysts.
Collapse
Affiliation(s)
- Mukesh Jakhar
- Department of Physics, Central University of Punjab, Bathinda 151401, India;
| | - Ashok Kumar
- Department of Physics, Central University of Punjab, Bathinda 151401, India;
| | | | - Kumar Tankeshwar
- Department of Physics and Astrophysics, Central University of Haryana, Mahendragarh 123031, India;
| | - Ravindra Pandey
- Department of Physics, Michigan Technological University, Houghton, MI 49931, USA;
| |
Collapse
|
15
|
Pham KD. Tunability of the electronic properties and contact types of the silicane/MoSi 2N 4 heterostructure under an electric field. NEW J CHEM 2022. [DOI: 10.1039/d2nj03798j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stacking different two-dimensional materials to generate a vertical heterostructure has been considered a promising way to obtain the desired properties and to improve the device performance.
Collapse
Affiliation(s)
- Khang D. Pham
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, Vietnam
| |
Collapse
|
16
|
Nguyen ST, Nguyen CV, Nguyen-Ba K, Le-Quoc H, Hieu NV, Nguyen CQ. Electric field tunability of the electronic properties and contact types in the MoS 2/SiH heterostructure. RSC Adv 2022; 12:24172-24177. [PMID: 36128532 PMCID: PMC9403661 DOI: 10.1039/d2ra03817j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/09/2022] [Indexed: 12/03/2022] Open
Abstract
The generation of layered heterostructures with type-II band alignment is considered to be an effective tool for the design and fabrication of a highly efficient photocatalyst. In this work, we design a novel type-II MoS2/SiH HTS and investigate its atomic structure, electronic properties and contact types. In the ground state, the MoS2/SiH HTS is proved to be structurally and mechanically stable. The MoS2/SiH HTS generates type-II band alignment with separation of the photogenerated carriers. Both the electronic properties and contact type of the MoS2/SiH HTS can be modulated by an external electric field. The application of a negative electric field leads to a transformation from type-II to type-I band alignment. While the application of a positive electric field gives rise to a transition from semiconductor to metal in the MoS2/SiH HTS. These results could provide useful information for the design and fabrication of photoelectric devices on the MoS2/SiH HTS. The generation of layered heterostructures with type-II band alignment is considered to be an effective tool for the design and fabrication of a highly efficient photocatalyst.![]()
Collapse
Affiliation(s)
- Son-Tung Nguyen
- Faculty of Electrical Engineering, Hanoi University of Industry, Hanoi 100000, Vietnam
| | - Chuong V. Nguyen
- Department of Materials Science and Engineering, Le Quy Don Technical University, Hanoi, Vietnam
| | - Kien Nguyen-Ba
- The University of Danang – University of Science and Technology, Danang 550000, Vietnam
| | - Huy Le-Quoc
- The University of Danang – University of Science and Technology, Danang 550000, Vietnam
| | - Nguyen V. Hieu
- Physics Department, The University of Danang – University of Science and Education, Da Nang 550000, Vietnam
| | - Cuong Q. Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
17
|
Wang B, Yuan H, Yang T, Wang P, Xu X, Chang J, Kuang M, Chen H. A two-dimensional PtS 2/BN heterostructure as an S-scheme photocatalyst with enhanced activity for overall water splitting. Phys Chem Chem Phys 2022; 24:26908-26914. [DOI: 10.1039/d2cp03595b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The optical absorption spectra of the PtS2/BN heterojunction.
Collapse
Affiliation(s)
- Biao Wang
- School of Physical Science and Technology, Southwest University, Chongqing 400715, People's Republic of China
- School of Resources and Environment, Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
- Chongqing key Laboratory of Micro Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, People's Republic of China
| | - Hongkuan Yuan
- School of Physical Science and Technology, Southwest University, Chongqing 400715, People's Republic of China
- Chongqing key Laboratory of Micro Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, People's Republic of China
| | - Tie Yang
- School of Physical Science and Technology, Southwest University, Chongqing 400715, People's Republic of China
- Chongqing key Laboratory of Micro Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, People's Republic of China
| | - Peng Wang
- School of Physical Science and Technology, Southwest University, Chongqing 400715, People's Republic of China
- Chongqing key Laboratory of Micro Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiaohui Xu
- School of Physical Science and Technology, Southwest University, Chongqing 400715, People's Republic of China
- Chongqing key Laboratory of Micro Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, People's Republic of China
| | - Junli Chang
- School of Physical Science and Technology, Southwest University, Chongqing 400715, People's Republic of China
- Chongqing key Laboratory of Micro Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, People's Republic of China
| | - Minquan Kuang
- School of Physical Science and Technology, Southwest University, Chongqing 400715, People's Republic of China
- Chongqing key Laboratory of Micro Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, People's Republic of China
| | - Hong Chen
- School of Physical Science and Technology, Southwest University, Chongqing 400715, People's Republic of China
- Chongqing key Laboratory of Micro Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
18
|
Pham KD. First principles prediction of electronic, mechanical, transport and optical properties of the silicane/Ga 2SSe heterostructure. RSC Adv 2022; 12:31935-31942. [PMID: 36380915 PMCID: PMC9641579 DOI: 10.1039/d2ra05723a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
In this work, we investigated the electronic structure, and mechanical, transport and optical properties of the van der Waals heterostructure formed from silicane (SiH) and Janus Ga2SSe monolayers using first-principles prediction. The out-of-plane symmetry in the Janus Ga2SSe monolayer leads to the formation of two different types of Ga2SSe/SiH heterostructure, namely SGa2Se/SiH and SeGa2S/SiH stacking patterns. All stacking patterns of the SiH/Ga2SSe heterostructure are thermodynamically, mechanically and energetically stable at room temperature. Furthermore, the generation of the SiH/Ga2SSe heterostructure gives rise to a reduction in the band gap, demonstrating that the electrons move faster from the valence bands to the conduction bands. The SiH/Ga2SSe heterostructure is a semiconductor with a direct band gap of about 0.68 or 0.95 eV, depending on the stacking pattern. The SiH/Ga2SSe heterostructure forms type-II band alignment for all stacking patterns, indicating that the photogenerated carriers are separated effectively, thus enhancing the photocatalytic performance. Moreover, the carrier mobilities for electrons and holes of the Ga2SSe/SiH heterostructure are higher than those of the constituent SiH and Ga2SSe monolayers in both the x and y directions, suggesting that the performances of electronic devices based on the Ga2SSe/SiH heterostructure would be excellent and reliable. The formation of the Ga2SSe/SiH heterostructure also gives rise to an enhancement of the absorption coefficient in both the visible and ultraviolet regions. Our findings could give valuable guidance for the design of high-efficiency devices based on the SiH/Ga2SSe heterostructure. In this work, we investigated the electronic structure, and mechanical, transport and optical properties of the van der Waals heterostructure formed from silicane (SiH) and Janus Ga2SSe monolayers using first-principles prediction.![]()
Collapse
Affiliation(s)
- Khang D. Pham
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, Vietnam
| |
Collapse
|
19
|
Abdul Nasir J, Munir A, Ahmad N, Haq TU, Khan Z, Rehman Z. Photocatalytic Z-Scheme Overall Water Splitting: Recent Advances in Theory and Experiments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105195. [PMID: 34617345 DOI: 10.1002/adma.202105195] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Photocatalytic water splitting is considered one of the most important and appealing approaches for the production of green H2 to address the global energy demand. The utmost possible form of artificial photosynthesis is a two-step photoexcitation known as "Z-scheme", which mimics the natural photosystem. This process solely relies on the effective coupling and suitable band positions of semiconductors (SCs) and redox mediators for the purpose to catalyze the surface chemical reactions and significantly deter the backward reaction. In recent years, the Z-scheme strategies and their key role have been studied progressively through experimental approaches. In addition, theoretical studies based on density functional theory have provided detailed insight into the mechanistic aspects of some breathtakingly complex problems associated with hydrogen evolution reaction and oxygen evolution reaction. In this context, this critical review gives an overview of the fundamentals of Z-scheme photocatalysis, including both theoretical and experimental advancements in the field of photocatalytic water splitting, and suggests future perspectives.
Collapse
Affiliation(s)
- Jamal Abdul Nasir
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Akhtar Munir
- Department of Chemistry, University of Sialkot, 1 Km, main Daska road, Sialkot, Punjab, 51310, Pakistan
- Department of Chemistry & Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS), DHA, Lahore, 54792, Pakistan
| | - Naveed Ahmad
- Institute of Pharmaceutical Science, Faculty of Life Science and Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
- University of Swat. Charbagh, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Tanveer Ul Haq
- Sustainable Energy Engineering, Frank H. Dotterweich College of Engineering, Texas A&M University, Kingsville, TX, 78363-8202, USA
| | - Zaibunisa Khan
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Ziaur Rehman
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
20
|
Li Q, Wang Y, Zeng J, Wu Q, Wang Q, Sun L, Xu L, Ye T, Zhao X, Chen L, Chen Z, Chen L, Lei Y. Phosphating-induced charge transfer on CoO/CoP interface for alkaline H2 evolution. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Zeng J, Xu L, Dong K, Yang K, Wang L. Multiple Heterojunction System of Boron Nitride‐Graphene/Black Phosphorene as Highly Efficient Solar Cell. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jian Zeng
- Energy Materials Computing Center, School of Energy and Mechanical Engineering Jiangxi University of Science and Technology Nanchang 330013 China
| | - Liang Xu
- Energy Materials Computing Center, School of Energy and Mechanical Engineering Jiangxi University of Science and Technology Nanchang 330013 China
- Key Laboratory for Micro‐Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics Hunan University Changsha 410082 China
| | - Kejun Dong
- Centre for Infrastructure Engineering, School of Engineering, Design and Built Environment Western Sydney University Penrith New South Wales 2751 Australia
| | - Kai Yang
- School of Chemistry and Chemical Engineering Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Ling‐Ling Wang
- Key Laboratory for Micro‐Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics Hunan University Changsha 410082 China
| |
Collapse
|
22
|
Shuai C, Yuan X, Yang W, Peng S, Qian G, Zhao Z. Synthesis of a mace-like cellulose nanocrystal@Ag nanosystem via in-situ growth for antibacterial activities of poly-L-lactide scaffold. Carbohydr Polym 2021; 262:117937. [DOI: 10.1016/j.carbpol.2021.117937] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
|
23
|
Zeng J, Xu L, Yang Y, Luo X, Li HJ, Xiong SX, Wang LL. Boosting the photocatalytic hydrogen evolution performance of monolayer C 2N coupled with MoSi 2N 4: density-functional theory calculations. Phys Chem Chem Phys 2021; 23:8318-8325. [PMID: 33875996 DOI: 10.1039/d1cp00364j] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Very recently, an important two-dimensional material, MoSi2N4, was successfully synthesized. However, pure MoSi2N4 has some inherent shortcomings when used in photocatalytic water splitting to produce hydrogen, especially a low separation rate of photogenerated electron-hole pairs and a poor visible light response. Interestingly, we find that the MoSi2N4 can be used as a good modification material, and it can be coupled with C2N to form an efficient heterojunction photocatalyst. Here, using density functional theory, a type-II heterojunction, C2N/MoSi2N4, is designed and systematically studied. Based on AIMD simulations and phonon dispersion verification, C2N/MoSi2N4 shows sufficient thermodynamic stability. As well as its perfect interface electronic properties, its large interlayer charge transfer and good visible light response lay the foundation for its excellent photocatalytic performance. In addition, the oxidation and reduction potentials of the C2N/MoSi2N4 heterojunction not only can meet the requirements of water splitting well but can also maintain a delicate balance between oxidation and reduction reactions. More importantly, the |ΔGH*| value of the C2N/MoSi2N4 heterojunction is very close to zero, indicating great application potential in the field of photocatalytic water splitting. In brief, our research paves the way for the design of future MoSi2N4-based efficient heterojunction photocatalysts.
Collapse
Affiliation(s)
- Jian Zeng
- Energy Materials Computing Center, School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China.
| | | | | | | | | | | | | |
Collapse
|
24
|
Yang Y, Cheng Y, Deng F, Shen L, Zhao Z, Peng S, Shuai C. A bifunctional bone scaffold combines osteogenesis and antibacterial activity via in situ grown hydroxyapatite and silver nanoparticles. Biodes Manuf 2021. [DOI: 10.1007/s42242-021-00130-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Qian G, Zhang L, Wang G, Zhao Z, Peng S, Shuai C. 3D Printed Zn-doped Mesoporous Silica-incorporated Poly-L-lactic Acid Scaffolds for Bone Repair. Int J Bioprint 2021; 7:346. [PMID: 33997435 PMCID: PMC8114096 DOI: 10.18063/ijb.v7i2.346] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
Poly-L-lactic acid (PLLA) lacks osteogenic activity, which limits its application in bone repair. Zinc (Zn) is widely applied to strengthen the biological properties of polymers due to its excellent osteogenic activity. In the present study, Zn-doped mesoporous silica (Zn-MS) particles were synthesized by one-pot hydrothermal method. Then, the particles were induced into PLLA scaffolds prepared by selective laser sintering technique, aiming to improve their osteogenic activity. Our results showed that the synthesized particles possessed rosette-like morphology and uniform mesoporous structure, and the composite scaffold displayed the sustained release of Zn ion in a low concentration range, which was attributed to the shield effect of the PLLA matrix and the strong bonding interaction of Si-O-Zn. The scaffold could evidently promote osteogenesis differentiation of mouse bone marrow mesenchymal stem cells by upregulating their osteogenesis-related gene expression. Besides, Zn-MS particles could significantly increase the compressive strength of the PLLA scaffold because of their rosette-like morphology and mesoporous structure, which can form micromechanical interlocking with the PLLA matrix. The Zn-MS particles possess great potential to improve various polymer scaffold properties due to their advantageous morphology and physicochemical properties.
Collapse
Affiliation(s)
- Guowen Qian
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Lemin Zhang
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Guoyong Wang
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Zhengyu Zhao
- Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis, School of basic Medical Science, Central South University, Changsha, Hunan 410013, China
- School of Energy and Machinery Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Cijun Shuai
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
- Shenzhen Institute of Information Technology, Shenzhen 518172, China
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China
| |
Collapse
|
26
|
Zhang M, Chu X, Zhang H, Huang F, Liu P, Li S. Interface engineering of a hierarchical Zn xCd 1-xS architecture with favorable kinetics for high-performance solar water splitting. Phys Chem Chem Phys 2021; 23:9347-9356. [PMID: 33885073 DOI: 10.1039/d0cp06489k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Manipulating the charge carrier transport in photoactive materials is a big challenge toward high efficiency solar water splitting. Herein, we designed a hierarchical ZnxCd1-xS architecture for tuning the interfacial charge transfer kinetics. The in situ growth of ZnxCd1-xS nanoflakes on ZnO backbones provided low interfacial resistance for charge separation. With this special configuration, the optimized Zn0.33Cd0.67S photoanode achieved significantly enhanced performance with a photocurrent density of 10.67 mA cm-2 at 1.23 V versus RHE under AM1.5G solar light irradiation, which is about 14.1 and 2.5 times higher than that of the pristine ZnO and CdS nanoparticle decorated ZnO photoanodes, respectively. After coating a thin SiO2 layer, the photostability of the hierarchical Zn0.33Cd0.67S photoanode is greatly enhanced with 92.33% of the initial value retained under 3600 s continuous light illumination. The prominent PEC activity of the hierarchical ZnxCd1-xS nanorod arrays can be ascribed to an enhanced charge transfer rate aroused by the binder-free interfacial heterojunction, and the improved reaction kinetics at the electrode-electrolyte interface, which is evidenced by electrochemically active surface area measurements and intensity modulated photocurrent spectroscopy analysis. This interfacial heterojunction strategy provides a promising pathway to prepare high performance photoelectrodes.
Collapse
Affiliation(s)
- Miaomiao Zhang
- AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics and Materials Science, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China.
| | | | | | | | | | | |
Collapse
|
27
|
Peng B, Xu L, Zeng J, Qi X, Yang Y, Ma Z, Huang X, Wang LL, Shuai C. Layer-dependent photocatalysts of GaN/SiC-based multilayer van der Waals heterojunctions for hydrogen evolution. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02251a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The interlayer interaction has a great influence on the formation of type-II heterojunctions, which can efficiently decompose water.
Collapse
Affiliation(s)
- Bojun Peng
- Energy Materials Computing Center
- School of Energy and Mechanical Engineering
- Jiangxi University of Science and Technology
- Nanchang 330013
- China
| | - Liang Xu
- Energy Materials Computing Center
- School of Energy and Mechanical Engineering
- Jiangxi University of Science and Technology
- Nanchang 330013
- China
| | - Jian Zeng
- Energy Materials Computing Center
- School of Energy and Mechanical Engineering
- Jiangxi University of Science and Technology
- Nanchang 330013
- China
| | - Xiaopeng Qi
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- China
| | - Youwen Yang
- Energy Materials Computing Center
- School of Energy and Mechanical Engineering
- Jiangxi University of Science and Technology
- Nanchang 330013
- China
| | - Zongle Ma
- Energy Materials Computing Center
- School of Energy and Mechanical Engineering
- Jiangxi University of Science and Technology
- Nanchang 330013
- China
| | - Xin Huang
- Energy Materials Computing Center
- School of Energy and Mechanical Engineering
- Jiangxi University of Science and Technology
- Nanchang 330013
- China
| | - Ling-Ling Wang
- School of Physics and Electronics
- Hunan University
- Changsha 410082
- China
| | - Cijun Shuai
- Energy Materials Computing Center
- School of Energy and Mechanical Engineering
- Jiangxi University of Science and Technology
- Nanchang 330013
- China
| |
Collapse
|