1
|
Huang WC, Hsu CH, Albu TV, Yang CN. Structural impacts of two disease-linked ADAR1 mutants: a molecular dynamics study. J Comput Aided Mol Des 2024; 38:25. [PMID: 39014124 DOI: 10.1007/s10822-024-00565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
Adenosine deaminases acting on RNA (ADARs) are pivotal RNA-editing enzymes responsible for converting adenosine to inosine within double-stranded RNA (dsRNA). Dysregulation of ADAR1 editing activity, often arising from genetic mutations, has been linked to elevated interferon levels and the onset of autoinflammatory diseases. However, understanding the molecular underpinnings of this dysregulation is impeded by the lack of an experimentally determined structure for the ADAR1 deaminase domain. In this computational study, we utilized homology modeling and the AlphaFold2 to construct structural models of the ADAR1 deaminase domain in wild-type and two pathogenic variants, R892H and Y1112F, to decipher the structural impact on the reduced deaminase activity. Our findings illuminate the critical role of structural complementarity between the ADAR1 deaminase domain and dsRNA in enzyme-substrate recognition. That is, the relative position of E1008 and K1120 must be maintained so that they can insert into the minor and major grooves of the substrate dsRNA, respectively, facilitating the flipping-out of adenosine to be accommodated within a cavity surrounding E912. Both amino acid replacements studied, R892H at the orthosteric site and Y1112F at the allosteric site, alter K1120 position and ultimately hinder substrate RNA binding.
Collapse
Affiliation(s)
- Wen-Chieh Huang
- Institute of Precision Medicine, National Sun Yat-sen University, No. 70 Lien-Hai Road, Kaohsiung, 80424, Taiwan
| | - Chia-Hung Hsu
- Department of Internal Medicine, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Titus V Albu
- Department of Chemistry and Physics, University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Chia-Ning Yang
- Institute of Precision Medicine, National Sun Yat-sen University, No. 70 Lien-Hai Road, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
2
|
Koirala S, Samanta S, Kar P. Identification of inhibitors for neurodegenerative diseases targeting dual leucine zipper kinase through virtual screening and molecular dynamics simulations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:457-482. [PMID: 38855951 DOI: 10.1080/1062936x.2024.2363195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Neurodegenerative diseases lead to a gradual decline in cognitive and motor functions due to the progressive loss of neurons in the central nervous system. The role of dual leucine zipper kinase (DLK) in regulating stress responses and neuronal death pathways highlights its significance as a target against neurodegenerative diseases. The non-availability of FDA-approved drugs emphasizes a need to identify novel DLK-inhibitors. We screened NPAtlas (Natural products) and MedChemExpress (FDA-approved) libraries to identify potent ATP-competitive DLK inhibitors. ADMET analyses identified four compounds (two natural products and two FDA-approved) with favourable features. Subsequently, we performed molecular dynamics simulations to examine the binding-stability and ligand-induced conformational dynamics. Molecular mechanics Poisson Boltzmann surface area (MM-PBSA) calculations demonstrated CID139591660, dithranol, and danthron having greater affinity, while CID156581477 showed lower affinity than control sunitinib. PCA and network analysis results indicated structural and network alteration post-ligand binding. Furthermore, we identified an analogue of CID156581477 using the deep learning-based web server DeLA Drug which demonstrated a higher affinity than its parent compound and the control and identified several crucial interacting residues. Overall, our study provides significant theoretical guidance for designing potent novel DLK inhibitors and compounds that could emerge as promising drug candidates against DLK following laboratory validation.
Collapse
Affiliation(s)
- S Koirala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - S Samanta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - P Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
3
|
Mahapatra S, Jonniya NA, Koirala S, Kar P. Molecular dynamics simulations reveal phosphorylation-induced conformational dynamics of the fibroblast growth factor receptor 1 kinase. J Biomol Struct Dyn 2024; 42:2929-2941. [PMID: 37160693 DOI: 10.1080/07391102.2023.2209189] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/26/2023] [Indexed: 05/11/2023]
Abstract
The Fibroblast Growth Factor Receptor1 (FGFR1) kinase wields exquisite control on cell fate, proliferation, differentiation, and homeostasis. An imbalance of FGFR1 signaling leads to several pathogeneses of diseases ranging from multiple cancers to allergic and neurodegenerative disorders. In this study, we investigated the phosphorylation-induced conformational dynamics of FGFR1 in apo and ATP-bound states via all-atom molecular dynamics simulations. All simulations were performed for 2 × 2 µs. We have also investigated the energetics of the binding of ATP to FGFR1 using the molecular mechanics Poisson-Boltzmann scheme. Our study reveals that the FGFR1 kinase can reach a fully active configuration through phosphorylation and ATP binding. A 3-10 helix formation in the activation loop signifies its rearrangement leading to stability upon ATP binding. The interaction of phosphorylated tyrosine (pTyr654) with positively charged residues forms strong salt-bridge interactions, driving the compactness of the structure. The dynamic cross-correlation map reveals phosphorylation enhances correlated motions and reduces anti-correlated motions between different domains. We believe that the mechanistic understanding of large-conformational changes upon the activation of the FGFR1 kinase will aid the development of novel targeted therapeutics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Subhasmita Mahapatra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Suman Koirala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| |
Collapse
|
4
|
Sk MF, Samanta S, Poddar S, Kar P. Deciphering the molecular choreography of Janus kinase 2 inhibition via Gaussian accelerated molecular dynamics simulations: a dynamic odyssey. J Comput Aided Mol Des 2024; 38:8. [PMID: 38324213 DOI: 10.1007/s10822-023-00548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/24/2023] [Indexed: 02/08/2024]
Abstract
The Janus kinases (JAK) are crucial targets in drug development for several diseases. However, accounting for the impact of possible structural rearrangements on the binding of different kinase inhibitors is complicated by the extensive conformational variability of their catalytic kinase domain (KD). The dynamic KD contains mainly four prominent mobile structural motifs: the phosphate-binding loop (P-loop), the αC-helix within the N-lobe, the Asp-Phe-Gly (DFG) motif, and the activation loop (A-loop) within the C-lobe. These distinct structural orientations imply a complex signal transmission path for regulating the A-loop's flexibility and conformational preference for optimal JAK function. Nevertheless, the precise dynamical features of the JAK induced by different types of inhibitors still remain elusive. We performed comparative, microsecond-long, Gaussian accelerated molecular dynamics simulations in triplicate of three phosphorylated JAK2 systems: the KD alone, type-I ATP-competitive inhibitor (CI) bound KD in the catalytically active DFG-in conformation, and the type-II inhibitor (AI) bound KD in the catalytically inactive DFG-out conformation. Our results indicate significant conformational variations observed in the A-loop and αC helix motions upon inhibitor binding. Our studies also reveal that the DFG-out inactive conformation is characterized by the closed A-loop rearrangement, open catalytic cleft of N and C-lobe, the outward movement of the αC helix, and open P-loop states. Moreover, the outward positioning of the αC helix impacts the hallmark salt bridge formation between Lys882 and Glu898 in an inactive conformation. Finally, we compared their ligand binding poses and free energy by the MM/PBSA approach. The free energy calculations suggested that the AI's binding affinity is higher than CI against JAK2 due to an increased favorable contribution from the total non-polar interactions and the involvement of the αC helix. Overall, our study provides the structural and energetic insights crucial for developing more promising type I/II JAK2 inhibitors for treating JAK-related diseases.
Collapse
Affiliation(s)
- Md Fulbabu Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, MP, 453552, India
- Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and Technology, NIH Resource for Macromolecular Modeling and Visualization, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sunanda Samanta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, MP, 453552, India
| | - Sayan Poddar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, MP, 453552, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, MP, 453552, India.
| |
Collapse
|
5
|
Chen J, Wang W, Sun H, He W. Roles of Accelerated Molecular Dynamics Simulations in Predictions of Binding Kinetic Parameters. Mini Rev Med Chem 2024; 24:1323-1333. [PMID: 38265367 DOI: 10.2174/0113895575252165231122095555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/05/2023] [Accepted: 10/16/2023] [Indexed: 01/25/2024]
Abstract
Rational predictions on binding kinetics parameters of drugs to targets play significant roles in future drug designs. Full conformational samplings of targets are requisite for accurate predictions of binding kinetic parameters. In this review, we mainly focus on the applications of enhanced sampling technologies in calculations of binding kinetics parameters and residence time of drugs. The methods involved in molecular dynamics simulations are applied to not only probe conformational changes of targets but also reveal calculations of residence time that is significant for drug efficiency. For this review, special attention are paid to accelerated molecular dynamics (aMD) and Gaussian aMD (GaMD) simulations that have been adopted to predict the association or disassociation rate constant. We also expect that this review can provide useful information for future drug design.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan-250357, China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan-250357, China
| | - Haibo Sun
- School of Science, Shandong Jiaotong University, Jinan-250357, China
| | - Weikai He
- School of Science, Shandong Jiaotong University, Jinan-250357, China
| |
Collapse
|
6
|
Liu C, Zhang Y, Li P, Jia H, Ju H, Zhang J, Ferreira da Silva-Júnior E, Samanta S, Kar P, Huang B, Liu X, Zhan P. Development of chalcone-like derivatives and their biological and mechanistic investigations as novel influenza nuclear export inhibitors. Eur J Med Chem 2023; 261:115845. [PMID: 37804770 DOI: 10.1016/j.ejmech.2023.115845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
Concerning the emergence of resistance to current anti-influenza drugs, our previous phenotypic-based screening study identified the compound A9 as a promising lead compound. This chalcone analog, containing a 2,6-dimethoxyphenyl moiety, exhibited significant inhibitory activity against oseltamivir-resistant strains (H1N1 pdm09), with an EC50 value of 1.34 μM. However, it also displayed notable cytotoxicity, with a CC50 value of 41.46 μM. Therefore, compound A9 was selected as a prototype structure for further structural optimization in this study. Initially, it was confirmed that the substituting the α,β-unsaturated ketone with pent-1,4-diene-3-one as a linker group significantly reduced the cytotoxicity of the final compounds. Subsequently, the penta-1,4-dien-3-one group was utilized as a privileged fragment for further structural optimization. Following two subsequent rounds of optimizations, we identified compound IIB-2, which contains a 2,6-dimethoxyphenyl- and 1,4-pentadiene-3-one moieties. This compound exhibited inhibitory effects on oseltamivir-resistant strains comparable to its precursor (compound A9), while demonstrating reduced toxicity (CC50 > 100 μM). Furthermore, we investigated its mechanism of action against anti-influenza virus through immunofluorescence, Western blot, and surface plasmon resonance (SPR) experiments. The results revealed that compound IIB-2 can impede virus proliferation by blocking the export of influenza virus nucleoprotein. Thusly, our findings further emphasize influenza nuclear export as a viable target for designing novel chalcone-like derivatives with potential inhibitory properties that could be explored in future lead optimization studies.
Collapse
Affiliation(s)
- Chuanfeng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China; Suzhou Research Institute of Shandong University, Room607, Building B of NUSP, NO.388 Ruoshui Road, SIP, Suzhou, Jiangsu, 215123, PR China
| | - Ying Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Ping Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China; Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Huinan Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Han Ju
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Jiwei Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Edeildo Ferreira da Silva-Júnior
- Research Group of Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | - Sunanda Samanta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India.
| | - Bing Huang
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
7
|
Jonniya NA, Poddar S, Mahapatra S, Kar P. Computer-aided Affinity Enhancement of a Cross-reactive Antibody against Dengue Virus Envelope Domain III. Cell Biochem Biophys 2023; 81:737-755. [PMID: 37735329 DOI: 10.1007/s12013-023-01175-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
The dengue virus (DENV), composed of four distinct but serologically related Flaviviruses, causes the most important emerging viral disease, with nearly 400 million infections yearly. Currently, there are no approved therapies. Although DENV infection induces lifelong immunity against the same serotype, the antibodies raised contribute to severe disease in heterotypic infections. Therefore, understanding the mechanism of DENV neutralization by antibodies is crucial in the design of vaccines against all serotypes. This study reports a comparative structural and energetic analysis of the monoclonal antibody (mAb) 4E11 in complex with its target domain III of the envelope protein for all four DENV serotypes. We use extensive replica molecular dynamics simulations in conjunction with the binding free energy calculations. Further single point and double mutations were designed through computational site-directed mutagenesis and observed that the re-engineered antibody exhibits high affinity to binding and broadly neutralizing activity against serotypes. Our results showed improved binding affinity by the gain of enthalpy, which could be attributed to the stabilization of salt-bridge and hydrogen bond interactions at the antigen-antibody interface. The findings provide valuable results in understanding the structural dynamics and energetic contributions that will be helpful to the design of high-affinity antibodies against dengue infections.
Collapse
Affiliation(s)
- Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Sayan Poddar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India
| | - Subhasmita Mahapatra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India.
| |
Collapse
|
8
|
Koirala S, Samanta S, Mahapatra S, Ursal KD, Poddar S, Kar P. Molecular level investigation for identifying potential inhibitors against thymidylate kinase of monkeypox through in silico approaches. J Biomol Struct Dyn 2023; 42:13247-13260. [PMID: 37909473 DOI: 10.1080/07391102.2023.2274982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
The need for more advanced and effective monkeypox (Mpox) treatments has become evident with numerous Mpox virus (MPXV) outbreaks. Over the years, interest has increased in developing targeted medicines that are efficient, safe, and precise while avoiding adverse effects. Here, we screened 32409 compounds against thymidylate kinase (TMPK), an emerging target for Mpox treatment. We studied their pharmacological characteristics and analyzed those through all-atom molecular dynamics simulations followed by molecular mechanics Poisson Boltzmann surface area (MM-PBSA) based free energy calculations. According to our findings, the leads CID40777874 and CID28960001 had the highest binding affinities towards TMPK with ΔGbind of -8.04 and -5.58 kcal/mol, respectively, which outperformed our control drug cidofovir (ΔGbind = -2.92 kcal/mol) in terms of binding favourability. Additionally, we observed crucial TMPK dynamics brought on by ligand-binding and identified key residues such as Phe68 and Tyr101 as the critical points of the protein-ligand interaction. The DCCM analysis revealed the role of ligand binding in stabilizing TMPK's binding region, as indicated by residual correlation motions. Moreover, the PSN analysis revealed that the interaction with ligand induces changes in residual network properties, enhancing the stability of complexes. We successfully identified novel compounds that may serve as potential building blocks for constructing contemporary antivirals against MPXV and highlighted the molecular mechanisms underlying their binding with TMPK. Overall, our findings will play a significant role in advancing the development of new therapies against Mpox and facilitating a comprehensive understanding of their interaction patterns.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suman Koirala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, MP, India
| | - Sunanda Samanta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, MP, India
| | - Subhasmita Mahapatra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, MP, India
| | - Kapil Dattatray Ursal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, MP, India
| | - Sayan Poddar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, MP, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, MP, India
| |
Collapse
|
9
|
Lu G, Ou K, Jing Y, Zhang H, Feng S, Yang Z, Shen G, Liu J, Wu C, Wei S. The Structural Basis of African Swine Fever Virus pS273R Protease Binding to E64 through Molecular Dynamics Simulations. Molecules 2023; 28:1435. [PMID: 36771101 PMCID: PMC9920524 DOI: 10.3390/molecules28031435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023] Open
Abstract
Identification of novel drugs for anti-African swine fever (ASF) applications is of utmost urgency, as it negatively affects pig farming and no effective vaccine or treatment is currently available. African swine fever virus (ASFV) encoded pS273R is a cysteine protease that plays an important role in virus replication. E64, acting as an inhibitor of cysteine protease, has been established as exerting an inhibitory effect on pS273R. In order to obtain a better understanding of the interaction between E64 and pS273R, common docking, restriction docking, and covalent docking were employed to analyze the optimal bonding position between pS273R-E64 and its bonding strength. Additionally, three sets of 100 ns molecular dynamics simulations were conducted to examine the conformational dynamics of pS273R and the dynamic interaction of pS273R-E64, based on a variety of analytical methods including root mean square deviation (RMSD), root mean square fluctuation (RMSF), free energy of ligand (FEL), principal component analysis (PCA), and molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) analysis. The results show that E64 and pS273R exhibited close binding degrees at the activity center of ASFV pS273R protease. The data of these simulations indicate that binding of E64 to pS273R results in a reduction in flexibility, particularly in the ARM region, and a change in the conformational space of pS273R. Additionally, the ability of E64 to interact with polar amino acids such as ASN158, SER192, and GLN229, as well as charged amino acids such as LYS167 and HIS168, seems to be an important factor in its inhibitory effect. Finally, Octet biostratigraphy confirmed the binding of E64 and pS273R with a KD value of 903 uM. Overall, these findings could potentially be utilized in the development of novel inhibitors of pS273R to address the challenges posed by ASFV.
Collapse
Affiliation(s)
- Gen Lu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Kang Ou
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Yiwen Jing
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Huan Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Shouhua Feng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Zuofeng Yang
- The Preventive and Control Center of Animal Disease of Liaoning Province, Liaoning Agricultural Development Service Center, No. 95, Renhe Road, Shenbei District, Shenyang 110164, China
| | - Guoshun Shen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Jinling Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Changde Wu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Shu Wei
- The Preventive and Control Center of Animal Disease of Liaoning Province, Liaoning Agricultural Development Service Center, No. 95, Renhe Road, Shenbei District, Shenyang 110164, China
| |
Collapse
|
10
|
Pyasi S, Jonniya NA, Sk MF, Nayak D, Kar P. Finding potential inhibitors against RNA-dependent RNA polymerase (RdRp) of bovine ephemeral fever virus (BEFV): an in- silico study. J Biomol Struct Dyn 2022; 40:10403-10421. [PMID: 34238122 DOI: 10.1080/07391102.2021.1946714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The bovine ephemeral fever virus (BEFV) is an enzootic agent that affects millions of bovines and causes major economic losses. Though the virus is seasonally reported with a very high morbidity rate (80-100%) from African, Australian, and Asiatic continents, it remains a neglected pathogen in many of its endemic areas, with no proper therapeutic drugs or vaccines presently available for treatment. The RNA-dependent RNA polymerase (RdRp) catalyzes the viral RNA synthesis and is an appropriate candidate for antiviral drug developments. We utilized integrated computational tools to build the 3D model of BEFV-RdRp and then predicted its probable active binding sites. The virtual screening and optimization against these active sites, using several small-molecule inhibitors from a different category of Life Chemical database and FDA-approved drugs from the ZINC database, was performed. We found nine molecules that have docking scores varying between -6.84 to -10.43 kcal/mol. Furthermore, these complexes were analyzed for their conformational dynamics and thermodynamic stability using molecular dynamics simulations in conjunction with the molecular mechanics generalized Born surface area (MM-GBSA) scheme. The binding free energy calculations depict that the electrostatic interactions play a dominant role in the RdRp-inhibitor binding. The hot spot residues, such as Arg565, Asp631, Glu633, Asp740, and Glu707, were found to control the RdRp-inhibitor interaction. The ADMET analysis strongly suggests favorable pharmacokinetics of these compounds that may prove useful for treating the BEFV ailment. Overall, we anticipate that these findings would help explore and develop a wide range of anti-BEFV therapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shruti Pyasi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Md Fulbabu Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Debasis Nayak
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| |
Collapse
|
11
|
Sk MF, Kar P. Finding inhibitors and deciphering inhibitor-induced conformational plasticity in the Janus kinase via multiscale simulations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:833-859. [PMID: 36398489 DOI: 10.1080/1062936x.2022.2145352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The Janus kinase (JAK) is a master regulator of the JAK/STAT pathway. Dysregulation of this signalling cascade causes neuroinflammation and autoimmune disorders. Therefore, JAKs have been characterized as an attractive target for developing anti-inflammatory drugs. Nowadays, designing efficient, effective, and specific targeted therapeutics without being cytotoxic has gained interest. We performed the virtual screening of natural products in combination with pharmacological analyses. Subsequently, we performed molecular dynamics simulations to study the stability of the ligand-bound complexes and ligand-induced inactive conformations. Notably, inactive kinases display remarkable conformational plasticity; however, ligand-induced molecular mechanisms of these conformations are still poorly understood. Herein, we performed a free energy landscape analysis to explore the conformational plasticity of the JAK1 kinase. Leonurine, STOCK1N-68642, STOCK1N-82656, and STOCK1N-85809 bound JAK1 exhibited a smooth transition from an active (αC-in) to a completely inactive conformation (αC-out). Ligand binding induces disorders in the αC-helix. Molecular mechanics Poisson Boltzmann surface area (MM/PBSA) calculation suggested three phytochemicals, namely STOCK1N-68642, Epicatechin, and STOCK1N-98615, have higher binding affinity compared to other ligand molecules. The ligand-induced conformational plasticity revealed by our simulations differs significantly from the available crystal structures, which might help in designing allosteric drugs.
Collapse
Affiliation(s)
- M F Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, India
| | - P Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, India
| |
Collapse
|
12
|
Jonniya NA, Kar P. Functional Loop Dynamics and Characterization of the Inactive State of the NS2B-NS3 Dengue Protease due to Allosteric Inhibitor Binding. J Chem Inf Model 2022; 62:3800-3813. [PMID: 35950997 DOI: 10.1021/acs.jcim.2c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dengue virus, a flavivirus that causes dengue shock syndrome and dengue hemorrhagic fever, is currently prevalent worldwide. A two-component protease (NS2B-NS3) is essential for maturation, representing an important target for designing anti-flavivirus drugs. Previously, consideration has been centered on developing active-site inhibitors of NS2B-NS3pro. However, the flat and charged nature of its active site renders difficulties in developing inhibitors, suggesting an alternative strategy for identifying allosteric inhibitors. The allosterically sensitive site of the dengue protease is located near Ala125, between the 120s loop and 150s loop. Using atomistic molecular dynamics simulations, we have explored the protease's conformational dynamics upon binding of an allosteric inhibitor. Furthermore, characterization of the inherent flexible loops (71-75s loop, 120s loop, and 150s loop) is carried out for allosteric-inhibitor-bound wild-type and mutant A125C variants and a comparison is performed with its unbound state to extract the structural changes describing the inactive state of the protease. Our study reveals that compared to the unliganded system, the inhibitor-bound system shows large structural changes in the 120s loop and 150s loop in contrast to the rigid 71-75s loop. The unliganded system shows a closed-state pocket in contrast to the open state for the wild-type complex that locks the protease into the open and inactive-state conformations. However, the mutant complex fluctuates between open and closed states. Also, we tried to see how mutation and binding of an allosteric inhibitor perturb the connectivity in a protein structure network (PSN) at contact levels. Altogether, our study reveals the mechanism of conformational rearrangements of loops at the molecular level, locking the protein in an inactive conformation, which may be useful for developing allosteric inhibitors.
Collapse
Affiliation(s)
- Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, Madhya Pradesh 453552, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, Madhya Pradesh 453552, India
| |
Collapse
|
13
|
Jakhmola S, Sk MF, Chatterjee A, Jain K, Kar P, Jha HC. A plausible contributor to multiple sclerosis; presentation of antigenic myelin protein epitopes by major histocompatibility complexes. Comput Biol Med 2022; 148:105856. [PMID: 35863244 DOI: 10.1016/j.compbiomed.2022.105856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) can be induced upon successful presentation of myelin antigens by MHC I/II. Antigenic similarity between the myelin and viral proteins may worsen the immunological responses. METHODOLOGY Antigenic regions within myelin proteins; PLP1, MBP, MOG, and MAG were analyzed using SVMTrip and EMBOSS. Homology search identified sequence similarity between the predicted host epitopes and viral proteins. NetMHCpan predicted MHC I/II binding followed by peptide-protein docking through the HPEPDOCK server. Thereafter we analyzed conformational flexibility and stability of 15 protein-peptide complexes based on high docking scores. The binding free energy was calculated using conventional (MD) and Gaussian accelerated molecular dynamics simulation. RESULTS PLP1, MBP, MAG and MOG contained numerous antigenic epitopes. MBP and MOG epitopes had sequence similarity to HHV-6 BALF5; EBNA1 and CMV glycoprotein M (gM), and EBV LMP2B, gp350/220; HHV-8 ORFs respectively. Many herpes virus proteins like tegument, envelope glycoproteins, and ORFs of EBV, CMV, HHV-6, and HHV-8 demonstrated sequence similarity with MAG and PLP1. Some antigenic peptides were also linear B-cell epitopes and influenced cytokine production by T-cell. MHC I allele HLA-B*57:01 bound to PLP1 peptide and HLA-A*68:02 bound to a MAG peptide strongly. MHC II alleles HLA-DRB1*04:05 and HLA-DR1*01:01 associated with MAG- and MOG-derived peptides, respectively, demonstrating high HPEPDOCK scores. MD simulations established stable binding of certain peptides with the MHC namely HLA-B*51:01-MBP(DYKSAHKGFKGVDAQGTLSKIFKL), HLA-B*57:01-PLP1(PDKFVGITYALTVVWLLVFACSAVPVYIYF), HLA-DR1*01:01-MOG(VEDPFYWVSPGVLVLLAVLPVLLLQITVGLVFLCLQYR) and HLA-DRB1*04:05-MAG(TWVQVSLLHFVPTREA). CONCLUSIONS Cross-reactivity between self-antigens and pathogen derived immunodominant epitopes may induce MS. Our study supported the role of specific MHC alleles as a contributing MS risk factor.
Collapse
Affiliation(s)
- Shweta Jakhmola
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India.
| | - Md Fulbabu Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Akash Chatterjee
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Khushboo Jain
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India.
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India.
| |
Collapse
|
14
|
Mousavimanesh Z, Shahnani M, Faraji-Shovey A, Bararjanian M, Sadr AS, Ghassempour A, Salehi P. A new chiral stationary phase based on noscapine: Synthesis, enantioseparation, and docking study. Chirality 2022; 34:1371-1382. [PMID: 35778873 DOI: 10.1002/chir.23488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/28/2022] [Accepted: 06/12/2022] [Indexed: 11/07/2022]
Abstract
Noscapine is an isolated compound from the opium poppy, with distinctive chiral structure and chemistry, interacts with other compounds due to having multiple π-acceptors, hydrogen bond acceptors, and ionic sites. Therefore, it has promising applicability for the enantioselective separation of a wide range of polar, acidic, basic, and neutral compounds. A new noscapine derivative chiral stationary phase (ND-CSP) has been synthesized by consecutive N-demethylation, reduction, and N-propargylation of noscapine followed by attachment of a solid epoxy-functionalized silica bed through the 1,3-dipolar Huisgen cycloaddition. The noscapine derivative-based stationary phase provides a considerable surface coverage, which is greater than some commercial CSPs and can validate better enantioresolution performance. The major advantages inherent to this chiral selector are stability, reproducibility after more than 200 tests, and substantial loading capacity. The characterization by Fourier transform infrared (FTIR) spectroscopy and elemental analysis indicated successful functionalization of the silica surface. Chromatographic method conditions like flow rate and mobile phase composition for enantioseparation of various compounds such as warfarin, propranolol, mandelic acid, and a sulfanilamide derivative were optimized. Comparing the experimental results with docking data revealed a clear correlation between the calculated binding energy of ND-CSP and each enantiomer with the resolution of enantiomer peaks.
Collapse
Affiliation(s)
- Zohreh Mousavimanesh
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mostafa Shahnani
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | | | - Morteza Bararjanian
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Ahmad Shahir Sadr
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Bioinformatics Research Center, Sabzevar University of Medical Sciences, School of Medicine, Sabzevar, Iran
| | - Alireza Ghassempour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Peyman Salehi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
15
|
Sk MF, Jonniya NA, Roy R, Kar P. Phosphorylation-Induced Conformational Dynamics and Inhibition of Janus Kinase 1 by Suppressors of Cytokine Signaling 1. J Phys Chem B 2022; 126:3224-3239. [PMID: 35443129 DOI: 10.1021/acs.jpcb.1c10733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dysfunction of the JAK/STAT (Janus kinase/signal transducers and activators of transcription) pathway results in several pathophysiological conditions, including autoimmune disorders. The negative feedback regulators of the JAK/STAT signaling pathway, suppressors of cytokine signaling (SOCS), act as a natural inhibitor of JAK and inhibit aberrant activity. SOCS1 is the most potent member of the SOCS family, whose kinase inhibitory region targets the substrate-binding groove of JAK with high affinity and blocks the phosphorylation of JAK kinases. Overall, we performed an aggregate of 13 μs molecular dynamics simulations on the activation loop's three different phosphorylation (double and single) states. Results from our simulations show that the single Tyr1034 phosphorylation could stabilize the JAK1/SOCS1 complex as well as the flexible activation segment. The phosphate-binding loop (P-loop) shows conformational variability at dual and single phosphorylated states. Principal component analysis and protein structure network (PSN) analysis reveal that the different phosphorylation states and SOCS1 binding induce intermediate inactive conformations of JAK1, which could be a better target for future JAK1 selective drug design. PSN analysis suggests that the com-pY1034 system is stabilized due to higher values of network hubs than the other two complex systems. Moreover, the binding free energy calculations suggest that pTyr1034 states show a higher affinity toward SOCS1 than the dual and pTyr1035 states. We believe that the mechanistic understanding of JAK1/SOCS1 complexation will aid future studies related to peptide inhibitors based on SOCS1.
Collapse
Affiliation(s)
- Md Fulbabu Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, Madhya Pradesh, India
| | - Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, Madhya Pradesh, India
| | - Rajarshi Roy
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
16
|
Jain N, Sk MF, Mishra A, Kar P, Kumar A. Identification of novel Efflux pump inhibitors for Neisseria gonorrhoeae via multiple ligand-based pharmacophores, e-pharmacophore, molecular docking, density functional theory, and Molecular dynamics approaches. Comput Biol Chem 2022; 98:107682. [DOI: 10.1016/j.compbiolchem.2022.107682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022]
|
17
|
Jonniya NA, Sk MF, Roy R, Kar P. Discovery of potential competitive inhibitors against With-No-Lysine kinase 1 for treating hypertension by virtual screening, inverse pharmacophore-based lead optimization, and molecular dynamics simulations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:63-87. [PMID: 35078380 DOI: 10.1080/1062936x.2021.2023218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The With-No-Lysine (WNK) has received attention because of its involvement in hypertension. Genetic mutation in the genes of WNK, leading to its overexpression, has been reported in Familial Hyperkalaemic Hypertension, and thus WNK is considered a potential drug target. Herein, we have performed a high-throughput virtual screening of ~11,000 compounds, mainly the natural phytochemical compounds and kinase inhibitory libraries, to find potential competitive inhibitors against WNK1. Initially, candidates with a docking score of ~ -10.0 kcal/mol or less were selected to further screen their good pharmacological properties by applying absorption, distribution, metabolism, excretion, and toxicity (ADMET). Finally, six docked compounds bearing appreciable binding affinities and WNK1 selectivity were complimented with 500 ns long all-atom molecular dynamic simulations. Subsequently, the MMPBSA scheme (Molecular Mechanics Poisson Boltzmann Surface Area) suggested three phytochemical compounds, C00000947, C00020451, and C00005031, with favourable binding affinity against WNK1. Among them, C00000947 acts as the most potent competitive inhibitor of WNK1. Further, inverse pharmacophore-based lead optimization of the C00000947 leads to one potential compound, meciadanol, which shows better binding affinity and specificity than C00000947 towards WNK1, which may be further exploited to develop effective therapeutics against WNK1-associated hypertension after in vitro and in vivo validation.
Collapse
Affiliation(s)
- N A Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - M F Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - R Roy
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - P Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
18
|
Indari O, Sk MF, Jakhmola S, Jonniya NA, Jha HC, Kar P. Decoding the Host-Parasite Protein Interactions Involved in Cerebral Malaria Through Glares of Molecular Dynamics Simulations. J Phys Chem B 2022; 126:387-402. [PMID: 34989590 DOI: 10.1021/acs.jpcb.1c07850] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malaria causes millions of deaths every year. The malaria parasite spends a substantial part of its life cycle inside human erythrocytes. Inside erythrocytes, it synthesizes and displays various proteins onto the erythrocyte surface, such as Plasmodium falciparum erythrocytic membrane protein-1 (PfEMP1). This protein contains cysteine-rich interdomain region (CIDR) domains which have many subtypes based on sequence diversity and can cross-talk with host molecules. The CIDRα1.4 subtype can attach host endothelial protein C receptor (EPCR). This interaction facilitates infected erythrocyte adherence to brain endothelium and subsequent development of cerebral malaria. Through molecular dynamics simulations in conjunction with the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) method, we explored the mechanism of interaction in the CIDRα1-EPCR complex. We examined the structural behavior of two CIDRα1 molecules (encoded by HB3-isolate var03-gene and IT4-isolate var07-gene) with EPCR unbound and bound (complex) forms. HB3var03CIDRα1 in apo and complexed with EPCR was comparatively more stable than IT4var07CIDRα1. Both of the complexes adopted two distinct conformational energy states. The hydrophobic residues played a crucial role in the binding of both complexes. For HB3var03CIDRα1-EPCR, the dominant energetic components were total polar interactions, while in IT4var07CIDRα1-EPCR, the primary interaction was van der Waals and nonpolar solvation energy. The study also revealed details such as correlated conformational motions and secondary structure evolution. Further, it elucidated various hotspot residues involved in protein-protein recognition. Overall, our study provides additional information on the structural behavior of CIDR molecules in unbound and receptor-bound states, which will help to design potent inhibitors.
Collapse
Affiliation(s)
- Omkar Indari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, MP 453552, India
| | - Md Fulbabu Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, MP 453552, India
| | - Shweta Jakhmola
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, MP 453552, India
| | - Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, MP 453552, India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, MP 453552, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, MP 453552, India
| |
Collapse
|
19
|
Jonniya NA, Zhang J, Kar P. Molecular Mechanism of Inhibiting WNK Binding to OSR1 by Targeting the Allosteric Pocket of the OSR1-CCT Domain with Potential Antihypertensive Inhibitors: An In Silico Study. J Phys Chem B 2021; 125:9115-9129. [PMID: 34369793 DOI: 10.1021/acs.jpcb.1c04672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The oxidative-stress-responsive kinase 1 (OSR1) and the STE20/SPS1-related proline-alanine-rich kinase (SPAK) are physiological substrates of the with-no-lysine (WNK) kinase. They are the master regulators of cation Cl- cotransporters that could be targeted for discovering novel antihypertensive agents. Both kinases have a conserved carboxy-terminal (CCT) domain that recognizes a unique peptide motif (Arg-Phe-Xaa-Val) present in their upstream kinases and downstream substrates. Here, we have combined molecular docking with molecular dynamics simulations and free-energy calculations to identify potential inhibitors that can bind to the allosteric pocket of the OSR1-CCT domain and impede its interaction with the WNK peptide. Our study revealed that STOCK1S-14279 and Closantel bound strongly to the allosteric pocket of OSR1 and displaced the WNK peptide from the primary pocket of OSR1. We showed that primarily Arg1004 and Gln1006 of the WNK4-peptide motif were involved in strong H-bond interactions with Glu453 and Arg451 of OSR1. Besides, our study revealed that atoms of Arg1004 were solvent-exposed in cases of STOCK1S-14279 and Closantel, implying that the WNK4 peptide was moved out of the pocket. Overall, the predicted potential inhibitors altogether abolish the OSR1-WNK4-peptide interaction, suggesting their potency as a prospective allosteric inhibitor against OSR1.
Collapse
Affiliation(s)
- Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, Madhya Pradesh 453552, India
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, College of Medicine and Health, University of Exeter Medical School, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS, U.K
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, Madhya Pradesh 453552, India
| |
Collapse
|
20
|
Jakhmola S, Jonniya NA, Sk MF, Rani A, Kar P, Jha HC. Identification of Potential Inhibitors against Epstein-Barr Virus Nuclear Antigen 1 (EBNA1): An Insight from Docking and Molecular Dynamic Simulations. ACS Chem Neurosci 2021; 12:3060-3072. [PMID: 34340305 DOI: 10.1021/acschemneuro.1c00350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV), a known tumorigenic virus, is associated with various neuropathies, including multiple sclerosis (MS). However, there is no anti-EBV FDA-approved drug available in the market. Our study targeted EBV protein EBV nuclear antigen 1 (EBNA1), crucial in virus replication and expressed in all the stages of viral latencies. This dimeric protein binds to an 18 bp palindromic DNA sequence and initiates the process of viral replication. We chose phytochemicals and FDA-approved MS drugs based on literature survey followed by their evaluation efficacies as anti-EBNA1 molecules. Molecular docking revealed FDA drugs ozanimod, siponimod, teriflunomide, and phytochemicals; emodin; protoapigenone; and EGCG bound to EBNA1 with high affinities. ADMET and Lipinski's rule analysis of the phytochemicals predicted favorable druggability. We supported our assessments of pocket druggability with molecular dynamics simulations and binding affinity predictions by the molecular mechanics generalized Born surface area (MM/GBSA) method. Our results establish a stable binding for siponimod and ozanimod with EBNA1 mainly via van der Waals interactions. We identified hot spot residues like I481', K477', L582', and K586' in the binding of ligands. In particular, K477' at the amino terminal of EBNA1 is known to establish interaction with two bases at the major groove of the DNA. Siponimod bound to EBNA1 engaging K477', thus plausibly making it unavailable for DNA interaction. Computational alanine scanning further supported the significant roles of K477', I481', and K586' in the binding of ligands with EBNA1. Conclusively, the compounds showed promising results to be used against EBNA1.
Collapse
Affiliation(s)
- Shweta Jakhmola
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Nisha Amarnath Jonniya
- Computational Biophysics Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Md Fulbabu Sk
- Computational Biophysics Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Annu Rani
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Parimal Kar
- Computational Biophysics Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| |
Collapse
|
21
|
Amarnath Jonniya N, Sk MF, Kar P. Elucidating specificity of an allosteric inhibitor WNK476 among With‐No‐Lysine kinase isoforms using molecular dynamic simulations. Chem Biol Drug Des 2021; 98:405-420. [DOI: 10.1111/cbdd.13863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering Indian Institute of Technology Indore Indore India
| | - Md Fulbabu Sk
- Department of Biosciences and Biomedical Engineering Indian Institute of Technology Indore Indore India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering Indian Institute of Technology Indore Indore India
| |
Collapse
|