1
|
Li Y, Li H, Sun B, Zheng J, Xu T, Liu Y, Zhu X, Zhang S, Liu S, Ge M, Yuan X. Precise Construction of the Triple-Phase Boundary and Its Antiphosphate Poisoning Effect in the Confined Region. Inorg Chem 2024; 63:20802-20810. [PMID: 39425657 DOI: 10.1021/acs.inorgchem.4c03523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
As a critical component for the oxygen reduction reaction (ORR), platinum (Pt) catalysts exhibit promising catalytic performance in High-temperature-proton exchange membrane fuel cells (HT-PEMFCs). Despite their success, HT-PEMFCs primarily utilize phosphoric acid-doped polybenzimidazole (PA-PBI) as the proton exchange membrane, and the phosphoric acid within the PBI matrix tends to leach onto the Pt-based layers, easily causing toxicity. Herein, we first propose UiO-66@Pt3Co1-T composites with precisely engineered interfacial structures. The UiO-66@Pt3Co1-T exhibits an octahedral porous framework with uniform structural dimensions and even distribution of surface nanoparticles, which demonstrate superior ORR performance compared to commercial Pt/C. The unique structure and morphology of the composites also exhibit a favorable half-wave potential in different concentrations of phosphoric acid electrolyte, regulated by the phosphoric acid adsorption site and intensity.This finding suggests that the incorporation of Co could effectively modulate the Pt d-band center, thereby enhancing the ORR performance. Furthermore, the selective adsorption of phosphoric acid by ZrO2 enables precise control over the phosphoric acid distribution. Notably, the retention of the octahedral framework post high-temperature treatment facilitates the establishment of dual transport pathways for gases and protons, leading to a stable and efficient triple-phase boundary.
Collapse
Affiliation(s)
- Yanqi Li
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Han Li
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Bingbing Sun
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Jie Zheng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Tian Xu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yuan Liu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Xiaorong Zhu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Shiqi Zhang
- School of Mechanical Engineering, Nantong University, Nantong 226019, China
| | - Sisi Liu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Ming Ge
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| |
Collapse
|
2
|
Zahid M, Ismail A, Ullah R, Ali U, Raziq F, Alrebdi TA, Alodhayb AN, Ali S, Qiao L. Pt-N catalytic centres concisely enhance interfacial charge transfer in amines functionalized Pt@MOFs for selective conversion of CO 2 to CH 4. J Colloid Interface Sci 2024; 672:370-382. [PMID: 38850864 DOI: 10.1016/j.jcis.2024.05.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
Improving ligand-to-active metal charge transfer (LAMCT) by finely tuning the organic ligand is a decisive strategy to enhance charge transfer in metal organic frameworks (MOFs)-based catalysts. However, in most MOFs loaded with active metal catalysts, electron transmission encounters massive obstacle at the interface between the two constituents owing to poor LAMCT. Herein, amines (-NH2) functionalized MOFs (NH2-MIL-101(Cr)) encapsulated active metal Pt nanoclusters (NCs) catalysts are synthesized by the polyol reduction method and utilized for the photoreduction of CO2. Surprisingly, the introduction of -NH2 (electron donating) groups within the matrix of MIL-101(Cr) improved the electron migration through the LAMCT process, fostering a synergistic interaction with Pt. The combined experimental analysis exposed the high number of metallic Pt (Pt0) in Pt@NH2-MIL-101(Cr) catalyst through seamless electron shuttling from N of -NH2 group to excited Pt generating versatile hybrid Pt-N catalytic centres. Consequently, these versatile hybrid catalytic centres act as electro-nucleophilic centres, which enable the efficient and selective conversion of CO bond in CO2 to harvest CH4 (131.0 µmol.g-1) and maintain excellent stability and selectivity for consecutive five rounds, superior to Pt@MIL-101(Cr) and most reported catalysts. Our study verified that the precise tuning of organic ligands in MOFs immensely improves the surface-active centres, electron migration, and catalytic selectivity of the excited Pt NCs catalysts encaged inside MOFs through an improved LAMCT pathway.
Collapse
Affiliation(s)
- Muhammad Zahid
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Ahmed Ismail
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Rizwan Ullah
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Usman Ali
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Fazal Raziq
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Tahani A Alrebdi
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Abdullah N Alodhayb
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sharafat Ali
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Liang Qiao
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| |
Collapse
|
3
|
A One-Pot Hydrothermal Preparation of High Loading Ni/La2O3 Catalyst for Efficient Hydrogenation of Cinnamaldehyde. Catalysts 2023. [DOI: 10.3390/catal13020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
It is a challenging task for selective hydrogenation of cinnamaldehyde (CAL) to hydrocinnamaldehyde (HCAL) without additional by-product formation. In this work, a La2O3 supported high Ni content nanoparticle catalyst was prepared for CAL selective hydrogenation. Meanwhile, Co-La2O3 catalysts were used as a reference catalyst. XRD, TEM, STEM-HAADF, XPS, and H2-TPR measurements were used to investigate the physicochemical properties of Ni-La2O3 catalysts. The experimental results confirmed that the CAL conversion and HCAL selectivity were effectively promoted with the increase of Ni loading amounts. At a Ni/La molar ratio of four, a high HCAL selectivity of 87.4% was obtained at a CAL conversion of 88.1% under mild reaction conditions. The catalyst was recycled five times without activity loss. Combined with various characterizations, it could be inferred that the good hydrogen adsorption and dissociation capacity of Ni and the presence of a certain amount of oxygen vacancies on the La2O3 support have a positive effect on the improvement of HCAL selectivity. This work provided an effective path to design transition-metal-based supported oxide catalyst for the cinnamaldehyde hydrogenation to hydrocinnamaldehyde.
Collapse
|
4
|
Zahid M, Almashhadani HA, Jawad SF, Khan MF, Ismail A. Stabilization of Pt nanoparticles within MOFs for selective hydrogenation of hazardous 4-nitrophenol to valuable 4-aminophenol: Confinement and synergistic effect. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Mild-temperature chemoselective hydrogenation of cinnamaldehyde over amorphous Pt/Fe-Asp-A nanocatalyst with enhanced stability. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Li H, Cui K, Lei Y, Chen J, Li Y, Liu D, Xiong W. Enhanced Chemoselective Hydrogenation of Cinnamaldehyde via Pt-Fe/Fe-NTA Nanocatalysts Under Low Temperature. Catal Letters 2022. [DOI: 10.1007/s10562-022-04200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Recent Advances on Confining Noble Metal Nanoparticles Inside Metal-Organic Frameworks for Hydrogenation Reactions. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2250-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Kocsis M, Szabados M, Ötvös SB, Samu GF, Fogarassy Z, Pécz B, Kukovecz Á, Kónya Z, Sipos P, Pálinkó I, Varga G. Selective production of imines and benzimidazoles by cooperative bismuth(III)/transition metal ion catalysis. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Zou M, Dong M, Zhao T. Advances in Metal-Organic Frameworks MIL-101(Cr). Int J Mol Sci 2022; 23:ijms23169396. [PMID: 36012661 PMCID: PMC9409302 DOI: 10.3390/ijms23169396] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
MIL-101(Cr) is one of the most well-studied chromium-based metal-organic frameworks, which consists of metal chromium ion and terephthalic acid ligand. It has an ultra-high specific surface area, large pore size, good thermal/chemical/water stability, and contains unsaturated Lewis acid sites in its structure. Due to the physicochemical properties and structural characteristics, MIL-101(Cr) has a wide range of applications in aqueous phase adsorption, gas storage and separation, and catalysis. In this review, the latest synthesis of MIL-101(Cr) and its research progress in adsorption and catalysis are reviewed.
Collapse
|
10
|
Tang Y, Li H, Cui K, Xia Y, Yuan G, Feng J, Xiong W. Chemoselective hydrogenation of cinnamaldehyde over amorphous coordination polymer supported Pt-Co bimetallic nanocatalyst. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Zaera F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem Rev 2022; 122:8594-8757. [PMID: 35240777 DOI: 10.1021/acs.chemrev.1c00905] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A critical review of different prominent nanotechnologies adapted to catalysis is provided, with focus on how they contribute to the improvement of selectivity in heterogeneous catalysis. Ways to modify catalytic sites range from the use of the reversible or irreversible adsorption of molecular modifiers to the immobilization or tethering of homogeneous catalysts and the development of well-defined catalytic sites on solid surfaces. The latter covers methods for the dispersion of single-atom sites within solid supports as well as the use of complex nanostructures, and it includes the post-modification of materials via processes such as silylation and atomic layer deposition. All these methodologies exhibit both advantages and limitations, but all offer new avenues for the design of catalysts for specific applications. Because of the high cost of most nanotechnologies and the fact that the resulting materials may exhibit limited thermal or chemical stability, they may be best aimed at improving the selective synthesis of high value-added chemicals, to be incorporated in organic synthesis schemes, but other applications are being explored as well to address problems in energy production, for instance, and to design greener chemical processes. The details of each of these approaches are discussed, and representative examples are provided. We conclude with some general remarks on the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
12
|
Khan MF, Cazzato G, Saleemi HA, Macadangdang Jr. RR, Aftab MN, Ismail M, Khalid H, Ali S, Bakhtiar SUH, Ismail A, Zahid M. Sonophotocatalytic degradation of organic pollutant under visible light over Pt decorated CeO2: Role of ultrasonic waves for unprecedented degradation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Tran MH, Phan DP, Nguyen TH, Kim HB, Kim J, Park ED, Lee EY. Catalytic hydrogenolysis of alkali lignin in supercritical ethanol over copper monometallic catalyst supported on a chromium-based metal-organic framework for the efficient production of aromatic monomers. BIORESOURCE TECHNOLOGY 2021; 342:125941. [PMID: 34543818 DOI: 10.1016/j.biortech.2021.125941] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The catalytic hydrogenolysis of lignin has been reported as an effective approach for lignin depolymerization owing to its high efficiency for aromatic monomer production. In this study, a series of copper monometallic catalysts over an MIL-101(Cr) support were synthesized and used for the catalytic hydrogenolysis of alkali lignin using supercritical ethanol. First, the optimal copper catalyst for lignin hydrogenolysis was selected. Subsequently, the reaction conditions for catalytic hydrogenolysis were systematically optimized to maximize the total monomer yield. The optimal conditions were determined to be 6 h of reaction time, 20 min of sonication pretreatment, 50% catalyst loading, and 5% lignin loading. Under these conditions, an aromatic monomer yield of 38.5% was obtained; this depolymerized lignin stream, which is mainly composed of G-type monomers, can serve as a promising aromatic feedstock and carbon source for further microbial upgrading and bioconversion to produce various value-added products.
Collapse
Affiliation(s)
- My Ha Tran
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Dieu-Phuong Phan
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Thuy Ha Nguyen
- Department of Chemical Engineering and Energy Systems Research, Ajou University, Suwon-si, Gyeonggi-do 16499, Republic of Korea
| | - Han Bom Kim
- Department of Chemical Engineering and Energy Systems Research, Ajou University, Suwon-si, Gyeonggi-do 16499, Republic of Korea
| | - Jinsoo Kim
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Eun Duck Park
- Department of Chemical Engineering and Energy Systems Research, Ajou University, Suwon-si, Gyeonggi-do 16499, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
14
|
Luo L, Yuan F, Zaera F, Zhu Y. Catalytic hydrogenation of furfural to furfuryl alcohol on hydrotalcite-derived CuxNi3−xAlOy mixed-metal oxides. J Catal 2021. [DOI: 10.1016/j.jcat.2021.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Li X, She W, Wang J, Li W, Li G. A highly efficient LaOCl supported Fe–Fe 3C-based catalyst for hydrogenation of nitroarenes fabricated by coordination-assisted pyrolysis. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00350j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A highly efficient LaOCl supported Fe–Fe3C-based catalyst derived from bi-MOFs prepared by coordination-assisted pyrolysis for hydrogenation of nitroarenes to arylamines.
Collapse
Affiliation(s)
- Xuewei Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin
- China
| | - Wei She
- Key Laboratory of Functional Inorganic Material Chemistry (MOE)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin
- China
| | - Jing Wang
- Key Laboratory of Functional Inorganic Material Chemistry (MOE)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin
- China
| | - Weizuo Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin
- China
| | - Guangming Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin
- China
| |
Collapse
|