1
|
Yang K, Huang Y, Wang T, Li Y, Du Y, Ling J, Fan Z, Zhang C, Ma C. In-Situ Anchoring of Co Single-Atom Synergistically with Cd Vacancy of Cadmium Sulfide for Boosting Asymmetric Charge Distribution and Photocatalytic Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409832. [PMID: 39388450 DOI: 10.1002/adma.202409832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/08/2024] [Indexed: 10/12/2024]
Abstract
In the context of reshaping the energy pattern, designing and synthesizing high-performance noble metal-free photocatalysts with ultra-high atomic utilization for hydrogen evolution reaction (HER) still remains a challenge. In a streamlined synthesis process, in-situ single atom anchoring is performed in parallel with HER by irradiating a precursory defect-state CdS/Co suspension (Co-DCdS-Ss) system under simulated sunlight and the in-situ synthesizing single-atom Co photocatalyst (Co5:DCdS) exhibits further improved catalytic performance (60.10 mmol g-1 h-1) compared with Co-DCdS-Ss (18.09 mmol g-1 h-1), reaching an apparent quantum yield of 57.6% at 500 nm and a solar-chemical energy conversion efficiency (SCC) of 6.26% at AM 1.5G. In-depth characterization tests and density functional theory (DFT) calculations prove that the anchoring of Co single atom deepens the asymmetric charge distribution of the two-coordination S atom adjacent to the cadmium vacancy (VCd). The synergy between electron delocalization VCd and Co single atom on the catalyst surface is constructed, which bifunctional sites responsible for boosting water adsorption-dissociation and hydrogen evolution. This study advances the understanding of the underlying mechanisms of synergy between surface defects and metal single atoms and opens a new horizon for the development of advanced materials in the field of photocatalysis.
Collapse
Affiliation(s)
- Kaihua Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yicai Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yiming Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yating Du
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Juan Ling
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Ziyi Fan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Chi Ma
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| |
Collapse
|
2
|
Wei J, Luo D, Shi M, Guo S, Lu Z, Ni Y. Terpyridine Ni(II) Complex Grafted CdS Nanorods for Cooperative Selective Benzyl Alcohol Oxidation and Hydrogen Production. Inorg Chem 2024; 63:20820-20829. [PMID: 39381887 DOI: 10.1021/acs.inorgchem.4c03601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Efficient utilization of photogenerated charge carriers to realize photocatalytic solar fuel production and oxidative chemical synthesis is a challenging task. Herein, a conventional amidation reaction route is adopted to successfully construct a novel composite photocatalyst composed of a Ni(II)-terpyridine complex with carboxyl groups grafted on CdS nanorods (labeled as CdS@Ni(terpyC)2). Experimental results have unequivocally revealed that the as-fabricated composite catalyst exhibited a remarkable enhancement in photocatalytic activity for the dehydrogenation of benzyl alcohol under visible light, demonstrating superior hydrogen evolution efficiency and benzaldehyde selectivity, surpassing both pristine CdS and the blend of CdS and Ni(terpyC)2. The carrier dynamics study demonstrated that the Ni(terpyC)2 on the surface of CdS could quickly extract the photogenerated electrons of CdS, which reduced the carrier recombination efficiency, further improving the photocatalytic activity of the catalyst. This work illustrates the effect of surface active site engineering on photocatalysis and is expected to shed substantial inspiration on future surface modulation and design of semiconductor photocatalysts.
Collapse
Affiliation(s)
- Jieding Wei
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| | - Dian Luo
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| | - Manman Shi
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| | - Saiya Guo
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| | - Zhou Lu
- School of Physics and Electronic Information, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| | - Yonghong Ni
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| |
Collapse
|
3
|
Wang J, Song T, Liu Z, Yun Q, Sun J, Zhang Y, Yuan K, Zhong D, Tang Z, Lu T. Novel Inorganic-Organic Dual-Photosensitizing Dinuclear-Metal Self-Assembly System for Efficient Artificial Photosynthesis without Sacrificial Electron Donors. Angew Chem Int Ed Engl 2024:e202417373. [PMID: 39448375 DOI: 10.1002/anie.202417373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 10/26/2024]
Abstract
Owing to the unique synergistic effect, dinuclear-metal-molecule-catalysts (DMCs) show excellent performance in catalytic fields. However, for overall photocatalytic CO2 reaction (CO2RR), it is still a challenge to construct well-matched photosensitizer (PS) components for DMCs-based photocatalysts. Inorganic-quantum-dot PS possesses capacities of multiple exciton generation and catalyzing water oxidation but is incompatible with DMCs. In contrast, organic PS can be covalently linked with DMCs but inescapable of using sacrificial electron donors. For overall photocatalytic CO2RR, organic-inorganic dual-photosensitizing system might be a promising candidate. Herein, we employed covalent-linking and electrostatic-driven approaches to construct the self-assembly of pyrene-sensitized Co2L DMCs (Py-Co2L) and perovskite (PVK) quantum dots, i.e., PVK@[Py-Co2L]. Using H2O as an electron donor, PVK@[Py-Co2L] realized 105.24 μmol ⋅ g-1⋅h-1 CO yield in photocatalytic CO2RR, much higher than PVK (15.44 μmol ⋅ g-1⋅h-1) and PVK@Co2L (32.30 μmol ⋅ g-1 ⋅ h-1), ascribing to the efficient photogenerated charge separation and transfer. The experimental results and theoretical investigations demonstrated that the pyrene linked on Co2L boosted the electron delivery from PVK to DMCs. Besides, this strategy could also be extended to the photocatalytic H2 evolution coupled with alcohol oxidation. As a proof-of-concept, our work lightens the integration of DMCs, organic and inorganic PS components, promoting the development of photocatalysis without sacrificial electron donors.
Collapse
Affiliation(s)
- Jiaxin Wang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Tianqun Song
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China
| | - Zheyuan Liu
- Key Laboratory of Advanced Materials Technologies, International (Hong Kong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, School of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Qinbai Yun
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Kowloon, Hong, Kong, P. R., China
| | - Juehan Sun
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ying Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Kuo Yuan
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China
| | - Dichang Zhong
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tongbu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| |
Collapse
|
4
|
Liu D, Kuang Y. Particle-Based Photoelectrodes for PEC Water Splitting: Concepts and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311692. [PMID: 38619834 DOI: 10.1002/adma.202311692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/06/2024] [Indexed: 04/16/2024]
Abstract
This comprehensive review delves into the intricacies of the photoelectrochemical (PEC) water splitting process, specifically focusing on the design, fabrication, and optimization of particle-based photoelectrodes for efficient green hydrogen production. These photoelectrodes, composed of semiconductor materials, potentially harness light energy and generate charge carriers, driving water oxidation and reduction reactions. The versatility of particle-based photoelectrodes as a platform for investigating and enhancing various semiconductor candidates is explored, particularly the emerging complex oxides with compelling charge transfer properties. However, the challenges presented by many factors influencing the performance and stability of these photoelectrodes, including particle size, shape, composition, morphology, surface modification, and electrode configuration, are highlighted. The review introduces the fundamental principles of semiconductor photoelectrodes for PEC water splitting, presents an exhaustive overview of different synthesis methods for semiconductor powders and their assembly into photoelectrodes, and discusses recent advances and challenges in photoelectrode material development. It concludes by offering promising strategies for improving photoelectrode performance and stability, such as the adoption of novel architectures and heterojunctions.
Collapse
Affiliation(s)
- Deyu Liu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
| | - Yongbo Kuang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19(A)Yuquan Road, Beijing, 100049, China
| |
Collapse
|
5
|
Jia G, Zhang Y, Yu JC, Guo Z. Asymmetric Atomic Dual-Sites for Photocatalytic CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403153. [PMID: 39039977 DOI: 10.1002/adma.202403153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/25/2024] [Indexed: 07/24/2024]
Abstract
Atomically dispersed active sites in a photocatalyst offer unique advantages such as locally tuned electronic structures, quantum size effects, and maximum utilization of atomic species. Among these, asymmetric atomic dual-sites are of particular interest because their asymmetric charge distribution generates a local built-in electric potential to enhance charge separation and transfer. Moreover, the dual sites provide flexibility for tuning complex multielectron and multireaction pathways, such as CO2 reduction reactions. The coordination of dual sites opens new possibilities for engineering the structure-activity-selectivity relationship. This comprehensive overview discusses efficient and sustainable photocatalysis processes in photocatalytic CO2 reduction, focusing on strategic active-site design and future challenges. It serves as a timely reference for the design and development of photocatalytic conversion processes, specifically exploring the utilization of asymmetric atomic dual-sites for complex photocatalytic conversion pathways, here exemplified by the conversion of CO2 into valuable chemicals.
Collapse
Affiliation(s)
- Guangri Jia
- Department of Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Yingchuan Zhang
- Department of Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Jimmy C Yu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, P. R. China
| | - Zhengxiao Guo
- Department of Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
6
|
Wei Z, Yang S, Lei J, Guo K, Yuan H, Ming M, Du J, Han Z. Pyridinethiolate-Capped CdSe Quantum Dots for Red-Light-Driven H 2 Production in Water. Chemistry 2024; 30:e202401475. [PMID: 38888382 DOI: 10.1002/chem.202401475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/20/2024]
Abstract
The utilization of low-energy sunlight to produce renewable fuels is a subject of great interest. Here we report the first example of metal chalcogenide quantum dots (QDs) capped with a pyridinethiolate carboxylic acid (pyS-COOH) for red-light-driven H2 production in water. The precious-metal-free system is robust over 240 h, and achieves a turnover number (TON) of 43910±305 (vs Ni) with a rate of 31570±1690 μmol g-1 h-1 for hydrogen production. In contrast to the inactive QDs capped with other thiolate ligands, the CdSe-pyS-COOH QDs give a significantly higher singlet oxygen quantum yield [ΦΔ (1O2)] in solution.
Collapse
Affiliation(s)
- Zuting Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, China
| | - Shuang Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, China
| | - Jingxiang Lei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, China
| | - Kai Guo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, China
| | - Huiqing Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, China
| | - Mei Ming
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, China
| | - Jiehao Du
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, China
| | - Zhiji Han
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, China
| |
Collapse
|
7
|
Liu N, Jiang J, Xu M, Zhang S, Zhang R, Chen Z, Mao Y, Cheng P, Shi W. Asymmetric Charge Distribution in One-Dimensional Metal-Organic Assemblies to Promote Photocatalytic Hydrogen Evolution. CHEMSUSCHEM 2024:e202401338. [PMID: 39155270 DOI: 10.1002/cssc.202401338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
The local charge distribution of photocatalyst is crucial to the catalytic activity due to its influence on the charge separation process. Herein, we report two one-dimensional Ni-based metal-organic assemblies for efficient photocatalytic hydrogen evolution without using noble-metal cocatalysts. By adjusting the aromatic ring in the center of the tricarboxylic ligand, the photocatalytic hydrogen evolution activity was increased from 1715-2652 μmol h-1 g-1. The detailed mechanism study shows that the introduced nitrogen atoms in the ligands of the metal-organic coordination assembly could modulate the local charge distribution, and yielding a significant enhancement of the molecular dipole moment which engenders a propulsive force for the effective separation and transport of photoinduced charge carriers. This work provides insights into the local charge distribution via ligand modulation for enhancing the activity of photocatalysts.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jialong Jiang
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Mingming Xu
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shiqi Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Runhao Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhonghang Chen
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yue Mao
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Peng Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wei Shi
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
8
|
Mao Y, Zhang M, Zhai G, Si S, Liu D, Song K, Liu Y, Wang Z, Zheng Z, Wang P, Dai Y, Cheng H, Huang B. Asymmetric Cu(I)─W Dual-Atomic Sites Enable C─C Coupling for Selective Photocatalytic CO 2 Reduction to C 2H 4. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401933. [PMID: 38666482 PMCID: PMC11267401 DOI: 10.1002/advs.202401933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/10/2024] [Indexed: 07/25/2024]
Abstract
Solar-driven CO2 reduction into value-added C2+ chemical fuels, such as C2H4, is promising in meeting the carbon-neutral future, yet the performance is usually hindered by the high energy barrier of the C─C coupling process. Here, an efficient and stabilized Cu(I) single atoms-modified W18O49 nanowires (Cu1/W18O49) photocatalyst with asymmetric Cu─W dual sites is reported for selective photocatalytic CO2 reduction to C2H4. The interconversion between W(V) and W(VI) in W18O49 ensures the stability of Cu(I) during the photocatalytic process. Under light irradiation, the optimal Cu1/W18O49 (3.6-Cu1/W18O49) catalyst exhibits concurrent high activity and selectivity toward C2H4 production, reaching a corresponding yield rate of 4.9 µmol g-1 h-1 and selectivity as high as 72.8%, respectively. Combined in situ spectroscopies and computational calculations reveal that Cu(I) single atoms stabilize the *CO intermediate, and the asymmetric Cu─W dual sites effectively reduce the energy barrier for the C─C coupling of two neighboring CO intermediates, enabling the highly selective C2H4 generation from CO2 photoreduction. This work demonstrates leveraging stabilized atomically-dispersed Cu(I) in asymmetric dual-sites for selective CO2-to-C2H4 conversion and can provide new insight into photocatalytic CO2 reduction to other targeted C2+ products through rational construction of active sites for C─C coupling.
Collapse
Affiliation(s)
- Yuyin Mao
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Minghui Zhang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Guangyao Zhai
- School of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaHefei230026China
| | - Shenghe Si
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Dong Liu
- School of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaHefei230026China
| | - Kepeng Song
- School of Chemistry and Chemical EngineeringShandong UniversityJinan250100China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Zeyan Wang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Peng Wang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Ying Dai
- School of PhysicsShandong UniversityJinan250100China
| | - Hefeng Cheng
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Baibiao Huang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| |
Collapse
|
9
|
Tao Y, Guan J, Zhang J, Hu S, Ma R, Zheng H, Gong J, Zhuang Z, Liu S, Ou H, Wang D, Xiong Y. Ruthenium Single Atomic Sites Surrounding the Support Pit with Exceptional Photocatalytic Activity. Angew Chem Int Ed Engl 2024; 63:e202400625. [PMID: 38556897 DOI: 10.1002/anie.202400625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/08/2024] [Accepted: 03/29/2024] [Indexed: 04/02/2024]
Abstract
Single-metal atomic sites and vacancies can accelerate the transfer of photogenerated electrons and enhance photocatalytic performance in photocatalysis. In this study, a series of nickel hydroxide nanoboards (Ni(OH)x NBs) with different loadings of single-atomic Ru sites (w-SA-Ru/Ni(OH)x) were synthesized via a photoreduction strategy. In such catalysts, single-atomic Ru sites are anchored to the vacancies surrounding the pits. Notably, the SA-Ru/Ni(OH)x with 0.60 wt % Ru loading (0.60-SA-Ru/Ni(OH)x) exhibits the highest catalytic performance (27.6 mmol g-1 h-1) during the photocatalytic reduction of CO2 (CO2RR). Either superfluous (0.64 wt %, 18.9 mmol g-1 h-1; 3.35 wt %, 9.4 mmol-1 h-1) or scarce (0.06 wt %, 15.8 mmol g-1 h-1; 0.29 wt %, 21.95 mmol g-1 h-1; 0.58 wt %, 23.4 mmol g-1 h-1) of Ru sites have negative effect on its catalytic properties. Density functional theory (DFT) calculations combined with experimental results revealed that CO2 can be adsorbed in the pits; single-atomic Ru sites can help with the conversion of as-adsorbed CO2 and lower the energy of *COOH formation accelerating the reaction; the excessive single-atomic Ru sites occupy vacancies that retard the completion of CO2RR.
Collapse
Affiliation(s)
- Yu Tao
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jianping Guan
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jian Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering Wenzhou University, Wenzhou, 325035, China
| | - Shouyao Hu
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Runze Ma
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Huanran Zheng
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jiaxin Gong
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Shoujie Liu
- School of Materials Science and Engineering, Anhui University, Anhui, 230601, China
| | - Honghui Ou
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yu Xiong
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
10
|
Conelli D, Matuhina A, Dibenedetto CN, Grandhi GK, Margiotta N, Fanizza E, Striccoli M, Vivo P, Suranna GP, Grisorio R. Surface-Engineered Cesium Lead Bromide Perovskite Nanocrystals for Enabling Photoreduction Activity. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38660951 DOI: 10.1021/acsami.4c02071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In recent years, colloidal lead halide perovskite (LHP) nanocrystals (NCs) have exhibited such intriguing light absorption properties to be contemplated as promising candidates for photocatalytic conversions. However, for effective photocatalysis, the light harvesting system needs to be stable under the reaction conditions propaedeutic to a specific transformation. Unlike photoinduced oxidative reaction pathways, photoreductions with LHP NCs are challenging due to their scarce compatibility with common hole scavengers like amines and alcohols. In this contribution, it is investigated the potential of CsPbBr3 NCs protected by a suitably engineered bidentate ligand for the photoreduction of quinone species. Using an in situ approach for the construction of the passivating agent and a halide excess environment, quantum-confined nanocubes (average edge length = 6.0 ± 0.8 nm) are obtained with a low ligand density (1.73 ligand/nm2) at the NC surface. The bifunctional adhesion of the engineered ligand boosts the colloidal stability of the corresponding NCs, preserving their optical properties also in the presence of an amine excess. Despite their relatively short exciton lifetime (τAV = 3.7 ± 0.2 ns), these NCs show an efficient fluorescence quenching in the presence of the selected electron accepting quinones (1,4-naphthoquinone, 9,10-phenanthrenequinone, and 9,10-anthraquinone). All of these aspects demonstrate the suitability of the NCs for an efficient photoreduction of 1,4-naphthoquinone to 1,4-dihydroxynaphthalene in the presence of triethylamine as a hole scavenger. This chemical transformation is impracticable with conventionally passivated LHP NCs, thereby highlighting the potential of the surface functionalization in this class of nanomaterials for exploring new photoinduced reactivities.
Collapse
Affiliation(s)
- Daniele Conelli
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy
| | - Anastasia Matuhina
- Hybrid Solar Cells, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33014 Tampere, Finland
| | | | - G Krishnamurthy Grandhi
- Hybrid Solar Cells, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33014 Tampere, Finland
| | - Nicola Margiotta
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Elisabetta Fanizza
- CNR IPCF─Istituto per i Processi Chimico Fisici, UOS Bari, Via Orabona 4, 70126 Bari, Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Bari Research Unit, 70126, Bari, Italy
| | - Marinella Striccoli
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Bari Research Unit, 70126, Bari, Italy
| | - Paola Vivo
- Hybrid Solar Cells, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33014 Tampere, Finland
| | - Gian Paolo Suranna
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy
- CNR-NANOTEC - Institute of Nanotechnology, c/o Campus Ecoteckne, Via Monteroni, 73100 Lecce, Italy
| | - Roberto Grisorio
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
11
|
Grega MN, Gan J, Noman M, Asbury JB. Reversible Ligand Detachment from CdSe Quantum Dots Following Photoexcitation. J Phys Chem Lett 2024; 15:3987-3995. [PMID: 38573308 DOI: 10.1021/acs.jpclett.4c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The nanocrystal-ligand boundaries of colloidal quantum dots (QDs) mediate charge and energy transfer processes that underpin photochemical and photocatalytic transformations at their surfaces. We used time-resolved infrared spectroscopy combined with transient electronic spectroscopy to probe vibrational modes of the carboxylate anchoring groups of stearate ligands attached to cadmium selenide (CdSe) QDs that were optically excited in solid nanocrystal films. The vibrational frequencies of surface-bonded carboxylate groups revealed their interactions with surface-localized holes in the excited states of the QDs. We also observed transient and reversible photoinduced ligand detachment from CdSe nanocrystals within their excited state lifetime. By probing both surface charge distributions and ligand dynamics on QDs in their excited states, we open a pathway to explore how the nanocrystal-ligand boundary can be understood and controlled for the design of QD architectures that most effectively drive charge transfer processes in solar energy harvesting and photoredox catalysis applications.
Collapse
Affiliation(s)
- McKenna N Grega
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jianing Gan
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Muhammad Noman
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - John B Asbury
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Intercollege Materials Science and Engineering Program, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
12
|
Zhang X, Tan Y, Zhao J, Cai Z, Zhang J, Madhusudan P. NiFeB-assisted adsorption and activation of nitrogen to improve the photooxidation activity of zinc porphyrin. Chem Commun (Camb) 2024; 60:4298-4301. [PMID: 38530709 DOI: 10.1039/d4cc00249k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
This study effectively addresses the challenge of nitrogen adsorption and activation in photocatalytic nitrogen fixation by introducing an oxidizing co-catalyst, NiFeB hydroxides. The NiFeB hydroxides could provide reactive active sites and significantly enhance the nitrogen oxidation activity, offering a novel pathway for co-catalysts in nitrogen fixation reactions.
Collapse
Affiliation(s)
- Xuan Zhang
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Yawen Tan
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Juntao Zhao
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Zixuan Cai
- Wuhan Jingkai Foreign Language School, Wuhan 430056, PR China
| | - Jun Zhang
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Puttaswamy Madhusudan
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea.
| |
Collapse
|
13
|
Chai Z. Heterogeneous Photocatalytic Strategies for C(sp 3 )-H Activation. Angew Chem Int Ed Engl 2024; 63:e202316444. [PMID: 38225893 DOI: 10.1002/anie.202316444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Activation of ubiquitous C(sp3 )-H bonds is extremely attractive but remains a great challenge. Heterogeneous photocatalysis offers a promising and sustainable approach for C(sp3 )-H activation and has been fast developing in the past decade. This Minireview focuses on mechanism and strategies for heterogeneous photocatalytic C(sp3 )-H activation. After introducing mechanistic insights, heterogeneous photocatalytic strategies for C(sp3 )-H activation including precise design of active sites, regulation of reactive radical species, improving charge separation and reactor innovations are discussed. In addition, recent advances in C(sp3 )-H activation of hydrocarbons, alcohols, ethers, amines and amides by heterogeneous photocatalysis are summarized. Lastly, challenges and opportunities are outlined to encourage more efforts for the development of this exciting and promising field.
Collapse
Affiliation(s)
- Zhigang Chai
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
14
|
Liu P, Kong XY, Jiang L, Wen L. Ion transport in nanofluidics under external fields. Chem Soc Rev 2024; 53:2972-3001. [PMID: 38345093 DOI: 10.1039/d3cs00367a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Nanofluidic channels with tailored ion transport dynamics are usually used as channels for ion transport, to enable high-performance ion regulation behaviors. The rational construction of nanofluidics and the introduction of external fields are of vital significance to the advancement and development of these ion transport properties. Focusing on the recent advances of nanofluidics, in this review, various dimensional nanomaterials and their derived homogeneous/heterogeneous nanofluidics are first briefly introduced. Then we discuss the basic principles and properties of ion transport in nanofluidics. As the major part of this review, we focus on recent progress in ion transport in nanofluidics regulated by external physical fields (electric field, light, heat, pressure, etc.) and chemical fields (pH, concentration gradient, chemical reaction, etc.), and reveal the advantages and ion regulation mechanisms of each type. Moreover, the representative applications of these nanofluidic channels in sensing, ionic devices, energy conversion, and other areas are summarized. Finally, the major challenges that need to be addressed in this research field and the future perspective of nanofluidics development and practical applications are briefly illustrated.
Collapse
Affiliation(s)
- Pei Liu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, P. R. China
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P. R. China
| |
Collapse
|
15
|
Shen M, Rackers WH, Sadtler B. Getting the Most Out of Fluorogenic Probes: Challenges and Opportunities in Using Single-Molecule Fluorescence to Image Electro- and Photocatalysis. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:692-715. [PMID: 38037609 PMCID: PMC10685636 DOI: 10.1021/cbmi.3c00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 12/02/2023]
Abstract
Single-molecule fluorescence microscopy enables the direct observation of individual reaction events at the surface of a catalyst. It has become a powerful tool to image in real time both intra- and interparticle heterogeneity among different nanoscale catalyst particles. Single-molecule fluorescence microscopy of heterogeneous catalysts relies on the detection of chemically activated fluorogenic probes that are converted from a nonfluorescent state into a highly fluorescent state through a reaction mediated at the catalyst surface. This review article describes challenges and opportunities in using such fluorogenic probes as proxies to develop structure-activity relationships in nanoscale electrocatalysts and photocatalysts. We compare single-molecule fluorescence microscopy to other microscopies for imaging catalysis in situ to highlight the distinct advantages and limitations of this technique. We describe correlative imaging between super-resolution activity maps obtained from multiple fluorogenic probes to understand the chemical origins behind spatial variations in activity that are frequently observed for nanoscale catalysts. Fluorogenic probes, originally developed for biological imaging, are introduced that can detect products such as carbon monoxide, nitrite, and ammonia, which are generated by electro- and photocatalysts for fuel production and environmental remediation. We conclude by describing how single-molecule imaging can provide mechanistic insights for a broader scope of catalytic systems, such as single-atom catalysts.
Collapse
Affiliation(s)
- Meikun Shen
- Department
of Chemistry and Biochemistry, University
of Oregon, Eugene, Oregon 97403, United States
| | - William H. Rackers
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Bryce Sadtler
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
- Institute
of Materials Science & Engineering, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
16
|
Li X, Yang L, Liu Q, Bai W, Li H, Wang M, Qian Q, Yang Q, Xiao C, Xie Y. Directional Shunting of Photogenerated Carriers in POM@MOF for Promoting Nitrogen Adsorption and Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304532. [PMID: 37595959 DOI: 10.1002/adma.202304532] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/20/2023] [Indexed: 08/20/2023]
Abstract
The efficient catalysis of nitrogen (N2 ) into high-value N-containing products plays a crucial role in the N economic cycle. However, weak N2 adsorption and invalid N2 activation remain two major bottlenecks in rate-determining steps, leading to low N2 fixation performance. Herein, an effective dual active sites photocatalyst of polyoxometalates (POMs)-based metal-organic frameworks (MOFs) is highlighted via altering coordination microenvironment and inducing directional shunting of photogenerated carriers to facilitate N2 /catalyst interaction and enhance oxidation performance. MOFs create more open unsaturated metal cluster sites with unoccupied d orbital possessing Lewis acidity to accept electrons from the 3σg bonding orbital of N2 for storage by combining with POMs to replace bidentate linkers. POMs act as electron sponges donating electrons to MOFs, while the holes directional flow to POMs. The hole-rich POMs with strong oxidation capacity are easily involved in oxidizing adsorbed N2 . Taking UiO-66 (C48 H28 O32 Zr6 ) and Mo72 Fe30 ([Mo72 Fe30 O252 (CH3 COO)12 {Mo2 O7 (H2 O)}2 {H2 Mo2 O8 (H2 O)}(H2 O)91 ]·150H2 O) as an example, Mo72 Fe30 @UiO-66 shows twofold enhanced adsorption of N2 (250.5 cm3 g-1 ) than UiO-66 (122.9 cm3 g-1 ) at P/P0 = 1. And, the HNO3 yield of Mo72 Fe30 @UiO-66 is 702.4 µg g-1 h-1 , ≈7 times and 24 times higher than UiO-66 and Mo72 Fe30 . This work provides reliable value for the storage and relaying artificial N2 fixation.
Collapse
Affiliation(s)
- Xiaohong Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Lan Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Qilong Liu
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031, P. R. China
| | - Wei Bai
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Huiyi Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Mengxiang Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Qizhu Qian
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Qinghua Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chong Xiao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031, P. R. China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031, P. R. China
| |
Collapse
|
17
|
Xu D, Zhai L, Mu Z, Tao CL, Ge F, Zhang H, Ding M, Cheng F, Wu XJ. Versatile synthesis of nano-icosapods via cation exchange for effective photocatalytic conversion of biomass-relevant alcohols. Chem Sci 2023; 14:10167-10175. [PMID: 37772115 PMCID: PMC10530866 DOI: 10.1039/d3sc02493h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
Branched metal chalcogenide nanostructures with well-defined composition and configuration are appealing photocatalysts for solar-driven organic transformations. However, precise design and controlled synthesis of such nanostructures still remain a great challenge. Herein, we report the construction of a variety of highly symmetrical metal sulfides and heterostructured icosapods based on them, in which twenty branches were radially grown in spatially ordered arrangement, with a high degree of structure homogeneity. Impressively, the as-obtained CdS-PdxS icosapods manifest a significantly improved photocatalytic activity for the selective oxidation of biomass-relevant alcohols into corresponding aldehydes coupled with H2 evolution under visible-light irradiation (>420 nm), and the apparent quantum yield of the benzyl alcohol reforming can be achieved as high as 31.4% at 420 nm. The photoreforming process over the CdS-PdxS icosapods is found to be directly triggered by the photogenerated electrons and holes without participation of radicals. The enhanced photocatalytic performance is attributed to the fast charge separation and abundant active sites originating from the well-defined configuration and spatial organization of the components in the branched heterostructures.
Collapse
Affiliation(s)
- Dan Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Li Zhai
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong China
| | - Zhangyan Mu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Chen-Lei Tao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Feiyue Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Han Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications Nanjing 210023 China
| | - Mengning Ding
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Fang Cheng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications Nanjing 210023 China
| | - Xue-Jun Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
18
|
Wang S, Ai Z, Niu X, Yang W, Kang R, Lin Z, Waseem A, Jiao L, Jiang HL. Linker Engineering of Sandwich-Structured Metal-Organic Framework Composites for Optimized Photocatalytic H 2 Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302512. [PMID: 37421606 DOI: 10.1002/adma.202302512] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/18/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
While the microenvironment around catalytic sites is recognized to be crucial in thermocatalysis, its roles in photocatalysis remain subtle. In this work, a series of sandwich-structured metal-organic framework (MOF) composites, UiO-66-NH2 @Pt@UiO-66-X (X means functional groups), is rationally constructed for visible-light photocatalytic H2 production. By varying the ─X groups of the UiO-66-X shell, the microenvironment of the Pt sites and photosensitive UiO-66-NH2 core can be simultaneously modulated. Significantly, the MOF composites with identical light absorption and Pt loading present distinctly different photocatalytic H2 production rates, following the ─X group sequence of ─H > ─Br > ─NA (naphthalene) > ─OCH3 > ─Cl > ─NO2 . UiO-66-NH2 @Pt@UiO-66-H demonstrates H2 production rate up to 2708.2 µmol g-1 h-1 , ≈222 times that of UiO-66-NH2 @Pt@UiO-66-NO2 . Mechanism investigations suggest that the variation of the ─X group can balance the charge separation of the UiO-66-NH2 core and the proton reduction ability of Pt, leading to an optimal activity of UiO-66-NH2 @Pt@UiO-66-H at the equilibrium point.
Collapse
Affiliation(s)
- Siyuan Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhiwen Ai
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xinwei Niu
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
| | - Weijie Yang
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
| | - Rong Kang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhongyuan Lin
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Amir Waseem
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Long Jiao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
19
|
Lyu P, Espinoza R, Nguyen SC. Photocatalysis of Metallic Nanoparticles: Interband vs Intraband Induced Mechanisms. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:15685-15698. [PMID: 37609384 PMCID: PMC10440817 DOI: 10.1021/acs.jpcc.3c04436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/22/2023] [Indexed: 08/24/2023]
Abstract
Photocatalysis induced by localized surface plasmon resonance of metallic nanoparticles has been studied for more than a decade, but photocatalysis originating from direct interband excitations is still under-explored. The spectral overlap and the coupling of these two optical regimes also complicate the determination of hot carriers' energy states and eventually hinder the accurate assignment of their catalytic role in studied reactions. In this Featured Article, after reviewing previous studies, we suggest classifying the photoexcitation via intra- and interband transitions where the physical states of hot carriers are well-defined. Intraband transitions are featured by creating hot electrons above the Fermi level and suitable for reductive catalytic pathways, whereas interband transitions are featured by generating hot d-band holes below the Fermi level and better for oxidative catalytic pathways. Since the contribution of intra- and interband transitions are different in the spectral regions of localized surface plasmon resonance and direct interband excitations, the wavelength dependence of the photocatalytic activities is very helpful in assigning which transitions and carriers contribute to the observed catalysis.
Collapse
Affiliation(s)
- Pin Lyu
- Department
of Chemistry and Biochemistry, University
of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Randy Espinoza
- Department
of Chemistry and Biochemistry, University
of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Son C. Nguyen
- Department
of Chemistry and Biochemistry, University
of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| |
Collapse
|
20
|
Mo W, Chen Q, Zhou H, Zhao W, Hu L, Zhong S, Ke S, Wu XL, Chen J, Bai S. Unveiling the difference in the activity and selectivity of nickel based cocatalysts for CO2 photoreduction. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Lu J, Guo Q, Chen J, Xie K, Guan X, Yang L, Wang G. Delicate Design of ZnS@In 2S 3 Core-Shell Structures with Modulated Photocatalytic Performance under Simulated Sunlight Irradiation. ACS OMEGA 2023; 8:529-538. [PMID: 36643549 PMCID: PMC9835534 DOI: 10.1021/acsomega.2c05483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
ZnS@In2S3 core-shell structures with high photocatalytic activity have been delicately designed and synthesized. The unique structure and synergistic effects of the composites have an important influence on the improvement of photocatalytic activity. The photocatalytic activity has been studied by photodegrading individual eosin B (EB) and the mixture solution consisting of eosin B and rhodamine B (EB-RhB) in the presence of hydrogen peroxide (H2O2) under simulated sunlight irradiation. The results show that all of the photocatalysts with different contents of In2S3 exhibit enhanced catalytic activity compared to pure ZnS for the degradation of EB and EB-RhB solution. When the theoretical molar ratio of ZnS to In2S3 was 1:0.5, the composite presents the highest photocatalytic efficiency, which could eliminate more than 98% of EB and 94% of EB-RhB. At the same time, after five cycles of photocatalytic tests, the photocatalytic efficiency could be about 96% for the degradation of the EB solution, and relatively high photocatalytic activity could also be obtained for the degradation of the EB-RhB mixed solution. This work has proposed a facile synthetic process to realize the controlled preparation of core-shell ZnS@In2S3 composites with effectively modulated structures and compositions, and the composites have also proved to be high-efficiency photocatalysts for the disposal of complicated pollutants.
Collapse
Affiliation(s)
- Jianyi Lu
- School
of Chemical Engineering, Northeast Electric
Power University, Jilin132012, P. R. China
| | - Qianqian Guo
- School
of Chemical Engineering, Northeast Electric
Power University, Jilin132012, P. R. China
| | - Jingyang Chen
- School
of Chemical Engineering, Northeast Electric
Power University, Jilin132012, P. R. China
| | - Kunhan Xie
- School
of Chemical Engineering, Northeast Electric
Power University, Jilin132012, P. R. China
| | - Xiaohui Guan
- School
of Chemical Engineering, Northeast Electric
Power University, Jilin132012, P. R. China
| | - Liu Yang
- School
of Chemical Engineering, Northeast Electric
Power University, Jilin132012, P. R. China
| | - Guangsheng Wang
- School
of Chemistry, Beihang University, Beijing100191, P. R. China
| |
Collapse
|
22
|
Sustainable organic synthesis promoted on titanium dioxide using coordinated water and renewable energies/resources. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Turning photocatalytic H2 evolution into CO2 reduction of molecular nickel(II) complexes by using a redox–active bipyridine ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Hao M, Qin Y, Shen J, Wang B, Li Z. Visible-Light-Initiated Acceptor-Less Dehydrogenation of Alcohols to Vicinal Diols over UiO-66(Zr): Surface Complexation and Role of Bridging Hydroxyl. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mingming Hao
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yuhuan Qin
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jiexuan Shen
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Bingqing Wang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, P. R. China
| | - Zhaohui Li
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
25
|
Ling P, Zhu J, Wang Z, Hu J, Zhu J, Yan W, Sun Y, Xie Y. Ultrathin Ti-doped WO 3 nanosheets realizing selective photoreduction of CO 2 to CH 3OH. NANOSCALE 2022; 14:14023-14028. [PMID: 36112105 DOI: 10.1039/d2nr02364d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Arduous CO2 activation and sluggish charge transfer retard the photoreduction of CO2 to CH3OH with high efficiency and selectivity. Here, we fabricate ultrathin Ti-doped WO3 nanosheets possessing approving active sites and optimized carrier dynamics as a promising catalyst. Quasi in situ X-ray photoelectron spectroscopy and synchrotron-radiation X-ray absorption near-edge spectroscopy firmly confirm that the true active sites for CO2 reduction are the W sites rather the Ti sites, while the Ti dopants can facilitate charge transfer, which accelerates the generation of crucial COOH* intermediates as revealed by in situ Fourier-transform infrared spectroscopy and density functional theory calculations. Besides, the Gibbs free energy calculations also validate that Ti doping can lower the energy barrier of CO2 activation and CH3OH desorption by 0.22 eV and 0.42 eV, respectively, thus promoting the formation of CH3OH. In consequence, the Ti-doped WO3 ultrathin nanosheets show a superior CH3OH selectivity of 88.9% and reach a CH3OH evolution rate of 16.8 μmol g-1 h-1, about 3.3 times higher than that on WO3 nanosheets. This work sheds light on promoting CO2 photoreduction to CH3OH by rational elemental doping.
Collapse
Affiliation(s)
- Peiquan Ling
- Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China.
| | - Juncheng Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China.
| | - Zhiqiang Wang
- Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China.
| | - Jun Hu
- Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China.
| | - Junfa Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China.
| | - Wensheng Yan
- Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China.
| | - Yongfu Sun
- Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China.
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China.
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| |
Collapse
|
26
|
Meng SL, Ye C, Li XB, Tung CH, Wu LZ. Photochemistry Journey to Multielectron and Multiproton Chemical Transformation. J Am Chem Soc 2022; 144:16219-16231. [PMID: 36054091 DOI: 10.1021/jacs.2c02341] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The odyssey of photochemistry is accompanied by the journey to manipulate "electrons" and "protons" in time, in space, and in energy. Over the past decades, single-electron (1e-) photochemical transformations have brought marvelous achievements. However, as each photon absorption typically generates only one exciton pair, it is exponentially challenging to accomplish multielectron and proton photochemical transformations. The multistep differences in thermodynamics and kinetics urgently require us to optimize light harvesting, expedite consecutive electron transfer, manipulate the interaction of catalysts with substrates, and coordinate proton transfer kinetics to furnish selective bond formations. Tandem catalysis enables orchestrating different photochemical events and catalytic transformations from subpicoseconds to seconds, which facilitates multielectron redox chemistries and brings consecutive, value-added reactivities. Joint efforts in molecular and material design, mechanistic understanding, and theoretical modeling will bring multielectron and proton synthetic opportunities for fuels, fertilizers, and chemicals with enhanced versatility, efficiency, selectivity, and scalability, thus taking better advantage of photons (i.e., sunlight) for our sustainable society.
Collapse
Affiliation(s)
- Shu-Lin Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen Ye
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xu-Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
27
|
Carbon-based nanostructures for emerging photocatalysis: CO2 reduction, N2 fixation, and organic conversion. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Jian J, Liao J, Zhou M, Yao M, Chen Y, Liang X, Liu C, Tong Q. Enhanced Photoelectrochemical Water Splitting of Black Silicon Photoanode with pH‐Dependent Copper‐Bipyridine Catalysts. Chemistry 2022; 28:e202201520. [DOI: 10.1002/chem.202201520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Jing‐Xin Jian
- Department of Chemistry Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention Shantou University Shantou Guangdong 515063 P. R. China
| | - Jia‐Xin Liao
- Department of Chemistry Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention Shantou University Shantou Guangdong 515063 P. R. China
| | - Mu‐Han Zhou
- Department of Chemistry Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention Shantou University Shantou Guangdong 515063 P. R. China
| | - Ming‐Ming Yao
- Department of Chemistry Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention Shantou University Shantou Guangdong 515063 P. R. China
| | - Yi‐Jing Chen
- Department of Chemistry Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention Shantou University Shantou Guangdong 515063 P. R. China
| | - Xi‐Wen Liang
- Department of Chemistry Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention Shantou University Shantou Guangdong 515063 P. R. China
| | - Chao‐Ping Liu
- Department of Physics Shantou University Shantou Guangdong 515063 P. R. China
| | - Qing‐Xiao Tong
- Department of Chemistry Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention Shantou University Shantou Guangdong 515063 P. R. China
| |
Collapse
|
29
|
Huang S, Chen K, Li TT. Porphyrin and phthalocyanine based covalent organic frameworks for electrocatalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Huang S, Wang M, Su DJ, Liang J, Sun F, Tian W, Zhao LB, Liu J. Co-Doped Mn 3 O 4 Nanocubes via Galvanic Replacement Reactions for Photocatalytic Reduction of CO 2 with High Turnover Number. CHEMSUSCHEM 2022; 15:e202200704. [PMID: 35567361 DOI: 10.1002/cssc.202200704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/02/2022] [Indexed: 06/15/2023]
Abstract
The synthesis of Co-doped Mn3 O4 nanocubes was achieved via galvanic replacement reactions for photo-reduction of CO2 . Co@Mn3 O4 nanocubes could efficiently photo-reduce CO2 to CO with a remarkable turnover number of 581.8 using [Ru(bpy)3 ]Cl2 ⋅ 6H2 O as photosensitizer and triethanolamine as sacrificial agent in acetonitrile and water. The galvanic replaced Co species are homogeneously distributed at the outer surface of Mn3 O4 , providing catalytic active sites during CO2 reduction reactions, which facilitate the separation and migration of photogenerated charge carriers, further benefiting the outstanding photocatalytic performance of CO2 reduction. Density functional theory calculations revealed that the decreasing of conduction band maximum in Co@Mn3 O4 was beneficial to the electron attachment from the excited sensitized molecule, which promoted photocatalytic reduction of CO2 .
Collapse
Affiliation(s)
- Shengfu Huang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024, Dalian, P. R. China
| | - Mang Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024, Dalian, P. R. China
| | - Dai-Jian Su
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, 400715, Chongqing, P. R. China
| | - Jing Liang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024, Dalian, P. R. China
| | - Fengke Sun
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhong Shan Rd., 116023, Dalian, P. R. China
| | - Wenming Tian
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhong Shan Rd., 116023, Dalian, P. R. China
| | - Liu-Bin Zhao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, 400715, Chongqing, P. R. China
| | - Jinxuan Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024, Dalian, P. R. China
| |
Collapse
|
31
|
Qiu LQ, Yang ZW, Yao X, Li XY, He LN. Highly Robust Rhenium(I) Bipyridyl Complexes Containing Dipyrromethene-BF 2 Chromophores for Visible Light-Driven CO 2 Reduction. CHEMSUSCHEM 2022; 15:e202200337. [PMID: 35470575 DOI: 10.1002/cssc.202200337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/22/2022] [Indexed: 06/14/2023]
Abstract
New rhenium bipyridyl complexes with dipyrromethene-BF2 chromophores (A-ReBDP-CZ, A-ReBDP2 , ReBDP-CZ, and ReBDP2 ) were developed for highly efficient photocatalytic carbon dioxide (CO2 ) reduction to carbon monoxide (CO). These catalysts consisted of two moderate electron-deficient groups (dipyrromethene-BF2 , BDP) as the visible-light-harvesting antenna as well as both electron donor (N-phenylcarbazole, CZ) and acceptor (BDP) on Re bipyridyl framework. Among ReBDP-CZ and ReBDP2 complexes, the ReBDP2 incorporating two electron-deficient BDP chromophores had a longer-lived photoexcited state (182.4 μs) and a twofold enhanced molar absorption coefficient (ϵ=157000 m-1 cm-1 ) compared with ReBDP-CZ. Thus, ReBDP2 achieved the superior photocatalytic reactivity and stability with a CO turnover number (TONCO ) value as high as 1323 and quantum yield (ΦCO ) up to 55 %, which was the most excellent photocatalysis efficiency among the single-active-site Re catalysts without additional photosensitizer. Furthermore, the acetylene-bridged linker was detrimental to the photoactivity and durability of the catalyst. In brief, two BDP-based Re bipyridyl systems with outstanding catalytic performance and significant visible-light-harvesting capabilities in the solar spectrum offer a promising strategy for solar-to-fuel conversion schemes.
Collapse
Affiliation(s)
- Li-Qi Qiu
- Department State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, P. R. China
| | - Zhi-Wen Yang
- Department State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, P. R. China
| | - Xiangyang Yao
- Department State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, P. R. China
| | - Xiao-Yang Li
- Department State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, P. R. China
| | - Liang-Nian He
- Department State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, P. R. China
| |
Collapse
|
32
|
Gan QC, Song ZQ, Tung CH, Wu LZ. Direct C( sp)-H/Si-H Cross-Coupling via Copper Salts Photocatalysis. Org Lett 2022; 24:5192-5196. [PMID: 35801840 DOI: 10.1021/acs.orglett.2c02022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Reported herein is the first example of C(sp)-H/Si-H cross-coupling by photocatalysis. In terms of cheap and readily available starting materials, a series of alkynylsilanes are prepared in good to excellent yields upon visible-light irradiation of CuCl and alkynes with silane. The large scale reaction with flow chemistry and late-stage functionalization of natural products shows the potential of the transformation in practical organic synthesis of the alkynylsilanes intermediates.
Collapse
Affiliation(s)
- Qi-Chao Gan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zi-Qi Song
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
33
|
Ren FY, Chen K, Qiu LQ, Chen JM, Darensbourg DJ, He LN. Amphiphilic Polycarbonate Micellar Rhenium Catalysts for Efficient Photocatalytic CO 2 Reduction in Aqueous Media. Angew Chem Int Ed Engl 2022; 61:e202200751. [PMID: 35441773 DOI: 10.1002/anie.202200751] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Indexed: 12/16/2022]
Abstract
A triblock amphiphilic polymer derived from the copolymerization of CO2 and epoxides containing a bipyridine rhenium complex in its backbone is shown to effectively catalyze the visible-light-driven reduction of CO2 to CO. This polymer provides uniformly spherical micelles in aqueous solution, where the metal catalyst is sequestered in the hydrophobic portion of the nanostructured micelle. CO2 to CO reduction occurs in an efficient visible-light-driven process in aqueous media with turnover numbers up to 110 (>99 % selectivity) in the absence of a photosensitizer, which is a 37-fold enhancement over the corresponding molecular rhenium catalyst in organic solvent. Notably, the amphiphilic polycarbonate micelle rhenium catalyst suppresses H2 generation, presumably by preventing deactivation of the active catalytic center by water.
Collapse
Affiliation(s)
- Fang-Yu Ren
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Kaihong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Li-Qi Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jin-Mei Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Donald J Darensbourg
- Department of Chemistry, Texas A&M University, College Station, Texas, TX 77843, USA
| | - Liang-Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
34
|
Guo NN, Liu ZL, Mu YF, Zhang MR, Yao Y, Zhang M, Lu TB. In-situ growth of PbI2 on ligand-free FAPbBr3 nanocrystals to significantly ameliorate the stability of CO2 photoreduction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Qin Y, Hao M, Ding Z, Li Z. Pt@MIL-101(Fe) for efficient visible light initiated coproduction of benzimidazoles and hydrogen from the reaction between o-Phenylenediamines and alcohols. J Catal 2022. [DOI: 10.1016/j.jcat.2022.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Ren F, Chen K, Qiu L, Chen J, Darensbourg DJ, He L. Amphiphilic Polycarbonate Micellar Rhenium Catalysts for Efficient Photocatalytic CO
2
Reduction in Aqueous Media. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Fang‐Yu Ren
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Kaihong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Li‐Qi Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Jin‐Mei Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| | | | - Liang‐Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
37
|
Cheng P, Ziegler M, Ripka V, Wang H, Pollok K, Langenhorst F, Wang D, Schaaf P. Black Silver: Three-Dimensional Ag Hybrid Plasmonic Nanostructures with Strong Photon Coupling for Scalable Photothermoelectric Power Generation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16894-16900. [PMID: 35362322 DOI: 10.1021/acsami.2c01181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The conversion of solar energy into electric power has been extensively studied, for example, by photovoltaics. However, photo-thermoelectric (P-TE) conversion as an effective solar-to-electricity conversion process is less studied. Here, we present an efficient full-solar-spectrum plasmonic absorber for scalable P-TE conversion based on a simple integration of light absorber and commercial thermoelectric modules. Our developed light absorber of silica-silver hybrid structures achieves an average absorption of 99.4% in the wavelength range from 200 to 2500 nm, which covers over 98% solar energy in this range. It thus appears fully matte black and is named black silver. The light absorber includes a hierarchical structure with Ag nanoparticles attached on three-dimensional SiO2 nanostructures, resulting in ultrahigh absorption. Strong localized surface plasmon resonance hybridization together with multiple scattering causes the perfect light absorption. Using the black silver as a light absorber for P-TE power generation, it can achieve a peak voltage density as high as 82.5 V m-2 under a solar intensity of 100 mW cm-2, which is large enough to power numerous electronic devices. By assembling 20 thermoelectric modules in series, we test their possibility of practical application, and they can also achieve an average voltage density of 70.66 V m-2. Our work opens up a promising technology that facilitates high-efficiency and scalable solar energy conversion via the P-TE effect.
Collapse
Affiliation(s)
- Pengfei Cheng
- Chair Materials for Electrical Engineering and Electronics, Institute of Materials Science and Engineering and Institute of Micro and Nanotechnologies MacroNano, TU Ilmenau, Gustav-Kirchhoff-Str. 5, Ilmenau 98693, Germany
| | - Mario Ziegler
- Competence Center for Micro- and Nanotechnologies, Leibniz Institute of Photonic Technology Jena (IPHT), Jena 07745, Germany
| | - Valentin Ripka
- Competence Center for Micro- and Nanotechnologies, Leibniz Institute of Photonic Technology Jena (IPHT), Jena 07745, Germany
| | - Honglei Wang
- Chair Materials for Electrical Engineering and Electronics, Institute of Materials Science and Engineering and Institute of Micro and Nanotechnologies MacroNano, TU Ilmenau, Gustav-Kirchhoff-Str. 5, Ilmenau 98693, Germany
| | - Kilian Pollok
- Institute of Geosciences, Friedrich Schiller University Jena, Carl-Zeiss-Promenade 10, Jena 07745, Germany
| | - Falko Langenhorst
- Institute of Geosciences, Friedrich Schiller University Jena, Carl-Zeiss-Promenade 10, Jena 07745, Germany
| | - Dong Wang
- Chair Materials for Electrical Engineering and Electronics, Institute of Materials Science and Engineering and Institute of Micro and Nanotechnologies MacroNano, TU Ilmenau, Gustav-Kirchhoff-Str. 5, Ilmenau 98693, Germany
| | - Peter Schaaf
- Chair Materials for Electrical Engineering and Electronics, Institute of Materials Science and Engineering and Institute of Micro and Nanotechnologies MacroNano, TU Ilmenau, Gustav-Kirchhoff-Str. 5, Ilmenau 98693, Germany
| |
Collapse
|
38
|
Tang JH, Han G, Li G, Yan K, Sun Y. Near-infrared light photocatalysis enabled by a ruthenium complex-integrated metal–organic framework via two-photon absorption. iScience 2022; 25:104064. [PMID: 35355522 PMCID: PMC8958328 DOI: 10.1016/j.isci.2022.104064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/23/2021] [Accepted: 03/09/2022] [Indexed: 11/18/2022] Open
Abstract
Photocatalysis under UV/visible light irradiation has emerged as one of the green methodologies for solar energy utilization and organic synthesis. These photocatalytic processes are typically initiated by one-photon-absorbing metal complexes or organic dyes. Nevertheless, the intrinsic restrictions of UV/visible light irradiation, such as shallow penetration in reaction solutions, competing absorption by substrates, and limited coverage of the solar spectrum, call for the development of innovative photocatalysts functioning under longer wavelength irradiation. Herein, we report a ruthenium complex containing a metal-organic framework, MOF-Ru1, which can drive diverse organic reactions under 740 nm light irradiation following the two-photon absorption (TPA) process. Various organic transformations such as energy transfer, reductive, oxidative, and redox neutral reactions were realized using this heterogeneous hybrid photocatalyst. Overall, MOF-Ru1 represents an intriguing TPA photocatalyst active under near-infrared light irradiation, paving a way for the efficient utilization of low-energy light and convenient photocatalyst recycling because of phase separation. Ru complexes with π-conjugation ligands show two-photon absorption of NIR photons Hybrid MOF-Ru has NIR light-driven photocatalytic performance with recyclability A variety of organic reactions were photocatalyzed by MOF-Ru under 740 nm irradiation
Collapse
Affiliation(s)
- Jian-Hong Tang
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Guanqun Han
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Guodong Li
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Kaili Yan
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
- Corresponding author
| |
Collapse
|
39
|
Li DS, Liu T, Hong Y, Cao CL, Wu J, Deng HP. Stop-Flow Microtubing Reactor-Assisted Visible Light-Induced Hydrogen-Evolution Cross Coupling of Heteroarenes with C(sp 3)–H Bonds. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dong-Sheng Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Tao Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
| | - Yang Hong
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Chen-Lin Cao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
- National University of Singapore (Suzhou) Research Institute, No. 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Hong-Ping Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| |
Collapse
|
40
|
Huang J, Chen J, Liu W, Zhang J, Chen J, Li Y. Copper-doped zinc sulfide nanoframes with three-dimensional photocatalytic surfaces for enhanced solar driven H2 production. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63864-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Xie L, Hao JG, Chen HQ, Li ZX, Ge SY, Mi Y, Yang K, Lu KQ. Recent advances of nickel hydroxide-based cocatalysts in heterogeneous photocatalysis. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2021.106371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
42
|
Liu Y, Yang W, Chen Q, Cullen DA, Xie Z, Lian T. Pt Particle Size Affects Both the Charge Separation and Water Reduction Efficiencies of CdS-Pt Nanorod Photocatalysts for Light Driven H 2 Generation. J Am Chem Soc 2022; 144:2705-2715. [PMID: 35089025 DOI: 10.1021/jacs.1c11745] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Decreasing the metal catalyst size into nanoclusters or even single atom is an emerging direction of developing more efficient and cost-effective photocatalytic systems. Because the catalyst particle size affects both the catalyst activity and light driven charge separation efficiency, their effects on the overall photocatalytic efficiency are still poorly understood. Herein, using a well-defined semiconductor-metal heterostructure with Pt nanoparticle catalysts selectively grown on the apexes of CdS nanorods (NRs), we study the effect of the Pt catalyst size on light driven H2 generation quantum efficiency (QEH2). With the increase of the Pt catalyst size from 0.7 ± 0.3 to 3.0 ± 0.8 nm, the QEH2 of CdS-Pt increases from 0.5 ± 0.2% to 38.3 ± 5.1%, by nearly 2 orders of magnitude. Transient absorption spectroscopy measurement reveals that the electron transfer rate from the CdS NR to the Pt tip increases with the Pt diameter following a scaling law of d5.6, giving rise to the increase of electron transfer efficiency at larger Pt sizes. The observed trend can be understood by a simplified kinetic model that assumes the overall efficiency is the product of the quantum efficiencies of charge separation (including hole transfer, electron transfer, and hole scavenging) and water reduction steps, and for CdS-Pt NRs, the quantum efficiencies of electron transfer and water reduction steps increase with the Pt sizes. Our findings suggest the importance of improving the quantum efficiencies of both charge separation and catalysis in designing efficient semiconductor-metal hybrid photocatalysts, especially in the regime of small metal particle sizes.
Collapse
Affiliation(s)
- Yawei Liu
- Department of Chemistry, Emory University, 1515 Dickey Drive, NE, Atlanta, Georgia 30322, United States
| | - Wenxing Yang
- Department of Chemistry, Emory University, 1515 Dickey Drive, NE, Atlanta, Georgia 30322, United States.,Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Qiaoli Chen
- Department of Chemistry, Emory University, 1515 Dickey Drive, NE, Atlanta, Georgia 30322, United States.,State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,State of Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - David A Cullen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zhaoxiong Xie
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tianquan Lian
- Department of Chemistry, Emory University, 1515 Dickey Drive, NE, Atlanta, Georgia 30322, United States
| |
Collapse
|
43
|
Chen C, Wang T, Yan K, Liu S, Zhao Y, Li B. Photocatalytic CO 2 reduction on Cu single atoms incorporated in ordered macroporous TiO 2 toward tunable products. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01155g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Cu/3DOM-TiO2 photocatalyst exhibits high performance toward CO2 to CH4 conversion in a gas–solid system while producing C2H4 in a liquid–solid system.
Collapse
Affiliation(s)
- Cong Chen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Ting Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Ke Yan
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Shoujie Liu
- Chemistry and Chemical Engineering of Guangdong Laboratory, Shantou 515063, P. R. China
| | - Yu Zhao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Benxia Li
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| |
Collapse
|
44
|
Zhang Z, Xu Y, Zhang Q, Fang S, Sun H, Ou W, Su C. Semi-heterogeneous photo-Cu-dual-catalytic cross-coupling reactions using polymeric carbon nitrides. Sci Bull (Beijing) 2022; 67:71-78. [DOI: 10.1016/j.scib.2021.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 02/02/2023]
|
45
|
Long J, Zhao Y, Luo J, Hu H, Shen J, Zhang Z, Yuan R, Huang H. AuPd Nanoparticles Decorated Ultrathin Bi2TiO4F2 Sheets for Photocatalytic Methane Oxidation. NEW J CHEM 2022. [DOI: 10.1039/d2nj00958g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bi2TiO4F2 nanosheets with abundant polarity surfaces make them a good candidate photocatalyst for CH4 activation. Decorated with AuPd alloy nanoparticles, an highly efficient CH4 to CH3OH transformation of 277.32 µmol/g/h...
Collapse
|
46
|
Pan Y, Wang J, Chen S, Yang W, Ding C, Waseem A, Jiang HL. Linker Engineering in Metal-Organic Frameworks for Dark Photocatalysis. Chem Sci 2022; 13:6696-6703. [PMID: 35756526 PMCID: PMC9172530 DOI: 10.1039/d1sc06785k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/07/2022] [Indexed: 11/21/2022] Open
Abstract
Dark reactions featuring continuous activity under light off conditions play a critical role in natural photosynthesis. However, most artificial photocatalysts are inactive upon the removal of the light source, and the artificial photocatalysts with dark photocatalysis abilities have been rarely explored. Herein, we report a Ti-based metal–organic framework (MOF), MIL-125, exhibiting the capability of dark photocatalytic hydrogen production. Remarkably, the introduction of different functional groups onto the linkers enables distinctly different activities of the resulting MOFs (MIL-125-X, X = NH2, NO2, Br). Dynamic and thermodynamic investigations indicate that the production and lifetime of the Ti3+ intermediate are the key factors, due to the electron-donating/-withdrawing effect of the functional groups. As far as we know, this is the first report on dark photocatalysis over MOFs, providing new insights into the storage of irradiation energy and demonstrating their great potential in dark photocatalysis due to the great MOF diversity. A Ti-based MOF with long-lived Ti3+ can achieve dark photocatalysis. The different groups on the organic linker modulate electron storage ability and the lifetime of Ti3+, significantly regulating dark photocatalytic activity in H2 production.![]()
Collapse
Affiliation(s)
- Yating Pan
- Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jingxue Wang
- Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Shengyi Chen
- School of Energy and Power Engineering, North China Electric Power University Baoding 071003 P. R. China
| | - Weijie Yang
- School of Energy and Power Engineering, North China Electric Power University Baoding 071003 P. R. China
| | - Chunmei Ding
- Dalian National Laboratory for Clean Energy, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Amir Waseem
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 I. R. Pakistan
| | - Hai-Long Jiang
- Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
47
|
Zhang T, Han X, Nguyen NT, Yang L, Zhou X. TiO2-based photocatalysts for CO2 reduction and solar fuel generation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64045-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
48
|
Ultrasonic-assisted fabrication of Cs2AgBiBr6/Bi2WO6 S-scheme heterojunction for photocatalytic CO2 reduction under visible light. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Zhang Y, Ran L, Zhang Y, Zhai P, Wu Y, Gao J, Li Z, Zhang B, Wang C, Fan Z, Zhang X, Cao J, Jin D, Sun L, Hou J. Two-Dimensional Defective Boron-Doped Niobic Acid Nanosheets for Robust Nitrogen Photofixation. ACS NANO 2021; 15:17820-17830. [PMID: 34708651 DOI: 10.1021/acsnano.1c06017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Direct nitrogen photofixation is a feasible solution toward sustainable production of ammonia under mild conditions. However, the generation of active sites for solar-dirven nitrogen fixation not only limits the fundamental understanding of the relationship among light absorption, charge transfer, and catalytic efficiency but also influences the photocatalytic activity. Herein, we report two-dimensional boron-doped niobic acid nanosheets with oxygen vacancies (B-Vo-HNbO3 NSs) for efficient N2 photofixation in the absence of any scavengers and cocatalysts. Impressively, B-Vo-HNbO3 NS as a model catalyst achieves the enhanced ammonia evolution rate of 170 μmol gcat-1 h-1 in pure water under visible-light irradiation. The doublet coupling representing 15NH4+ in an isotopic labeling experiment and in situ infrared spectra confirm the reliable ammonia generation. The experimental analysis and density functional theory (DFT) calculations indicate that the strong synergy of boron dopant and oxygen vacancy regulates band structure of niobic acid, facilitates photogenerated charge transfer, reduces free energy barriers, accelerates reaction kinetics, and promotes the high rates of ammonia evolution. This work provides a general strategy to design active photocatalysts toward solar N2 conversion.
Collapse
Affiliation(s)
- Yanting Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Lei Ran
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yanxue Zhang
- Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024, P. R. China
| | - Panlong Zhai
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yunzhen Wu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Junfeng Gao
- Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024, P. R. China
| | - Zhuwei Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Bo Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chen Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhaozhong Fan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xiaomeng Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jiaqi Cao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Dingfeng Jin
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou 310024, P. R. China
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Jungang Hou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
50
|
Qin Y, Hao M, Wang D, Li Z. Post-synthetic modifications (PSM) on metal-organic frameworks (MOFs) for visible-light-initiated photocatalysis. Dalton Trans 2021; 50:13201-13215. [PMID: 34505594 DOI: 10.1039/d1dt02424h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The utilization of green and sustainable solar energy via photocatalysis is regarded as a promising strategy to tackle the ever-increasing energy shortage and environmental deterioration. In addition to traditional semiconductor-based photocatalysts, metal-organic frameworks (MOFs), a class of crystalline micro-mesoporous hybrid materials constructed from metal or metal nodes interconnected with multi-dentate organic linkers, are emerging as a new type of photocatalytic material. Post-synthetic modifications (PSM) on MOFs, in which chemical transformations or exchanges are made on pre-synthesized MOF materials, are found to be a powerful strategy for fabricating photoactive MOFs based on already existing MOFs. In this frontier article, different PSM strategies for the development of photoactive MOFs, including coordination on unsaturated metal sites, metalation on open coordinated sites, covalent modifications on ligands, ligand exchange, metal exchange and cavity encapsulation, have been summarized. Our views on the challenges and the direction in developing photocatalytic MOFs by PSM are also addressed. We hope that this frontier article can provide some guidance for rational designing of highly efficient MOF-based photocatalysts via PSM strategies and to stimulate more research interest to be devoted to this promising yet largely unexplored field.
Collapse
Affiliation(s)
- Yuhuan Qin
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Mingming Hao
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Dengke Wang
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Zhaohui Li
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
| |
Collapse
|