1
|
Pastor A, Lopez-Leonardo C, Cutillas-Font G, Martinez-Cuezva A, Marin-Luna M, Garcia-Lopez JA, Saura-Llamas I, Alajarin M. Unveiling the Phosphine-Mediated N-Transfer from Azide to Isocyanide en Route to Carbodiimides and 4-Imino-1,3,2-diazaphosphetidines. Org Lett 2024. [PMID: 39707992 DOI: 10.1021/acs.orglett.4c03902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Intramolecular reactions between isocyano and iminophosphorane functions yield species containing an embedded 1,3,2-diazaphosphetidine ring, as result of the [2 + 2] cycloaddition of the primary reactive product, the cyclic carbodiimide, with a second unit of reactant. DFT studies reveal a first rate-determining step entailing a [2 + 1] cycloaddition involving the isocyanide carbon atom and the P═N double bond, with the further intervention of a dipolar precursor of the intermediate carbodiimide. The 1,3,2-diazaphosphetidine ring of the final products is shown to be hydrolytically and thermally labile.
Collapse
Affiliation(s)
- Aurelia Pastor
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100Murcia, Spain
| | - Carmen Lopez-Leonardo
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100Murcia, Spain
| | - Guillermo Cutillas-Font
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100Murcia, Spain
| | - Alberto Martinez-Cuezva
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100Murcia, Spain
| | - Marta Marin-Luna
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100Murcia, Spain
| | - Jose-Antonio Garcia-Lopez
- Departamento de Química Inorgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100Murcia, Spain
| | - Isabel Saura-Llamas
- Departamento de Química Inorgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100Murcia, Spain
| | - Mateo Alajarin
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100Murcia, Spain
| |
Collapse
|
2
|
Martín M, Romero RM, Portolani C, Tortosa M. Csp 3-Csp 2 Coupling of Isonitriles and (Hetero)arenes through a Photoredox-Catalyzed Double Decyanation Process. ACS Catal 2024; 14:17286-17292. [PMID: 39664777 PMCID: PMC11629295 DOI: 10.1021/acscatal.4c06269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
Herein, we demonstrate the ability of isonitriles to be used as alkyl radical precursors in a photoredox-catalyzed transformation involving selective C-N cleavage and Csp3-Csp2 bond formation. This protocol allows for the preparation of functionalized heteroarenes from readily available isonitriles through a decyanation process. The reaction is general for primary, secondary, and tertiary substrates, including amino acid derivatives and druglike molecules.
Collapse
Affiliation(s)
- María Martín
- Organic
Chemistry Department and Center for Innovation in Advanced Chemistry
(ORFEO−CINQA), Universidad Autónoma
de Madrid (UAM), 28049 Madrid, Spain
| | - Rafael Martín Romero
- Organic
Chemistry Department and Center for Innovation in Advanced Chemistry
(ORFEO−CINQA), Universidad Autónoma
de Madrid (UAM), 28049 Madrid, Spain
| | - Chiara Portolani
- Organic
Chemistry Department and Center for Innovation in Advanced Chemistry
(ORFEO−CINQA), Universidad Autónoma
de Madrid (UAM), 28049 Madrid, Spain
- Department
of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum−University of Bologna, via P. Gobetti 85, 40129 Bologna, Italy
| | - Mariola Tortosa
- Organic
Chemistry Department and Center for Innovation in Advanced Chemistry
(ORFEO−CINQA), Universidad Autónoma
de Madrid (UAM), 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
3
|
Giustiniano M. Isonitrile Photochemistry: A Functional Group Class Coming in from the Cold. Chemistry 2024; 30:e202402350. [PMID: 39286928 DOI: 10.1002/chem.202402350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
Starting from a historical background that acknowledges isonitriles as a neglected class of compounds due to their unpleasant smell and hardly controlled reaction conditions with open shell species, the present concept article aims at highlighting the seeds of the modern isonitrile photochemistry. Representative essential transformations achieved via either UV light irradiation or radical initiators at high temperatures are brought into play to draw a parallel with the current literature relying on the exploitation of visible light photochemical methods. Such a comparison points out the potential of this enabling technology to further expand the scope of isonitrile chemistry and the unmet challenges which makes it a very stimulating field.
Collapse
Affiliation(s)
- Mariateresa Giustiniano
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy
| |
Collapse
|
4
|
Qin J, Li Y, Hu Y, Huang Z, Miao W, Chu L. Photoinduced Nickel-Catalyzed Homolytic C(sp 3)-N Bond Activation of Isonitriles for Selective Carbo- and Hydro-Cyanation of Alkynes. J Am Chem Soc 2024; 146:27583-27593. [PMID: 39325022 DOI: 10.1021/jacs.4c08631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The exploration of strong chemical bonds as synthetic handles offers new disconnection strategies for the synthesis of functionalized molecules via transition metal catalysis. However, the slow oxidative addition rate of these covalent bonds to a transition metal center hampers their synthetic utility. Here, we report a C(sp3)-N bond activation strategy that bypasses thermodynamically challenging 2e- or 1e- oxidative addition via a distinct pathway in nickel catalysis. This strategy leverages a previously unknown activation pathway of photoinduced inner-sphere charge transfer of low-valent nickel(isonitriles), triggering a C(sp3)-N bond cleavage distal to the metal-ligand interaction to deliver nickel(cyanide) and versatile alkyl radicals. Utilizing this catalytic strategy, the selective intermolecular 1,2-carbocyanation reaction of alkynes with alkyl isonitriles as both alkylating and cyanating agents can be achieved, delivering a wide array of trisubstituted alkenyl nitriles with excellent atom-economy, regio-, and stereoselectivity under mild conditions. Furthermore, Markovnikov-selective hydrocyanation of aliphatic alkynes can be accomplished through the synergistic action of a photocatalyst utilizing isonitriles as the cyanation agents. Mechanistic investigations support the photogeneration of low-valent Ni(isonitrile) complexes that undergo photochemical homolysis of the C(sp3)-N bond to engage catalytic cyanation with alkynes.
Collapse
Affiliation(s)
- Jian Qin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Yingying Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Yuntong Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Zhonghou Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Weihang Miao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|
5
|
Vanga M, Muñoz-Castro A, Dias HVR. Coinage Metal Complexes of a Sterically Encumbered Anionic Pyridylborate. Chemistry 2024; 30:e202401204. [PMID: 38738800 DOI: 10.1002/chem.202401204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Sterically loaded, anionic pyridine has been synthesized and utilized successfully in the stabilization of a isoleptic series of coinage metal complexes. The treatment of [4-(Ph3B)-2,6-Trip2Py]K (Trip=2,4,6-iPr3C6H2) with CuBr(PPh3), AgCl(PPh3) or AuCl(PPh3) (Py=pyridine) afforded the corresponding [4-(Ph3B)-2,6-Trip2Py]M(PPh3) (M=Au, Ag, Cu) complexes, via salt metathesis, as isolable, crystalline solids. Notably, these reactions avoid the facile single electron transfer chemistry reported with the less bulky ligand systems. The X-ray structures revealed that they are two-coordinate metal adducts. The M-N and M-P bond distances are longest in the silver and shortest in the copper adduct among the three group 11 family members. Computational analysis revealed an interesting stability dependence on steric bulk of the anionic pyridine (i. e., pyridyl borate) ligand. A comparison of structures and bonding of [4-(Ph3B)-2,6-Trip2Py]Au(PPh3) to pyridine and m-terphenyl complexes, {[2,6-Trip2Py]Au(PPh3)}[SbF6] and [2,6-Trip2Ph]Au(PPh3) are also provided. The Au(I) isocyanide complex, [4-(Ph3B)-2,6-Trip2Py]Au(CNBut) has been stabilized using the same anionic pyridylborate illustrating that it can support other gold-ligand moieties as well.
Collapse
Affiliation(s)
- Mukundam Vanga
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Box 19065, Arlington, Texas, 76019-0065, United States
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Box 19065, Arlington, Texas, 76019-0065, United States
| |
Collapse
|
6
|
Yang F, Li H, Li H, He X. Manipulation of 1D and 2D self-assembly via geometry modulation of adamantane isocyanide Pt(II) complexes. Chem Commun (Camb) 2024; 60:8605-8608. [PMID: 39045850 DOI: 10.1039/d4cc02400a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Two cationic luminescent cyclometalated Pt(II) complexes with adamantane-based isocyanide ligands are reported. This work provides important insights for the manipulation of the 1D and 2D self-assembly of Pt(II) complexes by controlling the geometry.
Collapse
Affiliation(s)
- Fang Yang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Heyang Li
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Huijie Li
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Xiaoming He
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| |
Collapse
|
7
|
Kim D, Rosko MC, Castellano FN, Gray TG, Teets TS. Long Excited-State Lifetimes in Three-Coordinate Copper(I) Complexes via Triplet-Triplet Energy Transfer to Pyrene-Decorated Isocyanides. J Am Chem Soc 2024; 146:19193-19204. [PMID: 38956456 DOI: 10.1021/jacs.4c04288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
There has been much effort to improve excited-state lifetimes in photosensitizers based on earth-abundant first-row transition metals. Copper(I) complexes have gained significant attention in this field, and in most cases, sterically driven approaches are used to optimize their lifetimes. This study presents a series of three-coordinate copper(I) complexes (Cu1-Cu3) where the excited-state lifetime is extended by triplet-triplet energy transfer. The heteroleptic compounds feature a cyclohexyl-substituted β-diketiminate (CyNacNacMe) paired with aryl isocyanide ligands, giving the general formula Cu(CyNacNacMe)(CN-Ar) (CN-dmp = 2,6-dimethylphenyl isocyanide for Cu1; CN-pyr = 1-pyrenyl isocyanide for Cu2; CN-dmp-pyr = 2,6-dimethyl-4-(1-pyrenyl)phenyl isocyanide for Cu3). The nature, energies, and dynamics of the low-energy triplet excited states are assessed with a combination of photoluminescence measurements at room temperature and 77 K, ultrafast transient absorption (UFTA) spectroscopy, and DFT calculations. The complexes with the pyrene-decorated isocyanides (Cu2 and Cu3) exhibit extended excited-state lifetimes resulting from triplet-triplet energy transfer (TTET) between the short-lived charge-transfer excited state (3CT) and the long-lived pyrene-centered triplet state (3pyr). This TTET process is irreversible in Cu3, producing exclusively the 3pyr state, and in Cu2, the 3CT and 3pyr states are nearly isoenergetic, enabling reversible TTET and long-lived 3CT luminescence. The improved photophysical properties in Cu2 and Cu3 result in improvements in activity for both photocatalytic stilbene E/Z isomerization via triplet energy transfer and photoredox transformations involving hydrodebromination and C-O bond activation. These results illustrate that the extended excited-state lifetimes achieved through TTET result in newly conceived photosynthetically relevant earth-abundant transition metal complexes.
Collapse
Affiliation(s)
- Dooyoung Kim
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Michael C Rosko
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Thomas G Gray
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Thomas S Teets
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
8
|
Xi ZW, He Y, Liu LQ, Wang YC, Zeng HY. Three-Component Domino Reaction of Thioamide, Isonitriles, and Water: Selective Synthesis of 1,2,4-Thiadiazolidin-3-ones and ( E)- N-(1,2-Diamino-2-thioxoethylidene)benzamides. J Org Chem 2024; 89:8315-8325. [PMID: 36693028 DOI: 10.1021/acs.joc.2c01969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The three-component domino reaction of thioamides, benzyl isocyanide, and water in the presence of a catalytic amount of both Pd(dppf)Cl2 and Cu(OAc)2 afforded novel 1,2,4-thiadiazolidin-3-one cyclic compounds, whereas the same reaction with tertiary alkylisonitriles in the presence of rare earth metal salt [La(OTf)3] resulted in (E)-N-(1,2-diamino-2-thioxoethylidene)benzamide open-chain products. This divergent reaction enabled the one-pot construction of five (N-S, C-S, C-O, and two C-N) or four (C-S, C-N, C-O, and C-C) new chemical bonds. Mechanism studies indicate that the oxygen atom of the product was derived from H2O.
Collapse
Affiliation(s)
- Zhi-Wei Xi
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, P. R. China
| | - Yan He
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Li-Qiu Liu
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, P. R. China
| | - Ying-Chun Wang
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, P. R. China
| | - Hui-Ying Zeng
- The State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Road, Lanzhou 730000, P. R. China
| |
Collapse
|
9
|
Kim D, Teets TS. Sterically Encumbered Aryl Isocyanides Extend Excited-State Lifetimes and Improve the Photocatalytic Performance of Three-Coordinate Copper(I) β-Diketiminate Charge-Transfer Chromophores. J Am Chem Soc 2024. [PMID: 38853542 DOI: 10.1021/jacs.4c05180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Copper(I) complexes are prominent candidates to replace noble metal-based photosensitizers. We recently introduced a three-coordinate design for copper(I) charge-transfer chromophores that pair β-diketiminate ligands with aryl isocyanides. The excited-state lifetime in these compounds can be extended using a bichromophoric "triplet reservoir" strategy, which comes at the expense of a decrease in excited-state energy and reducing power. In this work, we introduce a complementary, sterically driven strategy for increasing the excited-state lifetimes of these photosensitizers, which gives a higher-energy, more strongly reducing charge-transfer triplet state than does the bichromophore approach. The compounds presented (Cu1-Cu4) have the general formula Cu(CyNacNacMe)(CN-Ar), where CyNacNacMe is a cyclohexyl-substituted β-diketiminate and CN-Ar is an aryl isocyanide with a variable steric profile. Their structural features and electrochemical and photophysical properties are described. The complexes with sterically encumbered 2,6-diisopropylphenyl or m-terphenyl isocyanide ligands (Cu2-Cu4) exhibit prolonged excited-state lifetimes relative to those of the parent 2,6-dimethylphenyl isocyanide compound Cu1. Specifically, one of the m-terphenyl isocyanide compounds, Cu3, displays an excited-state lifetime of 276 ns, approximately 30 times longer than that of Cu1 (9.3 ns). The photoluminescence quantum yield of Cu3 (0.09) also increases by two orders of magnitude compared to that of Cu1 (0.0008). The strong excited-state reducing power (*Eox = -2.4 V vs Fc+/0) and long lifetime of Cu3 lead to higher yields in photoredox and photocatalytic isomerization reactions, which include dehalogenation and/or hydrodgenation of benzophenone substrates, C-O bond activation of a lignin model substrate, and photocatalytic E/Z isomerization of stilbene.
Collapse
Affiliation(s)
- Dooyoung Kim
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Thomas S Teets
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
10
|
Chen TY, Chen J, Ruszczycky MW, Hilovsky D, Hostetler T, Liu X, Zhou J, Chang WC. Variation in biosynthesis and metal-binding properties of isonitrile-containing peptides produced by Mycobacteria versus Streptomyces. ACS Catal 2024; 14:4975-4983. [PMID: 38895101 PMCID: PMC11185824 DOI: 10.1021/acscatal.4c00645] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A number of bacteria are known to produce isonitrile-containing peptides (INPs) that facilitate metal transport and are important for cell survival; however, considerable structural variation is observed among INPs depending on the producing organism. While non-heme iron 2-oxoglutarate dependent isonitrilases catalyze isonitrile formation, how the natural variation in INP structure is controlled and its implications for INP bioactivity remain open questions. Herein, total chemical synthesis is utilized with X-Ray crystallographic analysis of mycobacterial isonitrilases to provide a structural model of substrate specificity that explains the longer alkyl chains observed in mycobacterial versus Streptomyces INPs. Moreover, proton NMR titration experiments demonstrate that INPs regardless of alkyl chain length are specific for binding copper instead of zinc. These results suggest that isonitrilases may act as gatekeepers in modulating the observed biological distribution of INP structures and this distribution may be primarily related to differing metal transport requirements among the producing strains.
Collapse
Affiliation(s)
- Tzu-Yu Chen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Jinfeng Chen
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mark W Ruszczycky
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Dalton Hilovsky
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Tyler Hostetler
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Xiaojing Liu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Jiahai Zhou
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei-Chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| |
Collapse
|
11
|
Bortolamiol E, Botter E, Cavarzerani E, Mauceri M, Demitri N, Rizzolio F, Visentin F, Scattolin T. Rational Design of Palladium(II) Indenyl and Allyl Complexes Bearing Phosphine and Isocyanide Ancillary Ligands with Promising Antitumor Activity. Molecules 2024; 29:345. [PMID: 38257258 PMCID: PMC10819880 DOI: 10.3390/molecules29020345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
A new class of palladium-indenyl complexes characterized by the presence of one bulky alkyl isocyanide and one aryl phosphine serving as ancillary ligands has been prepared, presenting high yields and selectivity. All the new products were completely characterized using spectroscopic and spectrometric techniques (NMR, FT-IR, and HRMS), and, for most of them, it was also possible to define their solid-state structures via X-ray diffractometry, revealing that the indenyl fragment always binds to the metal centre with a hapticity intermediate between ƞ3 and ƞ5. A reactivity study carried out using piperidine as a nucleophilic agent proved that the indenyl moiety is the eligible site of attack rather than the isocyanide ligand or the metal centre. All complexes were tested as potential anticancer agents against three ovarian cancer cell lines (A2780, A2780cis, and OVCAR-5) and one breast cancer cell line (MDA-MB-231), displaying comparable activity with respect to cisplatin, which was used as a positive control. Moreover, the similar cytotoxicity observed towards A2780 and A2780cis cells (cisplatin-sensitive and cisplatin-resistant, respectively) suggests that our palladium derivatives presumably act with a mechanism of action different than that of the clinically approved platinum drugs. For comparison, we also synthesized Pd-ƞ3-allyl derivatives, which generally showed a slightly higher activity towards ovarian cancer cells and lower activity towards breast cancer cells with respect to their Pd-indenyl congeners.
Collapse
Affiliation(s)
- Enrica Bortolamiol
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari, Campus Scientifico, Via Torino 155, 30174 Venezia, Italy; (E.B.); (E.B.); (E.C.); (M.M.); (F.R.)
| | - Eleonora Botter
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari, Campus Scientifico, Via Torino 155, 30174 Venezia, Italy; (E.B.); (E.B.); (E.C.); (M.M.); (F.R.)
| | - Enrico Cavarzerani
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari, Campus Scientifico, Via Torino 155, 30174 Venezia, Italy; (E.B.); (E.B.); (E.C.); (M.M.); (F.R.)
| | - Matteo Mauceri
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari, Campus Scientifico, Via Torino 155, 30174 Venezia, Italy; (E.B.); (E.B.); (E.C.); (M.M.); (F.R.)
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste, Area Science Park, S.S. 14 Km 163.5 Basovizza, 34149 Trieste, Italy;
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari, Campus Scientifico, Via Torino 155, 30174 Venezia, Italy; (E.B.); (E.B.); (E.C.); (M.M.); (F.R.)
- Pathology Unit, Department of Molecular Biology and Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via Franco Gallini 2, 33081 Aviano, Italy
| | - Fabiano Visentin
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari, Campus Scientifico, Via Torino 155, 30174 Venezia, Italy; (E.B.); (E.B.); (E.C.); (M.M.); (F.R.)
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università Degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
12
|
Drennhaus T, Leifert D, Lammert J, Drennhaus JP, Bergander K, Daniliuc CG, Studer A. Enantioselective Copper-Catalyzed Fukuyama Indole Synthesis from 2-Vinylphenyl Isocyanides. J Am Chem Soc 2023; 145:8665-8676. [PMID: 37029692 DOI: 10.1021/jacs.3c01667] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Enantioenriched chiral indoles are of high interest for the pharmaceutical and agrochemical industries. Herein, we present an asymmetric Fukuyama indole synthesis through a mild and efficient radical cascade reaction to access 2-fluoroalkylated 3-(α-cyanobenzylated) indoles by stereochemical control with a chiral copper-bisoxazoline complex using 2-vinylphenyl arylisocyanides as radical acceptors and fluoroalkyl iodides as C-radical precursors. Radical addition to the isonitrile moiety, 5-exo-trig cyclization, and Cu-catalyzed stereoselective cyanation provide the targeted indoles with excellent enantioselectivity and good yields. Due to the similar electronic and steric properties of the two aryl substituents to be differentiated, the enantioselective construction of the cyano diaryl methane stereocenter is highly challenging. Mechanistic studies reveal a negative nonlinear effect which allows proposing a model to explain the stereochemical outcome. Scalability and potential utility of the enantioenriched 3-(α-cyanobenzylated) indoles as hubs for chiral tryptamines, indole-3-acetic acid derivatives, and triarylmethanes are demonstrated, and a formal synthesis of a natural product analogue is disclosed.
Collapse
Affiliation(s)
- Till Drennhaus
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Jessika Lammert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | | | - Klaus Bergander
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| |
Collapse
|
13
|
Verpekin VV, Chudin OS, Kondrasenko AA, Burmakina GV, Vasiliev AD, Zimonin DV, Rubaylo AI. Chemistry of vinylidene complexes—XXVII—new µ-vinylidene MnPt complexes with platinum-coordinated 1-adamantyl isocyanide ligand: spectroscopic, structural and electrochemical study. TRANSIT METAL CHEM 2022. [DOI: 10.1007/s11243-022-00511-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Sikma RE, Balto KP, Figueroa JS, Cohen SM. Metal–Organic Frameworks with Low‐Valent Metal Nodes. Angew Chem Int Ed Engl 2022; 61:e202206353. [DOI: 10.1002/anie.202206353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Indexed: 11/07/2022]
Affiliation(s)
- R. Eric Sikma
- Department of Chemistry and Biochemistry University of California, San Diego La Jolla CA 92093 USA
| | - Krista P. Balto
- Department of Chemistry and Biochemistry University of California, San Diego La Jolla CA 92093 USA
| | - Joshua S. Figueroa
- Department of Chemistry and Biochemistry University of California, San Diego La Jolla CA 92093 USA
| | - Seth M. Cohen
- Department of Chemistry and Biochemistry University of California, San Diego La Jolla CA 92093 USA
| |
Collapse
|
15
|
Ganguly S, Bhakta S, Ghosh T. Gold‐Catalyzed Synthesis of Spirocycles: Recent Advances. ChemistrySelect 2022. [DOI: 10.1002/slct.202201407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Somnath Ganguly
- Department of Applied Chemistry Maulana Abul Kalam Azad University of Technology Simhat, Haringhata 741249, Nadia West Bengal India
| | - Sayantika Bhakta
- Department of Applied Chemistry Maulana Abul Kalam Azad University of Technology Simhat, Haringhata 741249, Nadia West Bengal India
| | - Tapas Ghosh
- Department of Applied Chemistry Maulana Abul Kalam Azad University of Technology Simhat, Haringhata 741249, Nadia West Bengal India
| |
Collapse
|
16
|
Sikma RE, Balto KT, Figueroa JS, Cohen SM. Metal‐Organic Frameworks with Low‐Valent Metal Nodes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ronald Eric Sikma
- UC San Diego: University of California San Diego Chemistry and Biochemistry UNITED STATES
| | - Krista T Balto
- UC San Diego: University of California San Diego Chemistry and Biochemistry UNITED STATES
| | - Joshua S Figueroa
- UC San Diego: University of California San Diego Chemistry and Biochemistry UNITED STATES
| | - Seth Mason Cohen
- University of California, San Diego Chemistry and Biochemistry 9500 Gilman Drive 92093-0358 La Jolla UNITED STATES
| |
Collapse
|
17
|
Vanga M, Noonikara-Poyil A, Wu J, Dias HVR. Carbonyl and Isocyanide Complexes of Copper and Silver Supported by Fluorinated Poly(pyridyl)borates. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Mukundam Vanga
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Anurag Noonikara-Poyil
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Jiang Wu
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - H. V. Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
18
|
Vaith J, Rodina D, Spaulding GC, Paradine SM. Pd-Catalyzed Heteroannulation Using N-Arylureas as a Sterically Undemanding Ligand Platform. J Am Chem Soc 2022; 144:6667-6673. [PMID: 35380831 PMCID: PMC9026275 DOI: 10.1021/jacs.2c01019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 12/03/2022]
Abstract
We report the development of ureas as sterically undemanding pro-ligands for Pd catalysis. N-Arylureas outperform phosphine ligands for the Pd-catalyzed heteroannulation of N-tosyl-o-bromoanilines and 1,3-dienes, engaging diverse coupling partners for the preparation of 2-subsituted indolines, including sterically demanding substrates that have not previously been tolerated. Experimental and computational studies on model Pd-urea and Pd-ureate complexes are consistent with monodentate binding through the nonsubstituted nitrogen, which is uncommon for metal-ureate complexes.
Collapse
Affiliation(s)
- Jakub Vaith
- Department of Chemistry, University
of Rochester, Rochester, New York 14627, United States
| | - Dasha Rodina
- Department of Chemistry, University
of Rochester, Rochester, New York 14627, United States
| | - Gregory C. Spaulding
- Department of Chemistry, University
of Rochester, Rochester, New York 14627, United States
| | - Shauna M. Paradine
- Department of Chemistry, University
of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
19
|
Chen TY, Zheng Z, Zhang X, Chen J, Cha L, Tang Y, Guo Y, Zhou J, Wang B, Liu HW, Chang WC. Deciphering the Reaction Pathway of Mononuclear Iron Enzyme-Catalyzed N≡C Triple Bond Formation in Isocyanide Lipopeptide and Polyketide Biosynthesis. ACS Catal 2022; 12:2270-2279. [PMID: 35992736 PMCID: PMC9390461 DOI: 10.1021/acscatal.1c04869] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Despite the diversity of reactions catalyzed by 2-oxoglutarate-dependent nonheme iron (Fe/2OG) enzymes identified in recent years, only a limited number of these enzymes have been investigated in mechanistic detail. In particular, several Fe/2OG-dependent enzymes capable of catalyzing isocyanide formation have been reported. While the glycine moiety has been identified as a biosynthon for the isocyanide group, how the actual conversion is effected remains obscure. To elucidate the catalytic mechanism, we characterized two previously unidentified (AecA and AmcA) along with two known (ScoE and SfaA) Fe/2OG-dependent enzymes that catalyze N≡C triple bond installation using synthesized substrate analogues and potential intermediates. Our results indicate that isocyanide formation likely entails a two-step sequence involving an imine intermediate that undergoes decarboxylation-assisted desaturation to yield the isocyanide product. Results obtained from the in vitro experiments are further supported by mutagenesis, the product-bound enzyme structure, and in silico analysis.
Collapse
Affiliation(s)
| | | | | | - Jinfeng Chen
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Lide Cha
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yijie Tang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jiahai Zhou
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hung-wen Liu
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States; Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Wei-chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
20
|
Zhang Z, Tan P, Chang W, Zhang Z. Transition‐Metal‐Catalyzed Cross‐Coupling and Sequential Reactions of Azides with Isocyanides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zhen Zhang
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Pengpeng Tan
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Wenxu Chang
- College of Science China Agricultural University Beijing 100193 People's Republic of China
| | - Zhenhua Zhang
- College of Science China Agricultural University Beijing 100193 People's Republic of China
| |
Collapse
|
21
|
Russo C, Amato J, Tron GC, Giustiniano M. The Dark Side of Isocyanides: Visible-Light Photocatalytic Activity in the Oxidative Functionalization of C(sp 3)-H Bonds. J Org Chem 2021; 86:18117-18127. [PMID: 34851118 PMCID: PMC8689654 DOI: 10.1021/acs.joc.1c02378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The possibility to harness aromatic isocyanides as visible-light photocatalysts in the α-amino C(sp3)-H functionalization is herein presented. Actually, the three-component cross-dehydrogenative coupling of aromatic tertiary amines with isocyanides and water leads to amide products under very mild conditions in high yields and with a good substrate scope. While the reaction with aromatic isocyanides proceeds upon direct photoexcitation, aliphatic isocyanides are able to form a photoactive electron-donor-acceptor complex with aromatic amines. Moreover, the use of a catalytic loading of an aromatic isocyanide promotes the oxidative coupling of N-phenyl-1,2,3,4-tetrahydroisoquinoline with an array of different (pro)nucleophiles in good to excellent yields, thus providing the proof-of-concept for the development of a new highly tunable class of organic visible-light photocatalysts.
Collapse
Affiliation(s)
- Camilla Russo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Gian Cesare Tron
- Department of Drug Science, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Mariateresa Giustiniano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
22
|
Racles C, Zaltariov M, Silion M, Avadanei M, Macsim A, Nicolescu A. Synthesis, characterization, and some metal complexes of bis(isocyanide)disiloxane, showing catalytic activity. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Carmen Racles
- Department of Inorganic Polymers “Petru Poni” Institute of Macromolecular Chemistry Iasi Romania
| | | | - Mihaela Silion
- Department of Physics of Polymers and Polymeric Materials “Petru Poni” Institute of Macromolecular Chemistry Iasi Romania
| | - Mihaela Avadanei
- Department of Physical Chemistry of Polymers “Petru Poni” Institute of Macromolecular Chemistry Iasi Romania
| | - Ana‐Maria Macsim
- Department of Polycondensation and Thermostable Polymers “Petru Poni” Institute of Macromolecular Chemistry Iasi Romania
| | - Alina Nicolescu
- Department of Polycondensation and Thermostable Polymers “Petru Poni” Institute of Macromolecular Chemistry Iasi Romania
| |
Collapse
|
23
|
Ferraro V, Sole R, Bortoluzzi M, Beghetto V, Castro J. Tris
‐isocyanide copper(I) complex enabling copper azide‐alkyne cycloaddition in neat conditions. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Valentina Ferraro
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venice Italy
| | - Roberto Sole
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venice Italy
| | - Marco Bortoluzzi
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venice Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC) Bari Italy
| | - Valentina Beghetto
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venice Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC) Bari Italy
- Crossing srl Treviso Italy
| | - Jesús Castro
- Departamento de Química Inorgánica Universidade de Vigo, Facultade de Química, Edificio de Ciencias Experimentais Vigo Spain
| |
Collapse
|
24
|
Massarotti A, Brunelli F, Aprile S, Giustiniano M, Tron GC. Medicinal Chemistry of Isocyanides. Chem Rev 2021; 121:10742-10788. [PMID: 34197077 DOI: 10.1021/acs.chemrev.1c00143] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In eons of evolution, isocyanides carved out a niche in the ecological systems probably thanks to their metal coordinating properties. In 1859 the first isocyanide was synthesized by humans and in 1950 the first natural isocyanide was discovered. Now, at the beginning of XXI century, hundreds of isocyanides have been isolated both in prokaryotes and eukaryotes and thousands have been synthesized in the laboratory. For some of them their ecological role is known, and their potent biological activity as antibacterial, antifungal, antimalarial, antifouling, and antitumoral compounds has been described. Notwithstanding, the isocyanides have not gained a good reputation among medicinal chemists who have erroneously considered them either too reactive or metabolically unstable, and this has restricted their main use to technical applications as ligands in coordination chemistry. The aim of this review is therefore to show the richness in biological activity of the isocyanide-containing molecules, to support the idea of using the isocyanide functional group as an unconventional pharmacophore especially useful as a metal coordinating warhead. The unhidden hope is to convince the skeptical medicinal chemists of the isocyanide potential in many areas of drug discovery and considering them in the design of future drugs.
Collapse
Affiliation(s)
- Alberto Massarotti
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Francesca Brunelli
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Silvio Aprile
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Mariateresa Giustiniano
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Gian Cesare Tron
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
25
|
Heinisch SL, Werner I, Butenschön H. New Reactions of Cyclopentadienylnickel Chelates with Secondary Phosphane Tethers. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sandra Lauren Heinisch
- Institut für Organische Chemie Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Germany
| | - Irina Werner
- Institut für Organische Chemie Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Germany
| | - Holger Butenschön
- Institut für Organische Chemie Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Germany
| |
Collapse
|
26
|
Sandoval-Pauker C, Molina-Aguirre G, Pinter B. Status report on copper (I) complexes in photoredox catalysis; photophysical and electrochemical properties and future prospects. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115105] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Till M, Kelly JA, Ziegler CGP, Wolf R, Guo T, Ringenberg MR, Lutsker E, Reiser O. Synthesis and Characterization of Bidentate Isonitrile Iron Complexes. Organometallics 2021; 40:1042-1052. [PMID: 34054182 PMCID: PMC8155556 DOI: 10.1021/acs.organomet.1c00042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Indexed: 12/30/2022]
Abstract
The divalent iron complexes trans-[FeBr2(BINC)2], [Cp*FeCl(BINC)] (Cp* = Me5C5), and [FeBr2(CNAr3NC)2] with the chelating bis(isonitrile) ligands BINC (bis(2-isocyanophenyl)phenylphosphonate) and CNAr3NC (2,2″-diisocyano-3,5,3″,5"tetramethyl-1,1':3',1″-terphenyl) have been prepared and characterized. Their subsequent reduction yields the di- and trinuclear compounds [Fe3(BINC)6], [Cp*Fe(BINC)]2, [Fe(CNAr3NC)2]2, and [K(Et2O)]2[Fe(CNAr3NC)2]2. The molecular structures of all new species were determined by X-ray crystallography and compared to those of related iron carbonyl complexes, demonstrating that the bidentate isonitrile ligands are capable surrogates for two CO ligands with only minimal distortion of the tetrahedral or octahedral geometry of the parent complexes. The complexes were further characterized by NMR and IR spectroscopy, and the electrochemical properties of selected compounds were analyzed by UV-vis-NIR spectroelectrochemistry.
Collapse
Affiliation(s)
- Marion Till
- Institute
of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - John A. Kelly
- Institute
of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | | | - Robert Wolf
- Institute
of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Tianao Guo
- Institute
of Inorganic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Mark R. Ringenberg
- Institute
of Inorganic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Eugen Lutsker
- Institute
of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Oliver Reiser
- Institute
of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
28
|
Sellin M, Rupf SM, Abram U, Malischewski M. Eightfold Electrophilic Methylation of Octacyanotungstate [W(CN) 8] 4-/3-: Preparation of Homoleptic, Eight-Coordinate Methyl Isocyanide Complexes [W(CNMe) 8] 4+/5. Inorg Chem 2021; 60:5917-5924. [PMID: 33775090 DOI: 10.1021/acs.inorgchem.1c00326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Homoleptic eightfold coordinated methyl isocyanide complexes of W(IV) and W(V) have been prepared for the first time. The reaction of [NBu4]4[W(CN)8] with methyl triflate (MeOTf) gives [W(CNMe)8][OTf]4. The even stronger methylating mixture of methyl fluoride (MeF) and arsenic pentafluoride (AsF5) in liquid sulfur dioxide (SO2) is able to fully alkylate both [NBu4]4[W(CN)8] and [NBu4]3[W(CN)8]. The paramagnetic octakis(methyl isocyanide)tungsten(V) complex [W(CNMe)8][AsF6]5 is thermally highly unstable above -30 °C. All compounds have been characterized via single-crystal X-ray diffraction and IR, Raman, and NMR or EPR spectroscopy.
Collapse
Affiliation(s)
- Malte Sellin
- Freie Universität Berlin, Institut für Chemie und Biochemie-Anorganische Chemie Fabeckstraße 34-36, 14195 Berlin, Germany
| | - Susanne Margot Rupf
- Freie Universität Berlin, Institut für Chemie und Biochemie-Anorganische Chemie Fabeckstraße 34-36, 14195 Berlin, Germany
| | - Ulrich Abram
- Freie Universität Berlin, Institut für Chemie und Biochemie-Anorganische Chemie Fabeckstraße 34-36, 14195 Berlin, Germany
| | - Moritz Malischewski
- Freie Universität Berlin, Institut für Chemie und Biochemie-Anorganische Chemie Fabeckstraße 34-36, 14195 Berlin, Germany
| |
Collapse
|
29
|
Wang X, Fu J, Mo J, Tian Y, Liu C, Tang H, Sun Z, Pan Y. Assembly of 5‐Aminoimidazoles via Palladium‐Catalysed Double Isocyanide Insertion Reaction. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xu Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Jin‐Ping Fu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Jia‐Hui Mo
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Yu‐Hong Tian
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Chun‐You Liu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Hai‐Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Zi‐Jun Sun
- Research Centre for Materials Science and Engineering Guangxi University of Science and Technology Liuzhou 545006 People's Republic of China
| | - Ying‐Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| |
Collapse
|
30
|
Wagner HK, Wadepohl H, Ballmann J. A 2,2'-diphosphinotolane as a versatile precursor for the synthesis of P-ylidic mesoionic carbenes via reversible C-P bond formation. Chem Sci 2021; 12:3693-3701. [PMID: 34163643 PMCID: PMC8179451 DOI: 10.1039/d0sc06128j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/22/2021] [Indexed: 01/18/2023] Open
Abstract
A metal-templated synthetic route to cyclic (aryl)(ylidic) mesoionic carbenes (CArY-MICs) featuring an endocyclic P-ylide is presented. This approach, which requires metal templates with two cis-positioned open coordination sites, is based on the controlled cyclisation of a P,P'-diisopropyl-substituted 2,2'-diphosphinotolane (1) and leads to chelate complexes coordinated by a phosphine donor and the CArY-MIC carbon atom. The C-P bond formation involved in the former partial cyclisation of 1 proceeds under mild conditions and was shown to be applicable all over the d-block. In the presence of a third fac-positioned open coordination site, the P-C bond formation was found to be reversible, as shown for a series of molybdenum complexes. DFT modelling studies are in line with an interpretation of the target compounds as CArY-MICs.
Collapse
Affiliation(s)
- Hannah K Wagner
- Anorganisch-Chemisches Institut, Universität Heidelberg Im Neuenheimer Feld 276 D-69120 Heidelberg Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut, Universität Heidelberg Im Neuenheimer Feld 276 D-69120 Heidelberg Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut, Universität Heidelberg Im Neuenheimer Feld 276 D-69120 Heidelberg Germany
| |
Collapse
|
31
|
Nguyen DH, Merel D, Merle N, Trivelli X, Capet F, Gauvin RM. Isonitrile ruthenium and iron PNP complexes: synthesis, characterization and catalytic assessment for base-free dehydrogenative coupling of alcohols. Dalton Trans 2021; 50:10067-10081. [PMID: 34195731 DOI: 10.1039/d1dt01722e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neutral and ionic ruthenium and iron aliphatic PNHP-type pincer complexes (PNHP = NH(CH2CH2PiPr2)2) bearing benzyl, n-butyl or tert-butyl isocyanide ancillary ligands have been prepared and characterized. Reaction of [RuCl2(PNHP)]2 with one equivalent CN-R per ruthenium center affords complexes [RuCl2(PNHP)(CNR)] (R = benzyl, 1a, R = n-butyl, 1b, R = t-butyl, 1c), with cationic [RuCl(PNHP)(CNR)2]Cl 2a-c as side-products. Dichloride species 1a-c react with excess NaBH4 to afford [RuH(PNHP)(BH4)(CN-R)] 3a-c, analogues to benchmark Takasago catalyst [RuH(PNHP)(BH4)(CO)]. Reaction of 1a-c with a single equivalent of NaBH4 results in formation of [RuHCl(PNHP) (CN-R)] (4a-c), from which 3a-c can be prepared upon reaction with excess NaBH4. Use of one equivalent of NaHBEt3 with 4a and 4c affords bishydrides [Ru(H)2(PNHP)(CN-R)] 5a and 5c. Deprotonation of 4c by KOtBu generates amido derivative [RuH(PNP)(CN-t-Bu)] (6, PNP = -N(CH2CH2PiPr2)2), unstable in solution. Addition of excess benzylisonitrile to 4a provides cationic hydride [RuH(PNHP) (CN-CH2Ph)2]Cl (7). Concerning iron chemistry, [Fe(PNHP)Br2] reacts with one equivalent of benzylisonitrile to afford [FeBr(PNHP)(CNCH2Ph)2]Br (8). The outer-sphere bromide anion can be exchanged by salt metathesis with NaBPh4 to generate [FeBr(PNHP) (CNCH2Ph)2](BPh4) (9). Cationic hydride species [FeH(PNHP) (CN-t-Bu)2](BH4) (10) is prepared from consecutive addition of excess CN-t-Bu and NaBH4 on [Fe(PNPH)Br2]. Ruthenium complexes 3a-c are active in acceptorless alcohol dehydrogenative coupling into ester under base-free conditions. From kinetic follow-up, the trend in initial activity is 3a ≈ 3b > [RuH(PNHP)(BH4)(CO)] ≫ 3c; for robustness, [RuH(BH4)(CO)(PNHP)] > 3a > 3b ≫ 3c. Hypotheses are given to account for the observed deactivation. Complexes 3b, 3c, 4a, 4c, 5c, 7, cis-8 and 9 were characterized by X-ray crystallography.
Collapse
Affiliation(s)
- Duc Hanh Nguyen
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Delphine Merel
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Nicolas Merle
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Xavier Trivelli
- Université de Lille, CNRS, INRA, Centrale Lille Institute, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, F-59000 Lille, France
| | - Frédéric Capet
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Régis M Gauvin
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France.
| |
Collapse
|