1
|
Ban S, Lee H, Chen J, Kim HS, Hu Y, Cho SJ, Yeo WH. Recent advances in implantable sensors and electronics using printable materials for advanced healthcare. Biosens Bioelectron 2024; 257:116302. [PMID: 38648705 DOI: 10.1016/j.bios.2024.116302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
This review article focuses on the recent printing technological progress in healthcare, underscoring the significant potential of implantable devices across diverse applications. Printing technologies have widespread use in developing health monitoring devices, diagnostic systems, and surgical devices. Recent years have witnessed remarkable progress in fabricating low-profile implantable devices, driven by advancements in printing technologies and nanomaterials. The importance of implantable biosensors and bioelectronics is highlighted, specifically exploring printing tools using bio-printable inks for practical applications, including a detailed examination of fabrication processes and essential parameters. This review also justifies the need for mechanical and electrical compatibility between bioelectronics and biological tissues. In addition to technological aspects, this article delves into the importance of appropriate packaging methods to enhance implantable devices' performance, compatibility, and longevity, which are made possible by integrating cutting-edge printing technology. Collectively, we aim to shed light on the holistic landscape of implantable biosensors and bioelectronics, showcasing their evolving role in advancing healthcare through innovative printing technologies.
Collapse
Affiliation(s)
- Seunghyeb Ban
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA; IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Haran Lee
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Republic of Korea
| | - Jiehao Chen
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA
| | - Hee-Seok Kim
- School of Engineering and Technology, University of Washington Tacoma, Tacoma, WA, 98195, USA
| | - Yuhang Hu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Seong J Cho
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Republic of Korea.
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA; IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University School of Medicine, Atlanta, GA, 30332, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
2
|
Mori K, Fujita T, Hata H, Kim HJ, Nakano T, Yamashita H. Surface Chemical Engineering of a Metal 3D-Printed Flow Reactor Using a Metal-Organic Framework for Liquid-Phase Catalytic H 2 Production from Hydrogen Storage Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:51079-51088. [PMID: 37879041 DOI: 10.1021/acsami.3c10945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The accurate positioning of metal-organic frameworks (MOFs) on the surface of other materials has opened up new possibilities for the development of multifunctional devices. We propose here a postfunctionalization approach for three-dimensional (3D)-printed metallic catalytic flow reactors based on MOFs. The Cu-based reactors were immersed into an acid solution containing an organic linker for the synthesis of MOFs, where Cu2+ ions dissolved in situ were assembled to form MOF crystals on the surface of the reactor. The resultant MOF layer served as a promising interface that enabled the deposition of catalytically active metal nanoparticles (NPs). It also acted as an efficient platform to provide carbonous layers via simple pyrolysis under inert gas conditions, which further enabled functionalization with organic modifiers and metal NPs. Cylindrical-shaped catalytic flow reactors with four different cell densities were used to investigate the effect of the structure of the reactors on the catalytic production of H2 from a liquid-phase hydrogen storage material. The activity increased with an increasing internal surface area but decreased in the reactor with the smallest cell size despite its high internal surface area. The results of fluid dynamics studies indicated that the effect of pressure loss becomes more pronounced as the pore size decreases.
Collapse
Affiliation(s)
- Kohsuke Mori
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Anisotropic Design & Additive Manufacturing Research Center, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Tatsuya Fujita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroto Hata
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hyo-Jin Kim
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Anisotropic Design & Additive Manufacturing Research Center, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Yi J, Babick F, Strobel C, Rosset S, Ciarella L, Borin D, Wilson K, Anderson I, Richter A, Henke EFM. Characterizations and Inkjet Printing of Carbon Black Electrodes for Dielectric Elastomer Actuators. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41992-42003. [PMID: 37611072 DOI: 10.1021/acsami.3c05444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Dielectric elastomer actuators (DEAs) have been proposed as a promising technology for developing soft robotics and stretchable electronics due to their large actuation. Among available fabrication techniques, inkjet printing is a digital, mask-free, material-saving, and fast technology, making it versatile and appealing for fabricating DEA electrodes. However, there is still a lack of suitable materials for inkjet-printed electrodes. In this study, multiple carbon black (CB) inks were developed and tested as DEA electrodes inkjet-printed on acrylic membranes (VHB). Triethylene glycol monomethyl ether (TGME) and chlorobenzene (CLB) were selected to disperse CB. The inks' stability, particle size, surface tension, viscosity, electrical resistance, and printability were characterized. The DEA with Ink-TGME/CLB (mixture solvent) electrodes obtained 80.63% area strain, a new benchmark for the DEA actuation with CB powder electrodes on VHB. The novelty of this work involves the disclosure of a new ink recipe (TGME/CLB/CB) for inkjet printing that can obtain stable drop formations with a small nozzle (17 × 17 μm), high resolution (∼25 μm, approaching the limit of drop-on-demand inkjet printing), and the largest area strain of DEAs under similar conditions, distinguishing this contribution from the previous works, which is important for the fabrication and miniaturization of DEA-based soft and stretchable electronics.
Collapse
Affiliation(s)
- Jianan Yi
- Institute of Semiconductors and Microsystems, TU Dresden, 01062 Dresden, Germany
| | - Frank Babick
- Institute of Process Engineering and Environmental Technology, TU Dresden, 01062 Dresden, Germany
| | - Carsten Strobel
- Institute of Semiconductors and Microsystems, TU Dresden, 01062 Dresden, Germany
| | - Samuel Rosset
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Luca Ciarella
- Institute of Semiconductors and Microsystems, TU Dresden, 01062 Dresden, Germany
| | - Dmitry Borin
- Institute of Mechatronic Engineering, TU Dresden, 01062 Dresden, Germany
| | | | - Iain Anderson
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
- PowerON Group, Auckland 1010, New Zealand
- StretchSense Ltd., Auckland 1061, New Zealand
| | - Andreas Richter
- Institute of Semiconductors and Microsystems, TU Dresden, 01062 Dresden, Germany
| | - E-F Markus Henke
- Institute of Semiconductors and Microsystems, TU Dresden, 01062 Dresden, Germany
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
- PowerON Group, Auckland 1010, New Zealand
| |
Collapse
|
4
|
Doddapaneni VVK, Lee K, Aysal HE, Paul BK, Pasebani S, Sierros KA, Okwudire CE, Chang CH. A Review on Progress, Challenges, and Prospects of Material Jetting of Copper and Tungsten. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2303. [PMID: 37630889 PMCID: PMC10459285 DOI: 10.3390/nano13162303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Copper (Cu) and tungsten (W) possess exceptional electrical and thermal conductivity properties, making them suitable candidates for applications such as interconnects and thermal conductivity enhancements. Solution-based additive manufacturing (SBAM) offers unique advantages, including patterning capabilities, cost-effectiveness, and scalability among the various methods for manufacturing Cu and W-based films and structures. In particular, SBAM material jetting techniques, such as inkjet printing (IJP), direct ink writing (DIW), and aerosol jet printing (AJP), present a promising approach for design freedom, low material wastes, and versatility as either stand-alone printers or integrated with powder bed-based metal additive manufacturing (MAM). Thus, this review summarizes recent advancements in solution-processed Cu and W, focusing on IJP, DIW, and AJP techniques. The discussion encompasses general aspects, current status, challenges, and recent research highlights. Furthermore, this paper addresses integrating material jetting techniques with powder bed-based MAM to fabricate functional alloys and multi-material structures. Finally, the factors influencing large-scale fabrication and potential prospects in this area are explored.
Collapse
Affiliation(s)
- V. Vinay K. Doddapaneni
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA;
| | - Kijoon Lee
- School of Mechanical, Industrial and Manufacturing Engineering, Oregon State University, Corvallis, OR 97331, USA; (K.L.); (B.K.P.); (S.P.)
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Havva Eda Aysal
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506, USA; (H.E.A.); (K.A.S.)
| | - Brian K. Paul
- School of Mechanical, Industrial and Manufacturing Engineering, Oregon State University, Corvallis, OR 97331, USA; (K.L.); (B.K.P.); (S.P.)
- Advanced Technology and Manufacturing Institute (ATAMI), Corvallis, OR 97330, USA
| | - Somayeh Pasebani
- School of Mechanical, Industrial and Manufacturing Engineering, Oregon State University, Corvallis, OR 97331, USA; (K.L.); (B.K.P.); (S.P.)
- Advanced Technology and Manufacturing Institute (ATAMI), Corvallis, OR 97330, USA
| | - Konstantinos A. Sierros
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506, USA; (H.E.A.); (K.A.S.)
| | - Chinedum E. Okwudire
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Chih-hung Chang
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
5
|
Liu Y, Zhu H, Xing L, Bu Q, Ren D, Sun B. Recent advances in inkjet-printing technologies for flexible/wearable electronics. NANOSCALE 2023; 15:6025-6051. [PMID: 36892458 DOI: 10.1039/d2nr05649f] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The rapid development of flexible/wearable electronics requires novel fabricating strategies. Among the state-of-the-art techniques, inkjet printing has aroused considerable interest due to the possibility of large-scale fabricating flexible electronic devices with good reliability, high time efficiency, a low manufacturing cost, and so on. In this review, based on the working principle, recent advances in the inkjet printing technology in the field of flexible/wearable electronics are summarized, including flexible supercapacitors, transistors, sensors, thermoelectric generators, wearable fabric, and for radio frequency identification. In addition, some current challenges and future opportunities in this area are also addressed. We hope this review article can give positive suggestions to the researchers in the area of flexible electronics.
Collapse
Affiliation(s)
- Yu Liu
- College of Electronics and Information, Qingdao University, Qingdao 266071, PR. China.
| | - Hongze Zhu
- College of Physics, Qingdao University, Qingdao 266071, PR China
| | - Lei Xing
- College of Electronics and Information, Qingdao University, Qingdao 266071, PR. China.
| | - Qingkai Bu
- College of Computer Science and Technology, Qingdao University, Qingdao 266071, PR. China
- Weihai Innovation Research Institute of Qingdao University, Weihai 264200, PR. China
| | - Dayong Ren
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR. China.
| | - Bin Sun
- College of Electronics and Information, Qingdao University, Qingdao 266071, PR. China.
- Weihai Innovation Research Institute of Qingdao University, Weihai 264200, PR. China
| |
Collapse
|
6
|
Mansour A, Romani M, Acharya AB, Rahman B, Verron E, Badran Z. Drug Delivery Systems in Regenerative Medicine: An Updated Review. Pharmaceutics 2023; 15:pharmaceutics15020695. [PMID: 36840018 PMCID: PMC9967372 DOI: 10.3390/pharmaceutics15020695] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Modern drug discovery methods led to evolving new agents with significant therapeutic potential. However, their properties, such as solubility and administration-related challenges, may hinder their benefits. Moreover, advances in biotechnology resulted in the development of a new generation of molecules with a short half-life that necessitates frequent administration. In this context, controlled release systems are required to enhance treatment efficacy and improve patient compliance. Innovative drug delivery systems are promising tools that protect therapeutic proteins and peptides against proteolytic degradation where controlled delivery is achievable. The present review provides an overview of different approaches used for drug delivery.
Collapse
Affiliation(s)
- Alaa Mansour
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Maya Romani
- Department of Family Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | | | - Betul Rahman
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence:
| | - Elise Verron
- CNRS, CEISAM, UMR 6230, Nantes Université, F-44000 Nantes, France
| | - Zahi Badran
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
7
|
Recent Developments and Implementations of Conductive Polymer-Based Flexible Devices in Sensing Applications. Polymers (Basel) 2022; 14:polym14183730. [PMID: 36145876 PMCID: PMC9504310 DOI: 10.3390/polym14183730] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022] Open
Abstract
Flexible sensing devices have attracted significant attention for various applications, such as medical devices, environmental monitoring, and healthcare. Numerous materials have been used to fabricate flexible sensing devices and improve their sensing performance in terms of their electrical and mechanical properties. Among the studied materials, conductive polymers are promising candidates for next-generation flexible, stretchable, and wearable electronic devices because of their outstanding characteristics, such as flexibility, light weight, and non-toxicity. Understanding the interesting properties of conductive polymers and the solution-based deposition processes and patterning technologies used for conductive polymer device fabrication is necessary to develop appropriate and highly effective flexible sensors. The present review provides scientific evidence for promising strategies for fabricating conductive polymer-based flexible sensors. Specifically, the outstanding nature of the structures, conductivity, and synthesis methods of some of the main conductive polymers are discussed. Furthermore, conventional and innovative technologies for preparing conductive polymer thin films in flexible sensors are identified and evaluated, as are the potential applications of these sensors in environmental and human health monitoring.
Collapse
|
8
|
Fernandes T, Martins NCT, Fateixa S, Nogueira HIS, Daniel-da-Silva AL, Trindade T. Dendrimer stabilized nanoalloys for inkjet printing of surface-enhanced Raman scattering substrates. J Colloid Interface Sci 2022; 612:342-354. [PMID: 34998194 DOI: 10.1016/j.jcis.2021.12.167] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 12/21/2022]
Abstract
Research on paper substrates prepared by inkjet deposition of metal nanoparticles for sensing applications has become a hot topic in recent years; however, the design of such substrates based on the deposition of alloy nanoparticles remains less explored. Herein, we report for the first time the inkjet printing of dendrimer-stabilized colloidal metal nanoalloys for the preparation of paper substrates for surface-enhanced Raman scattering (SERS) spectroscopy. To this end, nanoassemblies containing variable molar ratios of Au:Ag were prepared in the presence of poly(amidoamine) dendrimer (PAMAM), resulting in plasmonic properties that depend on the chemical composition of the final materials. The dendrimer-stabilized Au:Ag:PAMAM colloids exhibit high colloidal stability, making them suitable for the preparation of inks for long-term use in inkjet printing of paper substrates. Moreover, the pre-treatment of paper with a polystyrene (PS) aqueous emulsion resulted in hydrophobic substrates with improved SERS sensitivity, as illustrated in the analytical detection of tetramethylthiuram disulfide (thiram pesticide) dissolved in aqueous solutions. We suggest that the interactions established between the two polymers (PAMAM and PS) in an interface region over the cellulosic fibres, resulted in more exposed metallic surfaces for the adsorption of the analyte molecules. The resulting hydrophobic substrates show long-term plasmonic stability with high SERS signal retention for at least ninety days.
Collapse
Affiliation(s)
- Tiago Fernandes
- Department of Chemistry, CICECO- Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Natércia C T Martins
- Department of Chemistry, CICECO- Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sara Fateixa
- Department of Chemistry, CICECO- Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena I S Nogueira
- Department of Chemistry, CICECO- Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L Daniel-da-Silva
- Department of Chemistry, CICECO- Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tito Trindade
- Department of Chemistry, CICECO- Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
9
|
Kim H, Arbab A, Fenech-Salerno B, Yao C, Macpherson R, Kim JM, Torrisi F. Barium titanate-enhanced hexagonal boron nitride inks for printable high-performance dielectrics. NANOTECHNOLOGY 2022; 33:215704. [PMID: 35168225 DOI: 10.1088/1361-6528/ac553f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Printed electronics have been attracting significant interest for their potential to enable flexible and wearable electronic applications. Together with printable semiconductors, solution-processed dielectric inks are key in enabling low-power and high-performance printed electronics. In the quest for suitable dielectrics inks, two-dimensional materials such as hexagonal boron nitride (h-BN) have emerged in the form of printable dielectrics. In this work, we report barium titanate (BaTiO3) nanoparticles as an effective additive for inkjet-printable h-BN inks. The resulting inkjet printed BaTiO3/h-BN thin films reach a dielectric constant (εr) of ∼16 by adding 10% of BaTiO3nanoparticles (in their volume fraction to the exfoliated h-BN flakes) in water-based inks. This result enabled all-inkjet printed flexible capacitors withC ∼ 10.39 nF cm-2, paving the way to future low power, printed and flexible electronics.
Collapse
Affiliation(s)
- Hyunho Kim
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, United Kingdom
| | - Adrees Arbab
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, United Kingdom
- Department of Engineering, University of Cambridge, 9 JJ Thompson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Benji Fenech-Salerno
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, United Kingdom
| | - Chengning Yao
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, United Kingdom
| | - Ryan Macpherson
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, United Kingdom
| | - Jong Min Kim
- Department of Engineering, University of Cambridge, 9 JJ Thompson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Felice Torrisi
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, United Kingdom
- Dipartimento di Fisica e Astronomia, Universita' di Catania, Via S. Sofia, 64, 95123, Catania, Italy
| |
Collapse
|
10
|
Singh V, Lousada CM, Jonsson M, Belova LM. Scalable InkJet‐Based Additive Fabrication of Photocatalytic TiO
2
Thin Films. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Veena Singh
- Department of Materials Science and Engineering KTH Royal Institute of Technology 100 44 Stockholm Sweden
| | - Cláudio M. Lousada
- Department of Materials Science and Engineering KTH Royal Institute of Technology 100 44 Stockholm Sweden
| | - Mats Jonsson
- Department of Chemistry KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Liubov M. Belova
- Department of Materials Science and Engineering KTH Royal Institute of Technology 100 44 Stockholm Sweden
| |
Collapse
|
11
|
Persembe E, Parra-Cabrera C, Clasen C, Ameloot R. Binder-jetting 3D printer capable of voxel-based control over deposited ink volume, adaptive layer thickness, and selective multi-pass printing. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:125106. [PMID: 34972415 DOI: 10.1063/5.0072715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/20/2021] [Indexed: 06/14/2023]
Abstract
The limited control over the printing process in commercial powder bed 3D printers hinders the exploration of novel materials and applications. In this study, a custom binder-jetting 3D printer was developed. The resulting fine-grained control over the printing process enables features such as voxel-based control over the printed ink volume, adaptive layer thickness, and selective multi-pass printing. A protocol was developed to optimize the 3D printing process for new build materials and binders, in which resolution tests were used as a guideline for improving the dimensional accuracy. As a demonstration of the voxel-based control over the printing process, a functionally graded object was printed.
Collapse
Affiliation(s)
- E Persembe
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - C Parra-Cabrera
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - C Clasen
- Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, Leuven 3001, Belgium
| | - R Ameloot
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| |
Collapse
|
12
|
Hazra A, Mondal U, Mandal S, Banerjee P. Advancement in functionalized luminescent frameworks and their prospective applications as inkjet-printed sensors and anti-counterfeit materials. Dalton Trans 2021; 50:8657-8670. [PMID: 34060577 DOI: 10.1039/d1dt00705j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Supramolecular luminescent frameworks with conjugated architectures exhibits interesting photophysical properties with phenomenal chemical and thermal stability. This has instigated global researchers towards its extensive application in toxic analyte detection and the formulation of anti-counterfeit materials. In correlation with this present scenario, luminescent metal-organic frameworks (LMOFs), possessing tailorable structural and functional properties and exceptional physicochemical features, have been categorized as emerging 'smart materials'. Interestingly, LMOFs have assisted in the rapid development of an effectual sensing platform and swift fabrication of anti-counterfeit materials on desirable substrates with the aid of 'Inkjet Printing', which is a viable, low-cost, and high-resolution technology. Inkjet printing is an excellent material deposition technique in the modern era owing to its easy settling over flexible substrates, simplistic emergence of large area image patterns with improved throughput, minimal cost, explicit resolution, and least waste generation. The present review provides state-of-the-art progress on LMOFs based (i) luminescent security ink fabrication with static and dynamic multinodal luminescent materials and (ii) sensory device formulation for the easy and instantaneous recognition of hazardous analytes through the 'Inkjet Printing' technology. This techno-chemical integration will be certainly beneficial to prevent the growth of counterfeit materials and monitor the bioaccumulation of hazardous analytes in our ecological system.
Collapse
Affiliation(s)
- Abhijit Hazra
- CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Udayan Mondal
- CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sukdeb Mandal
- CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Priyabrata Banerjee
- CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
13
|
Costa Angeli MA, Ciocca M, Petti L, Lugli P. Advances in printing technologies for soft robotics devices applications. Soft Robot 2021. [DOI: 10.1016/bs.ache.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|