1
|
Su Y, Jiang ZJ, Han J, Duan L, Bai JF, Chen J, Gao Z. Copper(II)-Catalyzed Regioselective H/D Exchange Based on Reversible C-H Activation. Chemistry 2024; 30:e202403121. [PMID: 39415609 DOI: 10.1002/chem.202403121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024]
Abstract
Despite the increasing use of copper in C-H functionalizations, the Cu-catalyzed direct deuteration of C-H bonds remains a significant challenge due to its inherent low reactivity in inverse C-H bond reconstruction. In this paper, a novel strategy had been developed to reverse the copper-catalyzed concerted metalation-deprotonation process by inhibiting the unexpected disproportionation of Cu(II) to Cu(III). Picolinic acid was identified as a powerful ligand for facilitating this H/D exchange with D2O as deuterium source, and its inhibition activity was supported by preliminary control experiments and DFT studies.
Collapse
Affiliation(s)
- Yuhang Su
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, P. R. China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhi-Jiang Jiang
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, P. R. China
| | - Jiawei Han
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, P. R. China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Lujie Duan
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, P. R. China
| | - Jian-Fei Bai
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, P. R. China
| | - Jia Chen
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, P. R. China
- Ningbo Cuiying Chemical Technology Co. Ltd., Ningbo, 315100, P. R. China
| | - Zhanghua Gao
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, P. R. China
- Ningbo Cuiying Chemical Technology Co. Ltd., Ningbo, 315100, P. R. China
| |
Collapse
|
2
|
Doremus JG, Lotsi B, Sharma A, McGrier PL. Photocatalytic applications of covalent organic frameworks: synthesis, characterization, and utility. NANOSCALE 2024; 16:21619-21672. [PMID: 39495099 DOI: 10.1039/d4nr03204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Photocatalysis has emerged as an energy efficient and safe method to perform organic transformations, and many semiconductors have been studied for use as photocatalysts. Covalent organic frameworks (COFs) are an established class of crystalline, porous materials constructed from organic units that are easily tunable. COFs importantly display semiconductor properties and respectable photoelectric behaviour, making them a strong prospect as photocatalysts. In this review, we summarize the design, synthetic methods, and characterization techniques for COFs. Strategies to boost photocatalytic performance are also discussed. Then the applications of COFs as photocatalysts in a variety of reactions are detailed. Finally, a summary, challenges, and future opportunities for the development of COFs as efficient photocatalysts are entailed.
Collapse
Affiliation(s)
- Jared G Doremus
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Bertha Lotsi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Aadarsh Sharma
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Psaras L McGrier
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
3
|
Chen S, Ding D, Yin L, Wang X, Krause JA, Liu W. Overcoming Copper Reduction Limitation in Asymmetric Substitution: Aryl-Radical-Enabled Enantioconvergent Cyanation of Alkyl Iodides. J Am Chem Soc 2024; 146:31982-31991. [PMID: 39505711 DOI: 10.1021/jacs.4c11888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Cu-catalyzed enantioconvergent cross-coupling of alkyl halides has emerged as a powerful strategy for synthesizing enantioenriched molecules. However, this approach is intrinsically limited by the weak reducing power of copper(I) species, which restricts the scope of compatible nucleophiles and necessitates extensive ligand optimization or the use of complex chiral scaffolds. To overcome these challenges, we introduce an aryl-radical-enabled strategy that decouples the alkyl halide activation step from the chiral Cu center. We demonstrate that merging aryl-radical-enabled iodine abstraction with Cu-catalyzed asymmetric radical functionalization enables the conversion of racemic α-iodoamides to enantioenriched alkyl nitrile products with good yield and enantioselectivity. The rational design of chiral ligands identified a new class of carboxamide-containing BOX ligands. Mechanistic studies support an aryl-radical-enabled pathway and the unique hydrogen-bonding ability in the newly designed BOX ligands. This aryl-radical-enabled asymmetric substitution reaction has the potential to significantly expand the scope of Cu-catalyzed enantioconvergent cross-coupling reactions.
Collapse
Affiliation(s)
- Su Chen
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Decai Ding
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Lingfeng Yin
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Xiao Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
4
|
Meloni G, Morgan L, Cappelletti D, Bevilacqua M, Graiff C, Pinter P, Biffis A, Tubaro C, Baron M. Exploring the reductive CO 2 fixation with amines and hydrosilanes using readily available Cu(II) NHC-phenolate catalyst precursors. Dalton Trans 2024; 53:18128-18140. [PMID: 39474859 DOI: 10.1039/d4dt02936d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
N-Methylation of amines is of great interest in the synthesis of pharmaceuticals and valuable compounds, and the possibility to perform this reaction with an inexpensive and non-toxic substrate like CO2 and its derivatives is quite appealing. Herein, the synthesis of four novel homoleptic Cu(II) complexes with hybrid NHC-phenolate (NHC = N-Heterocyclic Carbene) ligands is reported, and their use in the catalytic N-methylation of amines with CO2 in the presence of hydrosilanes is explored. Both bidentate or tetradentate ligands can be used in the preparation of the complexes provided that the structural requirement that the two NHC and the two phenolate donors in the metal coordination sphere are mutually in trans is fulfilled. A new reaction protocol to perform the N-methylation of secondary aromatic amines and dibenzylamine in high yield under mild reaction conditions is developed, using the ionic liquid [BMMIM][NTf2] (1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide) as solvent and the catalyst precursor [Cu(L2)2]. Reactivity studies indicate that the reaction follows two different pathways with different hydrosilanes, and that the starting Cu(II) complexes are reduced under the catalytic conditions.
Collapse
Affiliation(s)
- Giammarco Meloni
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi, Unità di Ricerca di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Luca Morgan
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - David Cappelletti
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Matteo Bevilacqua
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Claudia Graiff
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | | | - Andrea Biffis
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi, Unità di Ricerca di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Cristina Tubaro
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi, Unità di Ricerca di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Marco Baron
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi, Unità di Ricerca di Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
5
|
Dong L, Zhong B, Zhang YS, Yang JD, Cheng JP. Phosphination of aryl/alkyl bromides via Mn-mediated reductive C-P coupling. Chem Commun (Camb) 2024; 60:12549-12552. [PMID: 39380453 DOI: 10.1039/d4cc04750h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Mn-mediated reductive cross-coupling of organic bromides with 2-bromo-1,3,2-diazaphospholene was developed for efficient construction of C-P bonds under mild conditions. Mechanistic studies suggested that bromides are activated by in situ formed bis-diazaphospholene via hybrid radical and polar mechanisms.
Collapse
Affiliation(s)
- Likun Dong
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Bing Zhong
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Yu-Shan Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Jin-Dong Yang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Jin-Pei Cheng
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
6
|
Cao Z, Wang Q, Neumann H, Beller M. Modular and Diverse Synthesis of Acrylamides by Palladium-Catalyzed Hydroaminocarbonylation of Acetylene. Angew Chem Int Ed Engl 2024; 63:e202410597. [PMID: 38986016 DOI: 10.1002/anie.202410597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
The development of all kinds of covalent drugs had a major impact on the improvement of the human health system. Covalent binding to target proteins is achieved by so-called electrophilic warheads, which are incorporated in the respective drug molecule. In the last decade, specifically acrylamides emerged as attractive warheads in covalent drug design. Herein, a straightforward palladium-catalyzed hydroaminocarbonylation of acetylene has been developed, allowing a modular and diverse synthesis of bio-active acrylamides. This general protocol features high atom efficiency, wide functional group compatibility, high chemoselectivity and proceeds additive free under mild reaction conditions. The synthetic utility of this protocol is showcased in the synthesis of ibrutinib, osimertinib, and other bio-active compound derivatives.
Collapse
Affiliation(s)
- Zhusong Cao
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Qiang Wang
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Helfried Neumann
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| |
Collapse
|
7
|
Samanta A, Chaubey A, Pal D, Majhi K, Srimani D. Redox-enabled cooperative catalysis by activating secondary alcohols using low-valent Zn complexes. Chem Commun (Camb) 2024; 60:10398-10401. [PMID: 39224069 DOI: 10.1039/d4cc03407d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Inspired by nature's redox management in bioinorganic systems, we developed various Zn-complexes to catalyze a radical-mediated borrowing hydrogen process for producing β-disubstituted ketones. A diverse range of secondary alcohols, including fatty alcohols, terpenoids and steroid analogs, were successfully utilized for the chemoselective functionalization of ketones. Several organometallic and control studies suggest that coordinatively unsaturated radical species operate as active catalysts to promote alcohol activation and initiate the HAT process.
Collapse
Affiliation(s)
- Arup Samanta
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Amit Chaubey
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Debjyoti Pal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Krishna Majhi
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Dipankar Srimani
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| |
Collapse
|
8
|
Wang X, He J, Wang YN, Zhao Z, Jiang K, Yang W, Zhang T, Jia S, Zhong K, Niu L, Lan Y. Strategies and Mechanisms of First-Row Transition Metal-Regulated Radical C-H Functionalization. Chem Rev 2024; 124:10192-10280. [PMID: 39115179 DOI: 10.1021/acs.chemrev.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Radical C-H functionalization represents a useful means of streamlining synthetic routes by avoiding substrate preactivation and allowing access to target molecules in fewer steps. The first-row transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are Earth-abundant and can be employed to regulate radical C-H functionalization. The use of such metals is desirable because of the diverse interaction modes between first-row transition metal complexes and radical species including radical addition to the metal center, radical addition to the ligand of metal complexes, radical substitution of the metal complexes, single-electron transfer between radicals and metal complexes, hydrogen atom transfer between radicals and metal complexes, and noncovalent interaction between the radicals and metal complexes. Such interactions could improve the reactivity, diversity, and selectivity of radical transformations to allow for more challenging radical C-H functionalization reactions. This review examines the achievements in this promising area over the past decade, with a focus on the state-of-the-art while also discussing existing limitations and the enormous potential of high-value radical C-H functionalization regulated by these metals. The aim is to provide the reader with a detailed account of the strategies and mechanisms associated with such functionalization.
Collapse
Affiliation(s)
- Xinghua Wang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing He
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ya-Nan Wang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Zhenyan Zhao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kui Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wei Yang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Tao Zhang
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
| | - Shiqi Jia
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangbao Zhong
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Linbin Niu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
9
|
Weng Y, Jin Y, Wu J, Leng X, Lou X, Geng F, Hu B, Wu B, Shen Q. Oxidative Substitution of Organocopper(II) by a Carbon-Centered Radical. J Am Chem Soc 2024; 146:23555-23565. [PMID: 39116098 DOI: 10.1021/jacs.4c07552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Copper-catalyzed coupling reactions of alkyl halides are believed to prominently involve copper(II) species and alkyl radicals as pivotal intermediates, with their exact interaction mechanism being the subject of considerable debate. In this study, a visible light-responsive fluoroalkylcopper(III) complex, [(terpy)Cu(CF3)2(CH2CO2tBu)] Trans-1, was designed to explore the mechanism. Upon exposure to blue LED irradiation, Trans-1 undergoes copper-carbon bond homolysis, generating Cu(II) species and carbon-centered radicals, where the carbon-centered radical then recombines with the Cu(II) intermediate, resulting in the formation of Cis-1, the Cis isomer of Trans-1. Beyond this, a well-defined fluoroalkylcopper(II) intermediate ligated with a sterically hindered ligand was isolated and underwent full characterization and electronic structure studies. The collective experimental, computational, and spectroscopic findings in this work strongly suggest that organocopper(II) engages with carbon-centered radicals via an "oxidative substitution" mechanism, which is likely the operational pathway for copper-catalyzed C-H bond trifluoromethylation reactions.
Collapse
Affiliation(s)
- Yuecheng Weng
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Yuxuan Jin
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Jian Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Xiaobing Lou
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Fushan Geng
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Bingwen Hu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Botao Wu
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Qilong Shen
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
10
|
Li B, Bunescu A, Drazen D, Rolph K, Michalland J, Gaunt MJ. A Modular Dual-Catalytic Aryl-Chlorination of Alkenes. Angew Chem Int Ed Engl 2024; 63:e202405939. [PMID: 39041421 DOI: 10.1002/anie.202405939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Indexed: 07/24/2024]
Abstract
Alkyl chlorides are a class of versatile building blocks widely used to generate C(sp3)-rich scaffolds through transformation such as nucleophilic substitution, radical addition reactions and metal-catalyzed cross-coupling processes. Despite their utility in the synthesis of high-value functional molecules, distinct methods for the preparation of alkyl chlorides are underrepresented. Here, we report a visible-light-mediated dual catalysis strategy for the modular synthesis of highly functionalized and structurally diverse arylated chloroalkanes via the coupling of diaryliodonium salts, alkenes and potassium chloride. A distinctive aspect of this transformation is a ligand-design-driven approach for the development of a copper(II)-based atom-transfer catalyst that enables the aryl-chlorination of electron-poor alkenes, complementing its iron(III)-based counterpart that accommodates non-activated aliphatic alkenes and styrene derivatives. The complementarity of the two dual catalytic systems allows the efficient aryl-chlorination of alkenes bearing different stereo-electronic properties and a broad range of functional groups, maximizing the structural diversity of the 1-aryl, 2-chloroalkane products.
Collapse
Affiliation(s)
- Bo Li
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
| | - Ala Bunescu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
| | - Daniel Drazen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
| | - Katherine Rolph
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
| | - Jean Michalland
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
- Innovation Centre in Digital Molecular Technologies Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
- Compound Synthesis & Management, Discovery Sciences, Biopharmaceuticals R&D, The Discovery Centre, AstraZeneca Biomedical Campus, 1 Francis Crick Avenue, Cambridge, United Kingdom, CB2 0AA
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
- Innovation Centre in Digital Molecular Technologies Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
| |
Collapse
|
11
|
Zhang Z, Poletti L, Leonori D. A Radical Strategy for the Alkylation of Amides with Alkyl Halides by Merging Boryl Radical-Mediated Halogen-Atom Transfer and Copper Catalysis. J Am Chem Soc 2024; 146:22424-22430. [PMID: 39087940 DOI: 10.1021/jacs.4c05487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Amide alkylation is a fundamental process in organic chemistry. However, the low nucleophilicity of amides means that divergent coupling with alkyl electrophiles is often not achievable. To circumvent this reactivity challenge, individual amine synthesis followed by amidation with standard coupling agents is generally required. Herein, we demonstrate a radical solution to this challenge by using an amine-borane complex and copper catalysis under oxidative conditions. While borohydride reagents are generally used as reducing agents in ionic chemistry, their conversion into amine-ligated boryl radicals diverts their reactivity toward halogen-atom transfer. This enables the conversion of alkyl halides into the corresponding alkyl radicals for amide functionalization via copper catalysis. The process is applicable to the N-alkylation of primary amides employing unactivated alkyl iodides and bromides, and it was also showcased in the late-state functionalization of both complex amide- and halide-containing drugs.
Collapse
Affiliation(s)
- Zhenhua Zhang
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52056, Germany
| | - Lorenzo Poletti
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52056, Germany
| | - Daniele Leonori
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52056, Germany
| |
Collapse
|
12
|
Shan Q, Wu Y, Chen M, Zhao X, Loh T, Hu X. Synergistic Copper-Aminocatalysis for Direct Tertiary α-Alkylation of Ketones with Electron-Deficient Alkanes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402255. [PMID: 38885363 PMCID: PMC11336924 DOI: 10.1002/advs.202402255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/17/2024] [Indexed: 06/20/2024]
Abstract
In this study, a novel approach for the tertiary α-alkylation of ketones using alkanes with electron-deficient C─H bonds is presented, employing a synergistic catalytic system combining inexpensive copper salts with aminocatalysis. This methodology addresses the limitations of traditional alkylation methods, such as the need for strong metallic bases, regioselectivity issues, and the risk of over alkylation, by providing a high reactivity and chemoselectivity without the necessity for pre-functionalized substrates. The dual catalytic strategy enables the direct functionalization of C(sp3)─H bonds, demonstrating remarkable selectivity in the presence of conventional C(sp3)─H bonds that are adjacent to heteroatoms or π systems, which are typically susceptible to single-electron transfer processes. The findings contribute to the advancement of alkylation techniques, offering a practical and efficient route for the construction of C(sp3)─C(sp3) bonds, and paving the way for further developments in the synthesis of complex organic molecules.
Collapse
Affiliation(s)
- Qi‐Chao Shan
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University30 South Puzhu RoadNanjing211816China
| | - You‐Wei Wu
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University30 South Puzhu RoadNanjing211816China
| | - Mu‐Xiang Chen
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University30 South Puzhu RoadNanjing211816China
| | - Xuefei Zhao
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University30 South Puzhu RoadNanjing211816China
| | - Teck‐Peng Loh
- College of Advanced Interdisciplinary Science and TechnologyHenan University of Technology100 Lianhua StreetZhengzhou450001China
- Division of Chemistry and Biological ChemistrySchool of ChemistryChemical Engineering and BiotechnologyNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | - Xu‐Hong Hu
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University30 South Puzhu RoadNanjing211816China
| |
Collapse
|
13
|
Zhan YF, Chen JM, Sheng XX, Qiu CY, Jiang Y, Yang S, Chen M. Photoinduced copper catalyzed nitrogen-to-alkyl radical relay Sonogashira-type coupling of o-alkylbenzamides with alkynes. Chem Commun (Camb) 2024; 60:7906-7909. [PMID: 38979947 DOI: 10.1039/d4cc02861a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
This report describes a copper-catalyzed, photoinduced N-to-alkyl radical relay Sonogashira-type reactions at benzylic sites in o-alkylbenzamides with alkynes. The process employs an N-to-alkyl radical mechanism, initiated through the copper-catalyzed reductive generation of nitrogen radicals. Radical translocation is facilitated by a 1,5-hydrogen atom transfer (1,5-HAT), leading to the formation of translocated carbon radicals. These radicals are then subjected to copper-catalyzed alkynylation. The methodology exhibits broad sub-strate scope and applicability to the synthesis of complex natural products.
Collapse
Affiliation(s)
- Yan-Fang Zhan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| | - Jia-Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| | - Xia-Xin Sheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| | - Chao-Ying Qiu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| | - Yan Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| | - Sen Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| |
Collapse
|
14
|
Yan W, Poore AT, Yin L, Carter S, Ho YS, Wang C, Yachuw SC, Cheng YH, Krause JA, Cheng MJ, Zhang S, Tian S, Liu W. Catalytically Relevant Organocopper(III) Complexes Formed through Aryl-Radical-Enabled Oxidative Addition. J Am Chem Soc 2024; 146:15176-15185. [PMID: 38770641 DOI: 10.1021/jacs.4c01668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Stepwise oxidative addition of copper(I) complexes to form copper(III) species via single electron transfer (SET) events has been widely proposed in copper catalysis. However, direct observation and detailed investigation of these fundamental steps remain elusive owing largely to the typically slow oxidative addition rate of copper(I) complexes and the instability of the copper(III) species. We report herein a novel aryl-radical-enabled stepwise oxidative addition pathway that allows for the formation of well-defined alkyl-CuIII species from CuI complexes. The process is enabled by the SET from a CuI species to an aryl diazonium salt to form a CuII species and an aryl radical. Subsequent iodine abstraction from an alkyl iodide by the aryl radical affords an alkyl radical, which then reacts with the CuII species to form the alkyl-CuIII complex. The structure of resultant [(bpy)CuIII(CF3)2(alkyl)] complexes has been characterized by NMR spectroscopy and X-ray crystallography. Competition experiments have revealed that the rate at which different alkyl iodides undergo oxidative addition is consistent with the rate of iodine abstraction by carbon-centered radicals. The CuII intermediate formed during the SET process has been identified as a four-coordinate complex, [CuII(CH3CN)2(CF3)2], through electronic paramagnetic resonance (EPR) studies. The catalytic relevance of the high-valent organo-CuIII has been demonstrated by the C-C bond-forming reductive elimination reactivity. Finally, localized orbital bonding analysis of these formal CuIII complexes indicates inverted ligand fields in σ(Cu-CH2) bonds. These results demonstrate the stepwise oxidative addition in copper catalysis and provide a general strategy to investigate the elusive formal CuIII complexes.
Collapse
Affiliation(s)
- Wenhao Yan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Andrew T Poore
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lingfeng Yin
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Samantha Carter
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yeu-Shiuan Ho
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Chao Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Stephen C Yachuw
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yu-Ho Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Shiyu Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Shiliang Tian
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
15
|
Parte LG, Fernández S, Sandonís E, Guerra J, López E. Transition-Metal-Catalyzed Transformations for the Synthesis of Marine Drugs. Mar Drugs 2024; 22:253. [PMID: 38921564 PMCID: PMC11204618 DOI: 10.3390/md22060253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024] Open
Abstract
Transition metal catalysis has contributed to the discovery of novel methodologies and the preparation of natural products, as well as new chances to increase the chemical space in drug discovery programs. In the case of marine drugs, this strategy has been used to achieve selective, sustainable and efficient transformations, which cannot be obtained otherwise. In this perspective, we aim to showcase how a variety of transition metals have provided fruitful couplings in a wide variety of marine drug-like scaffolds over the past few years, by accelerating the production of these valuable molecules.
Collapse
Affiliation(s)
- Lucía G. Parte
- Department of Organic Chemistry, Science Faculty, University of Valladolid (UVa), Paseo de Belén 7, 47011 Valladolid, Spain; (L.G.P.); (E.S.)
| | - Sergio Fernández
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London (QMUL), Mile End Road, London E1 4NS, UK;
| | - Eva Sandonís
- Department of Organic Chemistry, Science Faculty, University of Valladolid (UVa), Paseo de Belén 7, 47011 Valladolid, Spain; (L.G.P.); (E.S.)
| | - Javier Guerra
- Department of Organic Chemistry, Science Faculty, University of Valladolid (UVa), Paseo de Belén 7, 47011 Valladolid, Spain; (L.G.P.); (E.S.)
| | - Enol López
- Department of Organic Chemistry, ITAP, School of Engineering (EII), University of Valladolid (UVa), Dr Mergelina, 47002 Valladolid, Spain
| |
Collapse
|
16
|
Song Y, Fu C, Zheng J, Ma S. Copper-catalyzed remote double functionalization of allenynes. Chem Sci 2024; 15:7789-7794. [PMID: 38784739 PMCID: PMC11110152 DOI: 10.1039/d4sc00034j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Addition reactions of molecules with conjugated or non-conjugated multiple unsaturated C-C bonds are very attractive yet challenging due to the versatile issues of chemo-, regio-, and stereo-selectivities. Especially for the readily available conjugated allenyne compounds, the reactivities have not been explored. The first example of copper-catalyzed 2,5-hydrofunctionalization and 2,5-difunctionalization of allenynes, which provides a facile access to versatile conjugated vinylic allenes with a C-B or C-Si bond, has been developed. This mild protocol has a broad substrate scope tolerating many synthetically useful functional groups. Due to the highly functionalized nature of the products, they have been demonstrated as platform molecules for the efficient syntheses of monocyclic products including poly-substituted benzenes, bicyclic compounds, and highly functionalized allene molecules.
Collapse
Affiliation(s)
- Yulong Song
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou 310027 Zhejiang People's Republic of China
| | - Chunling Fu
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou 310027 Zhejiang People's Republic of China
| | - Jian Zheng
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou 310027 Zhejiang People's Republic of China
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou 310027 Zhejiang People's Republic of China
| |
Collapse
|
17
|
Doi M, Miura H, Shishido T. Borylation of Stable C(sp 3)-O Bonds of Alkyl Esters over Supported Au Catalysts. Org Lett 2024; 26:2902-2907. [PMID: 38572805 DOI: 10.1021/acs.orglett.4c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
We report herein that supported gold catalysts efficiently promote the borylation of stable C(sp3)-O bonds of alkyl esters. The use of a disilane as an electron source and gold nanoparticles as a single-electron transfer catalyst is the key to generating alkyl radicals via the homolysis of stable C(sp3)-O bonds, thereby enabling cross-coupling between bis(pinacolato)diboron and linear and cyclic alkyl esters to afford the diverse alkyl boronates.
Collapse
Affiliation(s)
- Masafumi Doi
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Hiroki Miura
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Hydrogen Energy-based Society, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Tetsuya Shishido
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Hydrogen Energy-based Society, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
18
|
Geng HQ, Zhao YH, Yang P, Wu XF. Copper-catalyzed carbonylative multi-component borylamidation of alkenes for synthesizing γ-boryl amides with CO as both methylene and carbonyl sources. Chem Sci 2024; 15:3996-4004. [PMID: 38487224 PMCID: PMC10935720 DOI: 10.1039/d4sc00156g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/02/2024] [Indexed: 03/17/2024] Open
Abstract
A multi-component carbonylation reaction is an efficient strategy for the synthesis of valuable carbonyl compounds from simple and readily available substrates. However, there remain challenges in carbonylation reactions where two CO molecules are converted to different groups in the target product. Considering the merit of complex amides, we reported here a copper-catalyzed multi-component borylamidation for the synthesis of γ-boryl amides. This method provides access to a wide range of functional γ-boryl amides from alkenes, amines, B2pin2, and CO with good yields and excellent diastereomeric ratios. Notably, two CO molecules were converted to methylene and carbonyl groups in the target amides. A series of amines were successfully involved in the transformation, including arylamines, aliphatic amines, and hydrochloride salts of secondary aliphatic amines.
Collapse
Affiliation(s)
- Hui-Qing Geng
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Yan-Hua Zhao
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Peng Yang
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
| |
Collapse
|
19
|
Wu B, Ye N, Zhao K, Shi M, Liao J, Zhang J, Chen W, Li X, Han Y, Cortes-Clerget M, Regnier ML, Parmentier M, Mathes C, Rampf F, Gallou F. Implementation of micelle-enabled C(sp 2)-C(sp 3) cross-electrophile coupling in pharmaceutical synthesis. Chem Commun (Camb) 2024; 60:2349-2352. [PMID: 38284323 DOI: 10.1039/d3cc05916b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
A sustainable C(sp2)-C(sp3) cross-electrophile coupling was developed between readily available 5-bromophthalide and 1-benzyl-4-iodopiperidine under micellar conditions, leading to a key intermediate of one of our development compounds. Copper was found to play a crucial role as a co-catalyst in this dual catalysis system. The chemistry and process were successfully demonstrated in a kilo scale to deliver sufficient drug substance to the clinical campaigns. This is the first reported scale-up of such a challenging cross-electrophilic coupling that uses an aqueous medium, and not undesirable reprotoxic polar aprotic solvents (e.g. DMF, DMAc, and NMP).
Collapse
Affiliation(s)
- Bin Wu
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd, Changshu, Jiangsu 215537, China.
| | - Ning Ye
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd, Changshu, Jiangsu 215537, China.
| | - Kangming Zhao
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd, Changshu, Jiangsu 215537, China.
| | - Min Shi
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd, Changshu, Jiangsu 215537, China.
| | - Jiayu Liao
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd, Changshu, Jiangsu 215537, China.
| | - Jing Zhang
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd, Changshu, Jiangsu 215537, China.
| | - Wei Chen
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd, Changshu, Jiangsu 215537, China.
| | - Xianzhong Li
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd, Changshu, Jiangsu 215537, China.
| | - Yufeng Han
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd, Changshu, Jiangsu 215537, China.
| | | | | | - Michael Parmentier
- Chemical & Analytical Development, Novartis Pharma AG, 4056 Basel, Switzerland.
| | - Christian Mathes
- Chemical & Analytical Development, Novartis Pharma AG, 4056 Basel, Switzerland.
| | - Florian Rampf
- Chemical & Analytical Development, Novartis Pharma AG, 4056 Basel, Switzerland.
| | - Fabrice Gallou
- Chemical & Analytical Development, Novartis Pharma AG, 4056 Basel, Switzerland.
| |
Collapse
|
20
|
Mondal S, Midya SP, Mondal S, Das S, Ghosh P. Merging Photocatalytic Doubly-Decarboxylative C sp 2 -C sp 2 Cross-Coupling for Stereo-Selective (E)-α,β-Unsaturated Ketones Synthesis. Chemistry 2024; 30:e202303337. [PMID: 37987541 DOI: 10.1002/chem.202303337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
A photocatalytic domain of doubly decarboxylative Csp 2 -Csp 2 cross coupling reaction is disclosed. Merging iridium and palladium photocatalysis manifested carbon-carbon bonds in a tandem dual-radical pathway. Present catalytic platform efficiently cross-coupled α, β-unsaturated acids and α-keto acids to afford a variety of α, β-unsaturated ketones with excellent (E)-selectivity and functional group tolerance. Mechanistically, photocatalyst implicated through reductive quenching cycle whereas cross coupling proceeded over one electron oxidative pallado-cycle.
Collapse
Affiliation(s)
- Subal Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Siba P Midya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Soumya Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Suman Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| |
Collapse
|
21
|
Wu S, Huang J, Kang L, Zhang Y, Yuan K. Transition-Metal-Free, Reductive Csp 2-Csp 3 Bond Constructions via Electrochemically Induced Alkyl Radicals. Org Lett 2024; 26:763-768. [PMID: 38227333 DOI: 10.1021/acs.orglett.3c04307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Construction of the Csp2-Csp3 bond without the aid of transition metal catalysts has been achieved by coupling the electrogenerated alkyl radicals with electron deficient (hetero)arenes in an undivided cell. Simultaneous cathodic reduction of both unactivated alkyl halides and cyanobenzenes under high potential enables radical-radical cross-coupling to deliver alkylarenes in the absence of transition metals. Depending on the coupling partner, the electrogenerated alkyl radicals can also proceed the Minisci-type reaction with N-heteroarenes without redox agents.
Collapse
Affiliation(s)
- Shuhua Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Jiahui Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Lulu Kang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Yiyi Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Kedong Yuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
22
|
Cao Z, Wang Q, Neumann H, Beller M. Regiodivergent Carbonylation of Alkenes: Selective Palladium-Catalyzed Synthesis of Linear and Branched Selenoesters. Angew Chem Int Ed Engl 2024; 63:e202313714. [PMID: 37988191 DOI: 10.1002/anie.202313714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
An unprecedented regiodivergent palladium-catalyzed carbonylation of aromatic alkenes has been developed. Utilizing commercially available Pd(CH3 CN)2 Cl2 in the presence of 1,1'-ferrocenediyl-bis(tert-butyl(pyridin-2-yl)phosphine) ligand L8 diverse selenoesters are obtained in a straightforward manner. Key to success for the control of the regioselectivity of the carbonylation step is the concentration of the acidic co-catalyst. This general protocol features wide functional group compatibility and good regioselectivity. Mechanistic studies suggest that the presence of stoichiometric amounts of acid changes the properties and coordination mode of the ligand leading to reversed regioselectivity.
Collapse
Affiliation(s)
- Zhusong Cao
- Leibniz-Institut für Katalyse e.V.an der Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Qiang Wang
- Leibniz-Institut für Katalyse e.V.an der Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Helfried Neumann
- Leibniz-Institut für Katalyse e.V.an der Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V.an der Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| |
Collapse
|
23
|
Zhou Y, Qiu L, Li J, Xie W. A General Copper Catalytic System for Suzuki-Miyaura Cross-Coupling of Unactivated Secondary and Primary Alkyl Halides with Arylborons. J Am Chem Soc 2023; 145:28146-28155. [PMID: 38085645 DOI: 10.1021/jacs.3c10628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Suzuki-Miyaura cross-couplings (SMC) are powerful tools for the construction of carbon-carbon bonds. However, the couplings of sp3-hybridized alkyl halides with arylborons often encounter several problematic issues such as sluggish oxidation addition of alkyl halides and competitive β-hydride elimination side pathways of metal-alkyl species. In precedent reports, copper is mainly utilized for the coupling of sp2-aryl halides, and the cross-couplings with unactivated alkyl halides are far less reported. Herein, we demonstrate that a high-efficiency copper system enabled the coupling of arylborons with various unactivated secondary and primary alkyl halides including bromides, iodides, and even robust chlorides. The present system features broad scope, excellent functionality tolerance, scalability, and practicality. Moreover, the current system could be applied for the late-stage functionalization of complex molecules in moderate to high efficiency.
Collapse
Affiliation(s)
- Yonglei Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Liping Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Jian Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Weilong Xie
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
24
|
Li H, Bai T. Theoretical study of copper hydride complexes catalyzing terminal alkyne hydroalkylation for C(sp 2)-C(sp 3) bond formation. Dalton Trans 2023; 53:153-161. [PMID: 38018369 DOI: 10.1039/d3dt03514j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
This study applies Density Functional Theory (DFT) to theoretically investigate the reaction mechanism of a copper complex catalyst facilitating the reaction between a terminal alkyne and α-bromo amide, enabling the formation of E-alkenes through C(sp2)-C(sp3) coupling. Initially, the study explores the reaction mechanism, identifying the predominant reaction pathway and the rate-determining step. Next, we discuss the addition reaction mode of copper hydride with terminal alkynes, determining the causes of regional and stereoselectivity. Subsequently, the reaction mechanism between the alkenyl copper intermediate and α-bromo amide is examined, including the discussion of alkyl fragment activation and introduction methods. Furthermore, the role of NHC ligands in catalyzing the single electron transfer process for C-Br bond activation is investigated. Finally, we analyze and discuss the reasons for the high energy barrier of the non-radical pathway. These investigations not only deepen our understanding of the reaction mechanisms of terminal alkynes and α-bromo amide catalyzed by copper but also provide valuable guidance for the future design of more efficient catalysts and reaction conditions.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, China.
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, China
| | - Taiming Bai
- Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, China.
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, China
| |
Collapse
|
25
|
Alayoglu P, Chang T, Yan C, Chen YS, Mankad NP. Uncovering a CF 3 Effect on X-ray Absorption Energies of [Cu(CF 3 ) 4 ] - and Related Copper Compounds by Using Resonant Diffraction Anomalous Fine Structure (DAFS) Measurements. Angew Chem Int Ed Engl 2023; 62:e202313744. [PMID: 37938103 PMCID: PMC10842927 DOI: 10.1002/anie.202313744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
Understanding the electronic structures of high-valent metal complexes aids the advancement of metal-catalyzed cross coupling methodologies. A prototypical complex with formally high valency is [Cu(CF3 )4 ]- (1), which has a formal Cu(III) oxidation state but whose physical analysis has led some to a Cu(I) assignment in an inverted ligand field model. Recent examinations of 1 by X-ray spectroscopies have led previous authors to contradictory conclusions, motivating the re-examination of its X-ray absorption profile here by a complementary method, resonant diffraction anomalous fine structure (DAFS). From analysis of DAFS measurements for a series of seven mononuclear Cu complexes including 1, here it is shown that there is a systematic trifluoromethyl effect on X-ray absorption that blue shifts the resonant Cu K-edge energy by 2-3 eV per CF3 , completely accounting for observed changes in DAFS profiles between formally Cu(III) complexes like 1 and formally Cu(I) complexes like (Ph3 P)3 CuCF3 (3). Thus, in agreement with the inverted ligand field model, the data presented herein imply that 1 is best described as containing a Cu(I) ion with dn count approaching 10.
Collapse
Affiliation(s)
- Pinar Alayoglu
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Tieyan Chang
- NSF's ChemMatCARS, University of Chicago, Argonne, IL 60439, USA
| | - Connly Yan
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yu-Sheng Chen
- NSF's ChemMatCARS, University of Chicago, Argonne, IL 60439, USA
| | - Neal P Mankad
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
26
|
Choi S, Choi Y, Kim Y, Lee J, Lee SY. Copper-Catalyzed C-C Cross-Couplings of Tertiary Alkyl Halides with Anilines Enabled by Cyclopropenimine-Based Ligands. J Am Chem Soc 2023. [PMID: 37933129 DOI: 10.1021/jacs.3c09369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Catalytic cross-couplings of tertiary alkyl electrophiles with carbon nucleophiles offer a powerful platform for constructing quaternary carbon centers, which are prevalent in bioactive molecules. However, these reactions remain underdeveloped primarily because of steric challenges that impede efficient bond formation. Herein, we describe the copper-catalyzed synthesis of such centers through the C(sp3)-C(sp2) bond-forming reaction between tertiary alkyl halides and arene rings of aniline derivatives, enabled by the strategic implementation of bidentate bis(cyclopropenimine) ligands. The copper catalyst bound by two imino-nitrogen atoms of these ligands, which have never been employed in metal catalysis previously, is highly effective in rapidly activating tertiary halides to generate alkyl radicals, allowing them to react with aryl nucleophiles under mild conditions with remarkably short reaction times (1-2 h). Various tertiary halides bearing carbonyl functional groups can be coupled with secondary or primary anilines, furnishing a range of quaternary carbon centers in good yields. Several mechanistic observations support the generation of copper(II) species and alkyl radicals which as a result elucidate the steps in the proposed catalytic cycle.
Collapse
Affiliation(s)
- Serim Choi
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Yongseok Choi
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Yongjae Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jaehoo Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Sarah Yunmi Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
27
|
Huang H, Lin YM, Gong L. Recent Advances in Photochemical Asymmetric Three-Component Reactions. CHEM REC 2023:e202300275. [PMID: 37772656 DOI: 10.1002/tcr.202300275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/18/2023] [Indexed: 09/30/2023]
Abstract
Over the past decades, asymmetric photochemical synthesis has garnered significant attention for its sustainability and unique ability to generate enantio-enriched molecules through distinct reaction pathways. Photochemical asymmetric three-component reactions have demonstrated significant potential for the rapid construction of chiral compounds with molecular diversity and complexity. However, noteworthy challenges persist, including the participation of high-energy intermediates such as radical species, difficulties in precise control of stereoselectivity, and the presence of competing background and side reactions. Recent breakthroughs have led to the development of sophisticated strategies in this field. This review explores the intricate mechanisms, synthetic applications, and limitations of these methods. We anticipate that it will contribute towards advancing asymmetric catalysis, photochemical synthesis, and green chemistry.
Collapse
Affiliation(s)
- Haichao Huang
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yu-Mei Lin
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Lei Gong
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
28
|
Luo Y, Li Y, Wu J, Xue XS, Hartwig JF, Shen Q. Oxidative addition of an alkyl halide to form a stable Cu(III) product. Science 2023; 381:1072-1079. [PMID: 37676952 PMCID: PMC10658983 DOI: 10.1126/science.adg9232] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023]
Abstract
The step that cleaves the carbon-halogen bond in copper-catalyzed cross-coupling reactions remains ill defined because of the multiple redox manifolds available to copper and the instability of the high-valent copper product formed. We report the oxidative addition of α-haloacetonitrile to ionic and neutral copper(I) complexes to form previously elusive but here fully characterized copper(III) complexes. The stability of these complexes stems from the strong Cu-CF3 bond and the high barrier for C(CF3)-C(CH2CN) bond-forming reductive elimination. The mechanistic studies we performed suggest that oxidative addition to ionic and neutral copper(I) complexes proceeds by means of two different pathways: an SN2-type substitution to the ionic complex and a halogen-atom transfer to the neutral complex. We observed a pronounced ligand acceleration of the oxidative addition, which correlates with that observed in the copper-catalyzed couplings of azoles, amines, or alkynes with alkyl electrophiles.
Collapse
Affiliation(s)
- Yongrui Luo
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Yuli Li
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Jian Wu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Xiao-Song Xue
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - John F. Hartwig
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| |
Collapse
|
29
|
Abstract
Bimolecular nucleophilic substitution SN2 is the earliest and most important means of amination of alkyl electrophiles; its practical utilization is largely limited to primary or activated substrates. Furthermore, a persistent challenge lies in establishing C(sp3)-N bonds from alkyl substrates in cross-coupling chemistry using palladium and nickel catalysts. Therefore, the methods of constructing C(sp3)-N bonds remain rare from alkyl electrophiles. The existing routes are limited to copper catalysis and photoredox catalysis. Here, we demonstrate an alternative amination strategy for rapid construction of C(sp3)-N bonds from accessible alkyl electrophiles, which were used as radical precursors under nickel catalysis by Ni (III) species reductive eliminations in high efficiency.
Collapse
Affiliation(s)
- Qing Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiangzhang Tao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shengyang Ni
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
30
|
Wu X, Sun Y, Zeng Y, Li X. Mechanistic Insights into Oxazolone Synthesis by Bimetallic Au-Pd-Catalyzed Catalysis and Catalyst Design: DFT Investigations. J Org Chem 2023. [PMID: 37449782 DOI: 10.1021/acs.joc.3c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Bimetallic synergistic catalysis is one of the most effective and powerful strategies for the synthesis of oxazolones, an important species in organic synthesis. In this work, the mechanism of AuCl(PMe3)/AgOTf-Pd(0) ([Au-Pd]) bimetallic catalyst-catalyzed oxazolone synthesis using N-alkynyl carbamates as precursors was studied in detail by DFT calculations and the catalytic performances of a series of bimetallic catalysts were evaluated. The results show that the reaction begins from the [Au]-catalyzed cycloisomerization of N-alkynyl carbamates. After the five-membered intermediate is formed, the [Pd(0)]-catalyzed cycle starts, which contains three steps: oxidation addition, transmetalation, and reductive elimination. The whole reaction belongs to a catalyzed catalysis, and the reductive elimination is the rate-determining step. In the transmetalation process, both the [Pd(0)] catalyst and the ionic bridge are necessary. For the [Au-Pd]-catalyzed process, it is Cl- as the bridge, not OTf-. The cheaper metal compound, AgCl(PMe3), can serve as the alternative of AuCl(PMe3) to co-catalyze with the [Pd(0)] catalyst for the title reaction.
Collapse
Affiliation(s)
- Xueju Wu
- College of Chemistry and Material Science, Hubei Key Laboratory of Inorganic and Nano-Materials, National Demonstration Center for Experimental Chemistry, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Yuanyuan Sun
- College of Chemistry and Material Science, Hubei Key Laboratory of Inorganic and Nano-Materials, National Demonstration Center for Experimental Chemistry, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Yanli Zeng
- College of Chemistry and Material Science, Hubei Key Laboratory of Inorganic and Nano-Materials, National Demonstration Center for Experimental Chemistry, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Xiaoyan Li
- College of Chemistry and Material Science, Hubei Key Laboratory of Inorganic and Nano-Materials, National Demonstration Center for Experimental Chemistry, Hebei Normal University, Shijiazhuang 050024, P. R. China
| |
Collapse
|
31
|
Zhang Y, Sun X, Su JH, Li T, Du C, Li K, Sun Q, Zha Z, Wang Z. Switchable Direct Oxygenative Arylation of C(sp 3)-H Bonds via Electrophotocatalysis. Org Lett 2023; 25:5067-5072. [PMID: 37387463 DOI: 10.1021/acs.orglett.3c01751] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
A metal-free electrophotochemical C(sp3)-H arylation was developed under mild conditions. This method enables a switchable synthesis of diaryl alcohols and diaryl alkanes from inactive benzylic carbons. More importantly, a cheap and safe mediator N-chlorosuccinimide (NCS) was developed, which was employed for the hydrogen atom transfer (HAT) process of the benzylic C-H bond. In addition, this active radical was captured and identified by electron paramagnetic resonance (EPR).
Collapse
Affiliation(s)
- Yan Zhang
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiang Sun
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ji-Hu Su
- CAS Key Laboratory of Microscale Magnetic Resonance, Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tong Li
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chengbin Du
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kuiliang Li
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qi Sun
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhenggen Zha
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhiyong Wang
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
32
|
Tang M, Zhu W, Sun H, Wang J, Jing S, Wang M, Shi Z, Hu J. Facile preparation of organosilanes from benzylboronates and gem-diborylalkanes mediated by KO tBu. Chem Sci 2023; 14:7355-7360. [PMID: 37416710 PMCID: PMC10321478 DOI: 10.1039/d3sc02461j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023] Open
Abstract
Methods to efficiently synthesize organosilanes are valuable in the fields of synthetic chemistry and materials science. During the past decades, boron conversion has become a generic and powerful approach for constructing carbon-carbon and other carbon-heteroatom bonds, but its potential application in forming carbon-silicon remains unexplored. Herein, we describe an alkoxide base-promoted deborylative silylation of benzylic organoboronates, geminal bis(boronates) or alkyltriboronates, allowing for straightforward access to synthetically valuable organosilanes. This selective deborylative methodology exhibits operational simplicity, broad substrate scope, excellent functional group compatibility and convenient scalability, providing an effective and complementary platform for the generation of diversified benzyl silanes and silylboronates. Detailed experimental results and calculated studies revealed an unusual mechanistic feature of this C-Si bond formation.
Collapse
Affiliation(s)
- Man Tang
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Wenyan Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Huaxing Sun
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Jing Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Su Jing
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jiefeng Hu
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
33
|
Geng HQ, Wu XF. Copper-catalyzed synthesis of β-boryl cyclopropanes via 1,2-borocyclopropanation of aryl olefins with CO as the C1 source. Chem Sci 2023; 14:5638-5642. [PMID: 37265722 PMCID: PMC10231323 DOI: 10.1039/d3sc01090b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
Cyclopropane represents one of the most critical rings and has been found present in various bioactive compounds, especially in clinical medicines. It can be synthesized by the reaction of olefins with diazo-derived carbenoids which are potentially hazardous. Carbonylation is a powerful tool for synthesizing carbonylated or carbon-extended compounds. In this communication, we describe a straightforward approach for synthesizing β-boryl cyclopropane derivatives catalyzed by an inexpensive copper catalyst with CO as the C1 source. This reaction was mediated by an in situ generated carbene intermediate and afforded a wide range of cyclopropane-containing organoboron compounds in moderate to good yields.
Collapse
Affiliation(s)
- Hui-Qing Geng
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
| |
Collapse
|
34
|
Wu X, Zeng Y, Meng L, Li X. Mechanistic insights and computational design of Cu/M bimetallic synergistic catalysts for Suzuki-Miyaura coupling of arylboronic esters with alkyl halides. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
35
|
Almutairi N, Vijjamarri S, Du G. Manganese Salan Complexes as Catalysts for Hydrosilylation of Aldehydes and Ketones. Catalysts 2023. [DOI: 10.3390/catal13040665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Manganese has attracted significant recent attention due to its abundance, low toxicity, and versatility in catalysis. In the present study, a series of manganese (III) complexes supported by salan ligands have been synthesized and characterized, and their activity as catalysts in the hydrosilylation of carbonyl compounds was examined. While manganese (III) chloride complexes exhibited minimal catalytic efficacy without activation of silver perchlorate, manganese (III) azide complexes showed good activity in the hydrosilylation of carbonyl compounds. Under optimized reaction conditions, several types of aldehydes and ketones could be reduced with good yields and tolerance to a variety of functional groups. The possible mechanisms of silane activation and hydrosilylation were discussed in light of relevant experimental observations.
Collapse
|
36
|
Yang H, Bao ZP, Wang LC, Wu XF. Copper-Catalyzed Direct Carbonylation of Carbenes toward the Synthesis of Propanedioic Acid Derivatives. Org Lett 2023; 25:1963-1968. [PMID: 36916775 DOI: 10.1021/acs.orglett.3c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Carbenes are highly active reaction intermediates, which can be used as reaction precursors to modify organisms, drugs, and material molecules. In this work, we realized a new cheap metal-catalyzed carbonylation of carbene to give propanedioic acid derivatives. With copper salt as the catalyst, synthetically important malonates and related compounds were produced in good yields under mild reaction conditions.
Collapse
Affiliation(s)
- Hefei Yang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e.V., 18059 Rostock, Germany
| | - Zhi-Peng Bao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e.V., 18059 Rostock, Germany
| | - Le-Cheng Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e.V., 18059 Rostock, Germany
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e.V., 18059 Rostock, Germany
| |
Collapse
|
37
|
Hu X, Cheng-Sánchez I, Cuesta-Galisteo S, Nevado C. Nickel-Catalyzed Enantioselective Electrochemical Reductive Cross-Coupling of Aryl Aziridines with Alkenyl Bromides. J Am Chem Soc 2023; 145:6270-6279. [PMID: 36881734 PMCID: PMC10037331 DOI: 10.1021/jacs.2c12869] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Indexed: 03/09/2023]
Abstract
An electrochemically driven nickel-catalyzed enantioselective reductive cross-coupling of aryl aziridines with alkenyl bromides has been developed, affording enantioenriched β-aryl homoallylic amines with excellent E-selectivity. This electroreductive strategy proceeds in the absence of heterogeneous metal reductants and sacrificial anodes by employing constant current electrolysis in an undivided cell with triethylamine as a terminal reductant. The reaction features mild conditions, remarkable stereocontrol, broad substrate scope, and excellent functional group compatibility, which was illustrated by the late-stage functionalization of bioactive molecules. Mechanistic studies indicate that this transformation conforms with a stereoconvergent mechanism in which the aziridine is activated through a nucleophilic halide ring-opening process.
Collapse
Affiliation(s)
- Xia Hu
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - Iván Cheng-Sánchez
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - Sergio Cuesta-Galisteo
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - Cristina Nevado
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| |
Collapse
|
38
|
Li Y, Ji GC, Chao C, Bi S, Jiang YY. Computation Study on Copper-Catalyzed Aerobic Intramolecular Aminooxyge native C═C Bond Cleavage to Imides: Different Roles of Mononuclear and Dinuclear Copper Complexes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Yu Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People′s Republic of China
| | - Guo-Cui Ji
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People′s Republic of China
| | - Chen Chao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People′s Republic of China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People′s Republic of China
| | - Yuan-Ye Jiang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People′s Republic of China
| |
Collapse
|
39
|
Arundhathi KV, Vaishnavi P, Aneeja T, Anilkumar G. Copper-catalyzed Sonogashira reactions: advances and perspectives since 2014. RSC Adv 2023; 13:4823-4834. [PMID: 36760276 PMCID: PMC9903355 DOI: 10.1039/d2ra07685c] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/28/2023] [Indexed: 02/10/2023] Open
Abstract
Transition metal catalyzed Sonogashira coupling reaction has evolved as an efficient pathway for the construction of C-C bonds. Initially, palladium cooperating with copper was considered as the efficient catalytic system for this reaction. However, nowadays there have been astonishing progress in copper catalyzed Sonogashira coupling reactions. Copper catalyzed reactions have attained significant attention owing to the cost effective and environmentally benign characteristics of this metal compared to palladium. This review summarizes the recent developments in copper catalyzed Sonogashira coupling covering literature from 2014 to 2021.
Collapse
Affiliation(s)
| | - Palemkunnummal Vaishnavi
- School of Chemical Sciences, Mahatma Gandhi University Priyadarsini Hills P.O Kottayam Kerala 686560 India +91-481-2731036
| | - Thaipparambil Aneeja
- School of Chemical Sciences, Mahatma Gandhi University Priyadarsini Hills P.O Kottayam Kerala 686560 India +91-481-2731036
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University Priyadarsini Hills P.O Kottayam Kerala 686560 India +91-481-2731036
| |
Collapse
|
40
|
Cu-Catalyzed C–C Bond Formation with CO. TOP ORGANOMETAL CHEM 2023. [DOI: 10.1007/3418_2023_84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
41
|
Su J, Li C, Hu X, Guo Y, Song Q. Deaminative Arylation and Alkenyaltion of Aliphatic Tertiary Amines with Aryl and Alkenylboronic Acids via Nitrogen Ylides. Angew Chem Int Ed Engl 2022; 61:e202212740. [PMID: 36314477 DOI: 10.1002/anie.202212740] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 11/27/2022]
Abstract
Transition-metal-catalyzed Suzuki-Miyaura coupling has significantly advanced C-C bond formation and has been well recognized in organic synthesis, pharmaceuticals, materials science and other fields. In this rapid development, cross coupling without transition metal catalyst is a big challenge in this field, and using widely existing tertiary amines as electrophiles to directly couple with boronic acids has great hurdles yet significant application prospects. Herein, we report an efficient and general deaminative arylation and alkenylation of tertiary amines (propargyl amines, allyl amines and 1H-indol-3-yl methane amines) with ary and alkenylboronic acids enabled by difluorocarbene under transition-metal-free conditions. Preliminary mechanism experiments suggest that in situ formed difluoromethyl quaternary amine salt, nitrogen ylide and tetracoordinate boron species are the key intermediates, the subsequent 1,2-metallate shift and protodeboronation complete the new coupling reaction.
Collapse
Affiliation(s)
- Jianke Su
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian, 361021, China
| | - Chengbo Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian, 361021, China
| | - Xinyuan Hu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian, 361021, China
| | - Yu Guo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian, 361021, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian, 361021, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
42
|
Park JY, Ko JH, Lee HJ, Park JH, Lee J, Sa S, Shin EJ, Lee BY. Up-Scale Synthesis of p-(CH 2=CH)C 6H 4CH 2CH 2CH 2Cl and p-ClC 6H 4SiR 3 by CuCN-Catalyzed Coupling Reactions of Grignard Reagents with Organic Halides. ACS OMEGA 2022; 7:46849-46858. [PMID: 36570214 PMCID: PMC9773938 DOI: 10.1021/acsomega.2c05951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Grignard reagents featuring carbanion characteristics are mostly unreactive toward alkyl halides and require a catalyst for the coupling reaction. With the need to prepare p-(CH2=CH)C6H4CH2CH2CH2Cl on a large scale, the coupling reaction of p-(CH2=CH)C6H4MgCl with BrCH2CH2CH2Cl was attempted to screen the catalysts, and CuCN was determined to be the best catalyst affording the desired compound in 80% yield with no formation of Wurtz coupling side product CH2=CHC6H4-C6H4CH=CH2. The p-(CH2=CH)C6H4Cu(CN)MgCl species was proposed as an intermediate based on the X-ray structure of PhCu(CN)Mg(THF)4Cl. p-ClC6H4MgCl did not react with sterically encumbered R3SiCl (R = n-Bu or n-octyl). However, the reaction took place with the addition of 3 mol % CuCN catalyst, affording the desired compound p-ClC6H4SiR3. The structures of p-(CH2=CH)C6H4CH2CH2CH2MgCl and p-ClC6H4MgCl were also elucidated, which existed as an aggregate with MgCl2, suggesting that some portion of the Grignard reagents were possibly lost in the coupling reaction due to coprecipitation with the byproduct MgCl2. R3SiCl (R = n-Bu or n-octyl) was also prepared easily and economically with no formation of R4Si when SiCl4 was reacted with 4 equiv of RMgCl. Using the developed syntheses, [p-(CH2=CH)C6H4CH2CH2CH2]2Zn and iPrN[P(C6H4-p-SiR3)2]2, which are potentially useful compounds for the production of PS-block-PO-block-PS and 1-octene, respectively, were efficiently synthesized with substantial cost reductions.
Collapse
Affiliation(s)
- Ju Yong Park
- Department
of Molecular Science and Technology, Ajou
University, Suwon16499, South Korea
| | - Ji Hyeong Ko
- Department
of Molecular Science and Technology, Ajou
University, Suwon16499, South Korea
| | - Hyun Ju Lee
- Department
of Molecular Science and Technology, Ajou
University, Suwon16499, South Korea
| | - Jun Hyeong Park
- Department
of Molecular Science and Technology, Ajou
University, Suwon16499, South Korea
| | - Junseong Lee
- Department
of Chemistry, Chonnam National University, Gwangju61186, South Korea
| | | | | | - Bun Yeoul Lee
- Department
of Molecular Science and Technology, Ajou
University, Suwon16499, South Korea
| |
Collapse
|
43
|
C–N cross-coupling organic transformations catalyzed via copper oxide nanoparticles: A review (2016-present). INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Ma J, Feng R, Zhou HL, Hao EJ, Shi Z, Dong ZB. One-Pot Synthesis of N,N-Diphenyl-2-benzothiazolamines from 1-(2-Iodophenyl)-3-phenylthioureas and Iodobenzenes. J Org Chem 2022; 87:14342-14351. [PMID: 36200367 DOI: 10.1021/acs.joc.2c01789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient copper-catalyzed synthesis of a variety of N,N-diphenyl-2-benzothiazolamines was developed. Starting from substituted 1-(2-iodophenyl)-3-phenylthioureas and substituted iodobenzenes, the reaction proceeded smoothly via a tandem manner in the presence of CuI to afford the corresponding N,N-diphenyl-2-benzothiazolamine derivatives with good functional group tolerance. The protocol features simple performance, easily available starting materials, a one-pot manner, and good functional group tolerance, providing a practical strategy for the preparation of poly-functionalized amines.
Collapse
Affiliation(s)
- Jie Ma
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Rong Feng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Hao-Lin Zhou
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Er-Jun Hao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhen Shi
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.,Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.,Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Wuhan Institute of Technology, Wuhan 430205, China.,Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
45
|
Babu MH, Sim J. Radical‐Mediated C‐H Alkylation of Glycine Derivatives: A Straightforward Strategy for Diverse α‐Unnatural Amino Acids. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Madala Hari Babu
- Chungnam National University College of Pharmacy KOREA, REPUBLIC OF
| | - Jaehoon Sim
- Chungnam National University College of Pharmacy College of Pharmacy 99 Daehak-ro, Yuseong-guW6 College of Pharmacy 34134 Daejeon KOREA, REPUBLIC OF
| |
Collapse
|
46
|
Liao L, Xu X, Ji J, Zhao X. Asymmetric Intermolecular Iodinative Difunctionalization of Allylic Sulfonamides Enabled by Organosulfide Catalysis: Modular Entry to Iodinated Chiral Molecules. J Am Chem Soc 2022; 144:16490-16501. [PMID: 36053004 DOI: 10.1021/jacs.2c05668] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Electrophilic halogenation of alkenes is a powerful transformation offering a convenient route for the construction of valuable functionalized molecules. However, as a highly important reaction in this field, catalytic asymmetric intermolecular iodinative difunctionalization remains a formidable challenge. Herein, we report that an efficient Lewis basic chiral sulfide-catalyzed approach enables this reaction. By this approach, challenging substrates such as γ,γ-disubstituted allylic sulfonamides and 1,1-disubstituted alkenes with an allylic sulfonamide unit undergo electrophilic iodinative difunctionalization to give a variety of iodine-functionalized chiral molecules in good yields with excellent enantio- and diastereoselectivities. A series of free phenols as nucleophiles are successfully incorporated into the substrates. Aside from phenols, primary and secondary alcohols, fluoride, and azide also serve as efficient nucleophiles. The obtained iodinated products are a good platform molecule, which can be easily transformed into various chiral compounds such as α-aryl ketones, chiral secondary amines, and aziridines via rearrangement or substitution. Mechanistic studies revealed that the chiral sulfide catalyst displays a superior effect on control of the reactivity of electrophilic iodine and the enantioselective construction of the chiral iodiranium ion intermediate and catalyst aggregates might be formed as a resting state in the reactions.
Collapse
Affiliation(s)
- Lihao Liao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xinru Xu
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Jieying Ji
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
47
|
Brahmachari G, Bhowmick A, Karmakar I. Catalyst- and Additive-Free C(sp 3)-H Functionalization of (Thio)barbituric Acids via C-5 Dehydrogenative Aza-Coupling Under Ambient Conditions. ACS OMEGA 2022; 7:30051-30063. [PMID: 36061699 PMCID: PMC9434791 DOI: 10.1021/acsomega.2c03073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
A one-pot room-temperature-based three-component reaction strategy has been accomplished to access a new series of bio-relevant barbituric/2-thiobarbituric acid hydrazones from the reaction between barbituric/2-thiobarbituric acids, primary aromatic amines, and tert-butyl nitrite in an acetonitrile solvent, without the aid of any catalysts/additives. The ambient reaction conditions can efficiently implement the C(sp3)-H functionalization of barbituric/2-thiobarbituric acids via C-5 dehydrogenative aza-coupling. The process does not require column chromatographic purification; pure products are obtained by simple filtration of the resulting reaction mixture, followed by washing the crude residue with distilled water. The catalyst-free ambient reaction conditions, operational simplicity, broad substrate scope and tolerance for various functional groups, no need for chromatographic purification, good to excellent yields of products within reasonable reaction times in minutes, clean reaction profile, and gram-scale synthetic applicability make this procedure attractive, green, and cost-effective.
Collapse
|
48
|
Ji J, Jiang L, Wang Z, Bin Z, You J, Yang Y. Copper-Catalyzed Oxidative C-H Annulation of Quinolines with Dichloroethane toward Benzoquinoliziniums Using an In Situ Activation Strategy. Org Lett 2022; 24:6256-6260. [PMID: 35993528 DOI: 10.1021/acs.orglett.2c02342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Described herein is a copper-catalyzed oxidative C-H annulation of quinolines with 1,2-chloroethane (DCE), providing a concise synthetic approach to benzoquinoliziniums. In this protocol, DCE not only serves as a solvent and an in situ activation agent of quinoline C2-H but also works as vinyl equivalents to constitute the six-membered azonia ring. Furthermore, the resultant benzoquinolizinium library exhibits good properties of binding to DNA and low cytotoxicity.
Collapse
Affiliation(s)
- Jinwen Ji
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Linfeng Jiang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Zhishuo Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Zhengyang Bin
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| |
Collapse
|
49
|
Copper-Catalyzed Reactions of Aryl Halides with N-nucleophiles and Their Possible Application for Degradation of Halogenated Aromatic Contaminants. Catalysts 2022. [DOI: 10.3390/catal12080911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This review summarizes recent applications of copper or copper-based compounds as a nonprecious metal catalyst in N-nucleophiles-based dehalogenation (DH) reactions of halogenated aromatic compounds (Ar-Xs). Cu-catalyzed DH enables the production of corresponding nonhalogenated aromatic products (Ar-Nu), which are much more biodegradable and can be mineralized during aerobic wastewater treatment or which are principally further applicable. Based on available knowledge, the developed Cu-based DH methods enable the utilization of amines for effective cleavage of aryl-halogen bonds in organic solvents or even in an aqueous solution.
Collapse
|
50
|
Ling J, Bruneau‐Voisine A, Journot G, Evano G. Copper‐Catalyzed Carbonylative Cross‐Coupling of Alkyl Iodides and Amines. Chemistry 2022; 28:e202201356. [DOI: 10.1002/chem.202201356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 12/29/2022]
Affiliation(s)
- Johanne Ling
- Laboratoire de Chimie Organique Service de Chimie et Physico-Chimie Organiques Université libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| | | | - Guillaume Journot
- Oril Industrie 13, rue Auguste Desgenétais, CS 60125 76210 Bolbec France
| | - Gwilherm Evano
- Laboratoire de Chimie Organique Service de Chimie et Physico-Chimie Organiques Université libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| |
Collapse
|