1
|
Mukherjee A, Dhak P, Mandal D, Dhak D. Solvothermal synthesis of 3D rod-shaped Ti/Al/Cr nano-oxide for photodegradation of wastewater micropollutants under sunlight: a green way to achieve SDG:6. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56901-56916. [PMID: 37812343 DOI: 10.1007/s11356-023-30112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/24/2023] [Indexed: 10/10/2023]
Abstract
Waterbodies are day-by-day polluted by the various colored micropollutants, e.g., azo dyes enriched (carcinogenic, non-biodegradable) colored wastewater from textile industries. Water pollution has become a serious global issue as ~ 25% of health diseases are prompted by pollution as reported by WHO. Around 1 billion people will face water scarcity by 2025 and this water crisis is also a prime focus to the UNs' sustainable development goal 6 (SDG6: clean water and sanitation). To prevent the water pollution caused by micropollutants, a mesoporous, 3D rod-like nano-oxide Ti/Al/Cr (abbreviated as TAC) has been synthesized via the solvothermal method. TAC degraded all classes of azo dyes (mono, di, tri, etc.) with > 90% efficiency under renewable energy source solar irradiation within the pH range 2-11. The detailed study was done on the photodegradation of carcinogenic di-azo dye Congo red (CR) which is banned in many countries. TAC showed 90.64 ± 2% degradation efficiency for CR at pH 7. The proposed photodegradation mechanism of CR was confirmed by the high-resolution liquid chromatography-mass spectroscopy (HRLC-MS) analysis obeying the Pirkanniemi path. The photodegradation obeyed the pseudo-1st-order kinetics and was reusable up to successive 5 cycles which can be an efficient tool to meet the UNs' SDG:6.
Collapse
Affiliation(s)
- Arnab Mukherjee
- Nanomaterials Research Lab, Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, 723104, India
| | - Prasanta Dhak
- Department of Chemistry, Techno India University, Kolkata, 700091, India
| | - Debpriya Mandal
- Nanomaterials Research Lab, Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, 723104, India
| | - Debasis Dhak
- Nanomaterials Research Lab, Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, 723104, India.
| |
Collapse
|
2
|
Li YX, Ma DM, Zhao RD, Xiang J, Zhao X. Thioxanthone Functionalized NanoTiO 2 Composites as Photocatalyst for Degradation of Organic Dyes. ACS OMEGA 2024; 9:33081-33089. [PMID: 39100318 PMCID: PMC11292646 DOI: 10.1021/acsomega.4c04243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 08/06/2024]
Abstract
Titanium dioxide (TiO2) photocatalytic technology has the advantages of high catalytic activity, high chemical stability, nontoxicity, and low cost. Therefore, it finds widespread applications in the degradation of organic pollutants in water, antibacterial, environmental purification, and other fields. In this study, we have obtained a photocatalyst by modifying nanoTiO2 with the photosensitizer thioxanthone. The light-harvesting units of thioxanthone and nanoTiO2 can work synergistically to capture light energy. As a heterogeneous photocatalytic material, it can efficiently degrade organic dyes such as Rhodamine B, methyl blue and methyl orange. Specifically, the degradation rate of 0.1 mmol/L Rhodamine B can reach 97% after 35 min of irradiation, and methyl blue and methyl orange can also reach 98 and 56%, respectively.
Collapse
Affiliation(s)
- Ya-Xin Li
- School of Materials
Science
and Engineering, Liaoning University of
Technology, Jinzhou 121001, P. R. China
| | - Dong-Mei Ma
- School of Materials
Science
and Engineering, Liaoning University of
Technology, Jinzhou 121001, P. R. China
| | - Rong-Da Zhao
- School of Materials
Science
and Engineering, Liaoning University of
Technology, Jinzhou 121001, P. R. China
| | - Jun Xiang
- School of Materials
Science
and Engineering, Liaoning University of
Technology, Jinzhou 121001, P. R. China
| | - Xingming Zhao
- School of Materials
Science
and Engineering, Liaoning University of
Technology, Jinzhou 121001, P. R. China
| |
Collapse
|
3
|
Salahshoori I, Namayandeh Jorabchi M, Mazaheri A, Mirnezami SMS, Afshar M, Golriz M, Nobre MAL. Tackling antibiotic contaminations in wastewater with novel Modified-MOF nanostructures: A study of molecular simulations and DFT calculations. ENVIRONMENTAL RESEARCH 2024; 252:118856. [PMID: 38599447 DOI: 10.1016/j.envres.2024.118856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
The contamination of wastewater with antibiotics has emerged as a critical global challenge, with profound implications for environmental integrity and human well-being. Adsorption techniques have been meticulously investigated and developed to mitigate and alleviate their effects. In this study, we have investigated the adsorption behaviour of Erythromycin (ERY), Gentamicin (GEN), Levofloxacin (LEVO), and Metronidazole (MET) antibiotics as pharmaceutical contaminants (PHCs) on amide-functionalized (RC (=O)NH2)/MIL-53 (Al) (AMD/ML53A), using molecular simulations and density functional theory (DFT) calculations. Based on our DFT calculations, it becomes apparent that the adsorption tendencies of antibiotics are predominantly governed by the presence of AMD functional groups on the adsorbent surface. Specifically, hydrogen bonding (HB) and van der Waals (vdW) interactions between antibiotics and AMD groups serve as the primary mechanisms facilitating adsorption. Furthermore, we have observed that the adsorption behaviors of these antibiotics are influenced by their respective functional groups, molecular shapes, and sizes. Our molecular simulations delved into how the AMD/ML53A surfaces interact with antibiotics as PHCs. Moreover, various chemical quantum descriptors based on Frontier Molecular Orbitals (FMO) were explored to elucidate the extent of AMD/ML53A adsorption and to assess potential alterations in their electronic properties throughout the adsorption process. Monte Carlo simulation showed that ERY molecules adsorb stronger to the adsorbent in acidic and basic conditions than other contaminants, with high energies: -404.47 kcal/mol in acidic and -6375.26 kcal/mol in basic environments. Molecular dynamics (MD) simulations revealed parallel orientation for the ERY molecule's adsorption on AMD/ML53A with 80% rejection rate. In conclusion, our study highlighted the importance of modeling in developing practical solutions for removing antibiotics as PHCs from wastewater. The insights gained from our calculations can facilitate the design of more effective adsorption materials, ultimately leading to a more hygienic and sustainable ecosystem.
Collapse
Affiliation(s)
- Iman Salahshoori
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran; Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Majid Namayandeh Jorabchi
- Leibniz Institute for Catalysis, Albert-Einstein-Straße 29a, D-18059 Rostock, Germany; Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Afsaneh Mazaheri
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran
| | | | - Mahdis Afshar
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Golriz
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran; Department of Energy Storage, Institute of Mechanics, Shiraz, Iran
| | - Marcos A L Nobre
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP, 19060-900, Brazil
| |
Collapse
|
4
|
Liu Z, Wang J, Dong S, Wang L, Li L, Cao Z, Zhang Y, Cheng L, Yang J. Ultrasonic controllable synthesis of sulfur-functionalized metal-organic frameworks (S-MOFs) and their application in piezo-photocatalytic rapid reduction of hexavalent chromium (Cr). ULTRASONICS SONOCHEMISTRY 2024; 107:106912. [PMID: 38762940 PMCID: PMC11130732 DOI: 10.1016/j.ultsonch.2024.106912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
The United Nations' Sustainable Development Goals (SDGs) are significant in guiding modern scientific research. In recent years, scholars have paid much attention to MOFs materials as green materials. However, piezo catalysis of MOFs materials has not been widely studied. Piezoelectric materials can convert mechanical energy into electrical energy, while MOFs are effective photocatalysts for removing pollutants. Therefore, it is crucial to design MOFs with piezoelectric properties and photosensitivity. In this study, sulfur-functionalized metal-organic frameworks (S-MOFs) were prepared using organic sulfur-functionalized ligand (H2TDC) ultrasonic synthesis to enhance their piezoelectric properties and visible light absorption. The study demonstrated that the S-MOFs significantly enhanced the reduction of a 10 mg/L solution of hexavalent chromium to 99.4 % within 10 min, using only 15 mg of catalyst. The orbital energy level differences of the elements were analyzed using piezo response force microscopy (PFM) and X-ray photoelectron spectroscopy (XPS). The results showed that MOFs functionalized with sulfur atom ligands have a built-in electric field that facilitates charge separation and migration. This study presents a new approach to enhance the piezoelectric properties of MOFs, which broadens their potential applications in piezo catalysis and piezo-photocatalysis. Additionally, it provides a sustainable method for reducing hexavalent chromium, contributing to the achievement of sustainable development goals, specifically SDG-6, SDG-7, SDG-9, and SDG-12.
Collapse
Affiliation(s)
- Zhiwei Liu
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| | - Jingjing Wang
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| | - Shanghai Dong
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| | - Liying Wang
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China.
| | - Lu Li
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| | - Zhenzhu Cao
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| | - Yongfeng Zhang
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| | - Lin Cheng
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| | - Jucai Yang
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| |
Collapse
|
5
|
Li Q, Fang G, Wu Z, Guo J, You Y, Jin H, Wan J. Advanced Microwave Strategies Facilitate Structural Engineering for Efficient Electrocatalysis. CHEMSUSCHEM 2024; 17:e202301874. [PMID: 38323505 DOI: 10.1002/cssc.202301874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
In the dynamic realm of energy conversion, the demand for efficient electrocatalysis has surged due to the urgent need to seamlessly integrate renewable energy. Traditional electrocatalyst preparation faces challenges like poor controllability, elevated costs, and stringent operational conditions. The introduction of microwave strategies represents a transformative shift, offering rapid response, high-temperature energy, and superior controllability. Notably, non-liquid-phase advanced microwave technology holds promise for introducing novel models and discoveries compared to traditional liquid-phase microwave methods. This review examines the nuanced applications of microwave technology in electrocatalyst structural engineering, emphasizing its pivotal role in the energy paradigm and addressing challenges in conventional methods. The ensuing discussion explores the profound impact of advanced microwave strategies on electrocatalyst structural engineering, highlighting discernible advantages in optimizing performance. Various applications of advanced microwave techniques in electrocatalysis are comprehensively discussed, providing a forward-looking perspective on their untapped potential to propel transformative strides in renewable energy research. It provides a forward-looking perspective, delving into the untapped potential of microwaves to propel transformative strides in renewable energy research.
Collapse
Affiliation(s)
- Qingxiang Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, 430200, Hubei, China
| | - Guangyu Fang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, 430200, Hubei, China
| | - Zhiao Wu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, 430200, Hubei, China
| | - Jiayue Guo
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, 430200, Hubei, China
| | - Yongfei You
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, 430200, Hubei, China
| | - Huanyu Jin
- Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Institute for Sustainability, Energy, and Resources, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jun Wan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, 430200, Hubei, China
| |
Collapse
|
6
|
Shabanian-Broujeni E, Nezamzadeh-Ejhieh A. The coupled WO 3-AgBr nanocatalyst, part II: Synthesis, characterization, and the boosted photocatalytic activity towards metronidazole in an aqueous solution. Heliyon 2024; 10:e31353. [PMID: 38813214 PMCID: PMC11133908 DOI: 10.1016/j.heliyon.2024.e31353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
The AgBr and WO3 nanoparticles (NPs) were synthesized and coupled, and the coupled AgBr-WO3 binary catalyst, as well as the individual AgBr and WO3 NPs, were then characterized by XRD, FTIR, DRS, and SEM-EDX. XRD results showed the formation of orthorhombic WO3 cubic AgBr crystals. The crystallite sizes of 45, 28, and 45 nm were estimated by the Scherrer formula for the as-prepared AgBr, WO3, and AgBr-WO3 catalysts, respectively. The DRS study estimated band gap energies using both absorption edge wavelengths and the Kubelka-Munk model. The band gap energies of 2.72, 3.06, and 2.92 eV were obtained for the direct electronic transitions of AgBr, WO3, and AgBr-WO3. The ECB (potential position) of AgBr and WO3 were estimated to be 0.01 and 0.52 V, while their EVB values were 2.60 and 3.55 V, respectively. Typical FTIR absorption bands of W‒OH, the W‒O‒W, and AgBr bonds have appeared at 1637 cm-1, 823 (and 766) cm-1, and 1384 cm-1, respectively. The pHpzc of 4 was estimated for the individual and coupled catalysts. In studying the photocatalytic activity of the catalysts in the photodegradation of metronidazole (MNZ) a boosted activity was achieved for the coupled system. This increased activity depends on the maximum AgBr:WO3 mole ratio in a 1:3 mol ratio. Grinding time applied to prepare the coupled catalyst has also varied the photocatalytic activity.
Collapse
Affiliation(s)
- Elaheh Shabanian-Broujeni
- Department of Chemistry, Shahreza Branch, Islamic Azad University, 311-86145, Shahreza, Isfahan, Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, 311-86145, Shahreza, Isfahan, Iran
- Razi Chemistry Research Center (RCRC), Shahreza Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
7
|
Aneggi E, Hussain S, Baratta W, Zuccaccia D, Goi D. Enhanced Heterogeneous Fenton Degradation of Organic Dyes by Bimetallic Zirconia-Based Catalysts. Molecules 2024; 29:2074. [PMID: 38731565 PMCID: PMC11085515 DOI: 10.3390/molecules29092074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The qualitative impact of pollutants on water quality is mainly related to their nature and their concentration, but in any case, they determine a strong impact on the involved ecosystems. In particular, refractory organic compounds represent a critical challenge, and several degradation processes have been studied and developed for their removal. Among them, heterogeneous Fenton treatment is a promising technology for wastewater and liquid waste remediation. Here, we have developed mono- and bimetallic formulations based on Co, Cu, Fe, and Mn, which were investigated for the degradation of three model organic dyes (methylene blue, rhodamine B, and malachite green). The treated samples were then analyzed by means of UV-vis spectrophotometry techniques. Bimetallic iron-based materials achieved almost complete degradation of all three model molecules in very short time. The Mn-Fe catalyst resulted in the best formulation with an almost complete degradation of methylene blue and malachite green at pH 5 in 5 min and of rhodamine B at pH 3 in 30 min. The results suggest that these formulations can be applied for the treatment of a broad range of liquid wastes comprising complex and variable organic pollutants. The investigated catalysts are extremely promising when compared to other systems reported in the literature.
Collapse
Affiliation(s)
- Eleonora Aneggi
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Sezione di Chimica, Università di Udine, e INSTM, 33100 Udine, Italy; (W.B.); (D.Z.)
| | - Sajid Hussain
- Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, e INSTM, 33100 Udine, Italy; (S.H.); (D.G.)
- Dipartimento di Ingegneria Industriale, Università di Padova, 35131 Padova, Italy
| | - Walter Baratta
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Sezione di Chimica, Università di Udine, e INSTM, 33100 Udine, Italy; (W.B.); (D.Z.)
| | - Daniele Zuccaccia
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Sezione di Chimica, Università di Udine, e INSTM, 33100 Udine, Italy; (W.B.); (D.Z.)
| | - Daniele Goi
- Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, e INSTM, 33100 Udine, Italy; (S.H.); (D.G.)
| |
Collapse
|
8
|
Liu H, Li X, Li P, Yang X, Li Y, Song H. Mn(II) Coordination Complex Loaded Hydrogel: Synthesis, Characterization, Fluorescence Properties, and Application in Treating Knee Arthritis. J Fluoresc 2024:10.1007/s10895-024-03722-9. [PMID: 38662254 DOI: 10.1007/s10895-024-03722-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Using a mixed-ligand approach, we successfully obtained two Mn(II)-based coordination compounds, namely [Mn2(L1)(TBIP)·H2O]n (1) and [Mn2(L2)(NPTA)·H2O]n (2) (where L1 and L2 are 1,4-bis(thiabenzimidazol-1-ylmethyl)benzene and 1,2-bis(thiabenzimidazol-1-ylmethyl)benzene, H2NPTA is 2-nitroterephthalic acid, and H2TBIP is 5-tert-butylisophthalic acid). Fluorescence performance testing of complexes 1 and 2 showed excellent green and blue fluorescence properties. Based on this, we further prepared HA/CMCS hydrogels using natural polysaccharides hyaluronic acid (HA) and carboxymethyl chitosan (CMCS) as raw materials and studied their internal structural characteristics using scanning electron microscopy. Using "Duhuo Jisheng Decoction" as a drug model, two metal gel scaffolds loaded with "Duhuo Jisheng Decoction" were prepared, and their potential for treating knee osteoarthritis was evaluated.
Collapse
Affiliation(s)
- Hongpeng Liu
- Orthopedics and Traumatology Department, Heilongjiang University of Chinese Medicine/The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaodong Li
- Orthopedics and Traumatology Department, The Third Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Pengfei Li
- Orthopedics and Traumatology Department, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiangjun Yang
- Orthopedics and Traumatology Department, Hanan Branch of the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Yongji Li
- Orthopedics and Traumatology Department, Hanan Branch of the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Hanbing Song
- Orthopedics and Traumatology Department, Heilongjiang University of Chinese Medicine/The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| |
Collapse
|
9
|
Huang JB, Yin L, Yue TC, Wang LL, Wang DZ. Assembly of Functional Co(II) Metal-Organic Frameworks through a Mixed Ligand Strategy: Structure and Photocatalytic Degradation Properties. Inorg Chem 2024; 63:6928-6937. [PMID: 38571457 DOI: 10.1021/acs.inorgchem.4c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Four Co(II)-based metal-organic frameworks (MOFs) were constructed by a mixed ligand strategy under solvothermal conditions. The controllable modification of the bridging groups in the secondary building units was realized by changing the anions in MOFs 1-3. The MOF 4 with 3D framework structure was obtained by regulating the solvent ratio following the synthesis process of MOF 3. Furthermore, the MOFs 1-4 exhibited efficient photocatalytic activity for the degradation of malachite green (MG) dye without any photosensitizer or cocatalyst under a low-energy light source, the decolorization ratio of MG all reached more than 96.0% within 60 min, and maximal degradation was obtained to be 99.4% (MOF 4). The recycling experiments showed that the degradation rate of MG was still higher than 91% after 10 cycles. In the MOF 4 as representation, the photocatalytic process was explored systematically. The possible mechanism of catalytic degradation was discussed, which proved the existence of efficient oxidation active factors (•O2-, •OH, and h+). The possible intermediates and degradation pathways were investigated based on high-performance liquid chromatography tandem mass spectrometry. Additionally, MOFs 1-4 also exhibited excellent photocatalytic activity for the degradation of methylene blue, methyl violet, rhodamine B, and basic red 9.
Collapse
Affiliation(s)
- Jian-Bo Huang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| | - Lin Yin
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| | - Tian-Cai Yue
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| | - Lu-Lu Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| | - Duo-Zhi Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China
| |
Collapse
|
10
|
Norouzi A, Nezamzadeh-Ejhieh A. Synergistic photocatalytic effect of α-Fe 2O 3-ZnO binary nanocatalyst toward methylene blue: An experimental design study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123888. [PMID: 38241932 DOI: 10.1016/j.saa.2024.123888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Due to the potential ecosystem protection and management applications, searching for highly optimized semiconductor-based solar energy photocatalysts is still a significant challenge. Coupled α-Fe2O3-ZnO nanoparticles were prepared in situ and characterized by various identification techniques such as XRD, SEM-EDX, TEM, DRS, and FT-IR. Its pHpzc was about 8.1. The band gap energies of ZnO, α-Fe2O3, and the coupled α-Fe2O3-ZnO system were 3.22, 2.08, and 2.09 eV, respectively. The boosted photocatalytic activity of the coupled catalysts was designed via the RSM approach, and the optimal RSM conditions were pH 5, 25 min irradiation time, and 0.3 g/L of the α-Fe2O3-ZnO containing 75 % ZnO. The center point conditions' run included 0.5 g/L of the coupled catalyst containing 50 % ZnO, pH 7, and 22.5 min illumination time. The study on scavenger agents showed the highest role of hydroxyl radicals in MB photodegradation by the proposed catalyst.
Collapse
Affiliation(s)
- Abbas Norouzi
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran; Department of Chemistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| |
Collapse
|
11
|
Ahmad W, Kumar S, Verma M. Heterogeneous photocatalytic degradation of antiviral drug didanosine mediated by rose bengal and TiO 2 nanoparticles. ANAL SCI 2024; 40:175-184. [PMID: 37847356 DOI: 10.1007/s44211-023-00446-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/27/2023] [Indexed: 10/18/2023]
Abstract
There is a great concern among the researcher to remove the problem of the persistent organic pollutants in wastewater. Pharmaceutical agrochemical and personal care products are generally considered Persistent organic pollutants. Therefore, it is a matter of concern to develop new techniques how to remove these pollutants safely at low cost. This study mainly focuses on the commonly used antiviral drug didanosine and one most commonly used dye rose bengal. In this study, an organic dye rose bengal and TiO2 nanoparticles have been used in combination with UV light to achieve the photodegradation of selected pharmaceutical products and the dye was also degraded by using TiO2 Nanoparticles. The formation of three oxidation products was detected by using a very popular separation technique thin layer and column chromatography. The isolated photoproduct was characterized by using advanced characterization techniques like FTIR (Fourier transform infrared spectroscopy), UV Spectroscopy, and Proton and 13C NMR (Nuclear Magnetic Resonance spectroscopy). The role of singlet oxygen as an active species in this reaction was confirmed by using D2O as a reaction medium. The role of singlet oxygen in this photochemical reaction was also established by the addition of sodium azide. The TiO2 nanophotocatalyst efficiently degrade the didanosine and rose bengal in the presence of the UV light. In the TiO2-induced photocatalytic degradation of didanosine and dyes, the hydroxyl and superoxide radical anion play a prominent role. The finding of this manuscript is very useful to develop an efficient low-cost method for the treatment of wastewater contaminated by antiviral drugs, similar pharmaceutical products and dyes. This study was also very helpful to establish a plausible mechanism behind the phototoxicity of the didanosine.
Collapse
Affiliation(s)
- Waseem Ahmad
- Department of Chemistry, Graphic Era (Deemed to be University), Dehradun, 248002, India.
| | - Sanjay Kumar
- Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, India
| | - Monu Verma
- Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, India
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| |
Collapse
|
12
|
Rezaei M, Nezamzadeh-Ejhieh A, Massah AR. A comprehensive review on the boosted effects of anion vacancy in the heterogeneous photocatalytic degradation, part I: Focus on sulfur, nitrogen, carbon, and halogen vacancies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115927. [PMID: 38181561 DOI: 10.1016/j.ecoenv.2024.115927] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/07/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
The greenest environmental remediation way is the photocatalytic degradation of organic pollutants. However, limited photocatalytic applications are due to poor sunlight absorption and photogenerated charge carriers' recombination. These limitations can be overcome by introducing anion vacancy (AV) (O, S, N, C, and Halogen) defects in semiconductors that enhance light harvesting, facilitate charge separation, modulate electronic structure, and produce reactive radicals. In continuing part A of this review, in this part, we summarized the recent AVs' research, including S, N, C, and halogen vacancies on the boosted photocatalytic features of semiconductor materials, like metal oxides/sulfides, oxyhalides, and nitrides in detail. Also, we outline the recently developed AV designs for the photocatalytic degradation of organic pollutants. The AV creating and analysis methods and the recent photocatalytic applications and mechanisms of AV-mediated photocatalysts are reviewed. AV engineering photocatalysts' challenges and development prospects are illustrated to get a promising research direction.
Collapse
Affiliation(s)
- Mahdieh Rezaei
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran; Department of Chemistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Ahmad Reza Massah
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran; Department of Chemistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
13
|
Dong W, Zhao Z, Liu F, Li P, Wang L, Zhou Y, Shen Y, Lang C, Deng B, Li H, Li D. PVDF Nanofiber Modified with ZnO Nanowires/Polydopamine for the Treatment of Sewage Containing Heavy Metals, Organic Dyes, and Bacteria. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58994-59004. [PMID: 38079597 DOI: 10.1021/acsami.3c12585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
In various countries worldwide, the issue of wastewater contamination poses a significant threat due to its intricate composition of heavy metals, organic dyes, and microorganisms, thereby complicating the purification process. Consequently, researchers have expressed considerable interest in materials capable of eliminating organic, heavy metal, and microbial pollutants. This study focuses on the fabrication of a water purification membrane (PDA/ZnO-NWs/PVDF) with a hierarchical structure and the ability to remove multiple pollutants. The membrane was created by modifying poly(vinylidene fluoride) (PVDF) nanofiber with zinc oxide nanowires (ZnO-NWs) and reinforcing it with polydopamine (PDA). The experimental results demonstrate that the PDA/ZnO-NWs/PVDF membrane exhibits a range of functionalities, including long-lasting superhydrophilicity, Cu(II) adsorption, photocatalytic degradation, and antibacterial ability. The manipulation of the DA synthesis procedure allows for the adjustment of the wettability, adsorption, and photocatalytic and antibacterial activities of the PDA/ZnO-NWs/PVDF composite. According to the Langmuir isotherm, the maximum Cu(II) adsorption capacity of the PDA/ZnO-NWs/PVDF membrane is determined to be 65.75 mg/g, which is significantly higher (27.26 mg/g) than that of the ZnO-NWs/PVDF membrane (38.49 mg/g). The PDA/ZnO-NWs/PVDF composite exhibited a notable degradation capacity toward rhodamine B under natural sunlight, reaching a maximum of 5.97 mg/g. Additionally, the degradation rate achieved during daylight hours was as high as 90.42%. Furthermore, the antibacterial efficacy of the PDA/ZnO-NWs/PVDF composite against both Gram-positive and Gram-negative bacteria approached 100%. This work presents a promising approach for the treatment of wastewater containing various coexisting contaminants.
Collapse
Affiliation(s)
- Wenhao Dong
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Ziqiang Zhao
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Feng Liu
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Peihang Li
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Lanlan Wang
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Yuqi Zhou
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Ying Shen
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Chenhong Lang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bingyao Deng
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Haoxuan Li
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Dawei Li
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
14
|
Herrera F, Caraballo RM, Soler Illia GJAA, Gomez GE, Hamer M. Sunlight-Driven Photocatalysis for a Set of 3D Metal-Porphyrin Frameworks Based on a Planar Tetracarboxylic Ligand and Lanthanide Ions. ACS OMEGA 2023; 8:46777-46785. [PMID: 38107943 PMCID: PMC10720276 DOI: 10.1021/acsomega.3c06153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 12/19/2023]
Abstract
Metal-porphyrin frameworks (MPFs) with trivalent lanthanide ions are the most sought-after materials in the past decade. Their porosities are usually complemented by optical properties imparted by the metal nodes, making them attractive multifunctional materials. Here, we report a novel family of 3D MPFs obtained through solvothermal reactions between tetrakis(4-carboxyphenyl) porphyrin (H4TCPP) and different lanthanide sources, yielding an isostructural family of compounds along the lanthanide series: [Ln2(DMF)(TCPP)1.5] for Ln = La, Ce, Nd, Pr, Er, Y, Tb, Dy, Sm, Eu, Gd, and Tm. Photoluminescent properties of selected phases were explored at room temperature. Also, the photocatalytic performance exhibited by these compounds under sunlight exposure is promising for its implementation in organic pollutant degradation. In order to study the photocatalytic activity of Ln-TCPPs in an aqueous medium, methylene blue (MB) was used as a contaminant model. The efficiency for MB degradation was Sm > Y > Yb > Gd > Er > Eu > either no catalyst or no light, obtaining more than 70% degradation at 120 min with Sm-TCPP. These results open the possibility of using these compounds in optical and optoelectronic devices for water remediation and sensing.
Collapse
Affiliation(s)
- Facundo
C. Herrera
- Instituto
de Nanosistemas, Escuela de Bio y Nanotecnología, Universidad Nacional de General San Martín
(INS-UNSAM)-CONICET, 1650 San Martín, Argentina
- Laboratorio
Argentino Haces de Neutrones-Comisión Nacional de Energía
Atómica, Av. Gral.
Paz, 1499 Villa
Maipú, Argentina
| | - Rolando M. Caraballo
- Instituto
de Ecología y Desarrollo Sustentable (INEDES), Universidad Nacional de Luján (UNLu-CONICET), Av. Constitución y Ruta Nac.
N °5, 6700 Luján, Argentina
| | - Galo J. A. A. Soler Illia
- Instituto
de Nanosistemas, Escuela de Bio y Nanotecnología, Universidad Nacional de General San Martín
(INS-UNSAM)-CONICET, 1650 San Martín, Argentina
| | - Germán E. Gomez
- Instituto
de Investigaciones en Tecnología Química (INTEQUI-CONICET), Universidad Nacional de San Luis, Área de Química
General e Inorgánica, Facultad de Química, Bioquímica
y Farmacia (UNSL-FQByF), Almirante Brown, 1455 San Luis, Argentina
| | - Mariana Hamer
- Instituto
de Ciencias, Universidad Nacional de General
Sarmiento-CONICET, Juan
María Gutiérrez 1150, CP1613 Los Polvorines, Argentina
| |
Collapse
|
15
|
Khan MS, Li Y, Li DS, Qiu J, Xu X, Yang HY. A review of metal-organic framework (MOF) materials as an effective photocatalyst for degradation of organic pollutants. NANOSCALE ADVANCES 2023; 5:6318-6348. [PMID: 38045530 PMCID: PMC10690739 DOI: 10.1039/d3na00627a] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/30/2023] [Indexed: 12/05/2023]
Abstract
Water plays a vital role in all aspects of life. Recently, water pollution has increased exponentially due to various organic and inorganic pollutants. Organic pollutants are hard to degrade; therefore, cost-effective and sustainable approaches are needed to degrade these pollutants. Organic dyes are the major source of organic pollutants from coloring industries. The photoactive metal-organic frameworks (MOFs) offer an ultimate strategy for constructing photocatalysts to degrade pollutants present in wastewater. Therefore, tuning the metal ions/clusters and organic ligands for the better photocatalytic activity of MOFs is a tremendous approach for wastewater treatment. This review comprehensively reports various MOFs and their composites, especially POM-based MOF composites, for the enhanced photocatalytic degradation of organic pollutants in the aqueous phase. A brief discussion on various theoretical aspects such as density functional theory (DFT) and machine learning (ML) related to MOF and MOF composite-based photocatalysts has been presented. Thus, this article may eventually pave the way for applying different structural features to modulate novel porous materials for enhanced photodegradation properties toward organic pollutants.
Collapse
Affiliation(s)
- M Shahnawaz Khan
- Pillar of Engineering Product Development, Singapore University of Technology and Design 8 Somapah Road 487372 Singapore
| | - Yixiang Li
- Pillar of Engineering Product Development, Singapore University of Technology and Design 8 Somapah Road 487372 Singapore
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University Yichang 443002 P. R. China
| | - Jianbei Qiu
- Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology Kunming Yunnan 650093 China
| | - Xuhui Xu
- Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology Kunming Yunnan 650093 China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design 8 Somapah Road 487372 Singapore
| |
Collapse
|
16
|
Bin HS, Hu H, Wang J, Lu L, Muddassir M, Srivastava D, Chauhan R, Wu Y, Wang X, Kumar A. New 5,5-(1,4-Phenylenebis(methyleneoxy)diisophthalic Acid Appended Zn(II) and Cd(II) MOFs as Potent Photocatalysts for Nitrophenols. Molecules 2023; 28:7180. [PMID: 37894661 PMCID: PMC10608887 DOI: 10.3390/molecules28207180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Metal-organic frameworks (MOFs) are peculiar multimodal materials that find photocatalytic applications for the decomposition of lethal molecules present in the wastewater. In this investigation, two new d10-configuration-based MOFs, [Zn2(L)(H2O)(bbi)] (1) and [Cd2(L)(bbi)] (2) (5,5-(1,4-phenylenebis(methyleneoxy)diisophthalic acid (H2L) and 1,1'-(1,4-butanediyl)bis(imidazole) (bbi)), have been synthesized and characterized. The MOF 1 displayed a (4,6)-connected (3.43.52)(32.44.52.66.7) network topology, while 2 had a (3,10)-connected network with a Schläfli symbol of (410.511.622.72)(43)2. These MOFs have been employed as photocatalysts to photodegrade nitrophenolic compounds, especially p-nitrophenol (PNP). The photocatalysis studies reveal that 1 displayed relatively better photocatalytic performance than 2. Further, the photocatalytic efficacy of 1 has been assessed by altering the initial PNP concentration and photocatalyst dosage, which suggest that at 80 ppm PNP concentration and at its 50 mg concentration the MOF 1 can photo-decompose around 90.01% of PNP in 50 min. Further, radical scavenging experiments reveal that holes present over 1 and ·OH radicals collectively catalyze the photodecomposition of PNP. In addition, utilizing density of states (DOS) calculations and Hirshfeld surface analyses, a plausible photocatalysis mechanism for nitrophenol degradation has been postulated.
Collapse
Affiliation(s)
- Hui-Shi Bin
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China (L.L.)
| | - Hai Hu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China (L.L.)
| | - Jun Wang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China (L.L.)
| | - Lu Lu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China (L.L.)
| | - Mohd Muddassir
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Devyani Srivastava
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226007, India;
| | - Ratna Chauhan
- Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Yu Wu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China (L.L.)
| | - Xiaoxiong Wang
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226007, India;
| |
Collapse
|
17
|
Feng X, Wang X, Redshaw C, Tang BZ. Aggregation behaviour of pyrene-based luminescent materials, from molecular design and optical properties to application. Chem Soc Rev 2023; 52:6715-6753. [PMID: 37694728 DOI: 10.1039/d3cs00251a] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Molecular aggregates are self-assembled from multiple molecules via weak intermolecular interactions, and new chemical and physical properties can emerge compared to their individual molecule. With the development of aggregate science, much research has focused on the study of the luminescence behaviour of aggregates rather than single molecules. Pyrene as a classical fluorophore has attracted great attention due to its diverse luminescence behavior depending on the solution state, molecular packing pattern as well as morphology, resulting in wide potential applications. For example, pyrene prefers to emit monomer emission in dilute solution but tends to form a dimer via π-π stacking in the aggregation state, resulting in red-shifted emission with quenched fluorescence and quantum yield. Over the past two decades, much effort has been devoted to developing novel pyrene-based fluorescent molecules and determining the luminescence mechanism for potential applications. Since the concept of "aggregation-induced emission (AIE)" was proposed by Tang et al. in 2001, aggregate science has been established, and the aggregated luminescence behaviour of pyrene-based materials has been extensively investigated. New pyrene-based emitters have been designed and synthesized not only to investigate the relationships between the molecular structure and properties and advanced applications but also to examine the effect of the aggregate morphology on their optical and electronic properties. Indeed, new aggregated pyrene-based molecules have emerged with unique properties, such as circularly polarized luminescence, excellent fluorescence and phosphorescence and electroluminescence, ultra-high mobility, etc. These properties are independent of their molecular constituents and allow for a number of cutting-edge technological applications, such as chemosensors, organic light-emitting diodes, organic field effect transistors, organic solar cells, Li-batteries, etc. Reviews published to-date have mainly concentrated on summarizing the molecular design and multi-functional applications of pyrene-based fluorophores, whereas the aggregation behaviour of pyrene-based luminescent materials has received very little attention. The majority of the multi-functional applications of pyrene molecules are not only closely related to their molecular structures, but also to the packing model they adopt in the aggregated state. In this review, we will summarize the intriguing optoelectronic properties of pyrene-based luminescent materials boosted by aggregation behaviour, and systematically establish the relationship between the molecular structure, aggregation states, and optoelectronic properties. This review will provide a new perspective for understanding the luminescence and electronic transition mechanism of pyrene-based materials and will facilitate further development of pyrene chemistry.
Collapse
Affiliation(s)
- Xing Feng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Xiaohui Wang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull, Yorkshire HU6 7RX, UK.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.
| |
Collapse
|
18
|
Gou X, Lu J, Zhao HY, Pei YR, Jin LY. Supramolecular nanostructures of coil-rod-coil molecules containing a 9,10-distyrylanthracene group in aqueous solution and their optical properties of assemblies. SOFT MATTER 2023; 19:6683-6690. [PMID: 37609871 DOI: 10.1039/d3sm00924f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
A series of coil-rod-coil molecules containing a 9,10-distyrylanthracene (DSA) core was successfully synthesized. The flexible parts of these molecules are composed of different polyethylene oxide chains. These molecules with aggregation-induced luminescence properties can be assembled into micelles, spheres, and sheet-like nano-assemblies in aqueous solution and have a strong ability to form charge-transfer complexes with the electron-deficient small molecules 2,4,5,7-tetranitro-9-fluorenone and 2,4,6-trinitrophenol. Interestingly, under ultraviolet light irradiation, the DSA structure undergoes photolysis and induces the disappearance of the aggregation-induced luminescence phenomena, giving these molecules application potential as a photodegradable material. In addition, these molecules are suitable organic dyes for information encryption and anti-counterfeiting applications.
Collapse
Affiliation(s)
- Xiaoliang Gou
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Jie Lu
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Hui-Yu Zhao
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Yi-Rong Pei
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| |
Collapse
|
19
|
Xu JJ, Ghosh MK, Lu L, Liu QQ, Sakiyama H, Ghorai TK, Afzal M, Alarifi A. Construction of two new Zn(II)-based coordination polymers as photocatalyst for degradation of antibiotic. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
20
|
Wang GL, Kumar Ghosh M, Wang J, Shi C, Yan MH, Sakiyama H, Muddassir M, Kumar Ghorai T. Flexible 3,5-bis(3,4-dicarboxyphenoxy) benzoic acid based coordination polymers as photocatalysts for the sensitive photodegradation of methylene blue. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
21
|
Estévez Ruiz EP, Lago JL, Thirumuruganandham SP. Experimental Studies on TiO 2 NT with Metal Dopants through Co-Precipitation, Sol-Gel, Hydrothermal Scheme and Corresponding Computational Molecular Evaluations. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3076. [PMID: 37109913 PMCID: PMC10143655 DOI: 10.3390/ma16083076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
In the last decade, TiO2 nanotubes have attracted the attention of the scientific community and industry due to their exceptional photocatalytic properties, opening a wide range of additional applications in the fields of renewable energy, sensors, supercapacitors, and the pharmaceutical industry. However, their use is limited because their band gap is tied to the visible light spectrum. Therefore, it is essential to dope them with metals to extend their physicochemical advantages. In this review, we provide a brief overview of the preparation of metal-doped TiO2 nanotubes. We address hydrothermal and alteration methods that have been used to study the effects of different metal dopants on the structural, morphological, and optoelectrical properties of anatase and rutile nanotubes. The progress of DFT studies on the metal doping of TiO2 nanoparticles is discussed. In addition, the traditional models and their confirmation of the results of the experiment with TiO2 nanotubes are reviewed, as well as the use of TNT in various applications and the future prospects for its development in other fields. We focus on the comprehensive analysis and practical significance of the development of TiO2 hybrid materials and the need for a better understanding of the structural-chemical properties of anatase TiO2 nanotubes with metal doping for ion storage devices such as batteries.
Collapse
Affiliation(s)
- Eduardo Patricio Estévez Ruiz
- Centro de Investigación de Ciencias Humanas y de la Educación (CICHE), Universidad Indoamérica, Ambato 180103, Ecuador
- Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Universidade da Coruña, 15471 Ferrol, Spain
| | - Joaquín López Lago
- Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Universidade da Coruña, 15471 Ferrol, Spain
| | | |
Collapse
|
22
|
Xiong M, Xia YG, Lu L, Wang J, Mohanty A, Wu Y, Sakiyama H, Muddassir M, Pan Y. Ligand Modulation on the Various Structures of Three Zinc(II)-Based Coordination Polymers for Antibiotics Degradation. Molecules 2023; 28:molecules28072933. [PMID: 37049696 PMCID: PMC10095641 DOI: 10.3390/molecules28072933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
The efficient removal of organic contaminants from wastewater is, nowadays, a prominent area of study due to its biological as well as environmental significance. Antibiotics are now found in wastewater because of their high use, which has become a source of aquatic pollution. These antibiotics have dangerous implications for people’s health. Hence, effective pharmaceutical removal from wastewater and contaminated water bodies, especially the removal of antibiotics, is of major interest to global research organizations. This is why it is necessary to investigate this class of toxic material in wastewater discharge. We synthesized three different coordination polymers (CPs) in the presence of various assistant carboxylate linkers, namely, [Zn(Hbtc)(dip)]n (1), [Zn4(1,2-bdc)4(dip)4]n (2), and [Zn(1,4-bdc)(dip)]n (3) (3,5-di(1H-imidazol-1-yl)pyridine = dip, 1,3,5-benzenetricarboxylic acid = H3btc, 1,2-benzenedicarboxylic acid = 1,2-H2bdc, and 1,4-benzendicarboxylic acid = 1,4-bdc). These CPs were characterized by using different techniques, including single-crystal X-ray diffraction. The structural studies demonstrated that in 2, there are four Zn(II) centers and both centers are in different coordination environments (Zn2 has distorted tetrahedral geometry, whereas Zn1, Zn3, and Zn4 have square pyramidal geometry). Hirshfeld surfaces analysis revealed that different types of intermolecular interactions (C⋯C, H⋯C, H⋯H, O⋯C, N⋯H, and O⋯H) are present in the synthesized CPs. We examined the different antibiotics, such as metronidazole (MDZ), nitrofurazone (NFZ), dimetridazole (DTZ), sulfasalazine(SLA), and oxytetracycline (OXY), degradation behaviors of the synthesized CPs, which showed remarkable degradation efficiency. 1 showed photocatalytic behavior toward the NFZ antibiotic in an aqueous media. This study also showed that these catalysts are stable and reusable under mild conditions.
Collapse
Affiliation(s)
- Min Xiong
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China (J.W.)
| | - Ying-Gui Xia
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China (J.W.)
| | - Lu Lu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China (J.W.)
- Correspondence: (L.L.); (A.M.); (Y.P.)
| | - Jun Wang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China (J.W.)
| | - A. Mohanty
- Department of Chemistry, Berhampur University, Berhampur 760007, India
- Correspondence: (L.L.); (A.M.); (Y.P.)
| | - Yu Wu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China (J.W.)
| | - Hiroshi Sakiyama
- Department of Science, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560, Japan
| | - Mohd. Muddassir
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ying Pan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Correspondence: (L.L.); (A.M.); (Y.P.)
| |
Collapse
|
23
|
Mirsalari SA, Nezamzadeh-Ejhieh A, Massah AR. A Z-scheme CdS/Ag 3PO 4 catalyst: Characterization, experimental design and mechanism consideration for methylene blue. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122139. [PMID: 36446172 DOI: 10.1016/j.saa.2022.122139] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Due to the explosive use of Azo dyes in various industries such as textiles, discharging these industrial effluents into the environment critically polluted water supplies. Accordingly, constructing/developing novel binary catalysts to diminish the pollution extent of such effluents before discharging into environment is an excellent issue in environmental chemistry. Here, a binary CdS/ Ag3PO4 was constructed, and its boosted photocatalytic activity was proven against methylene blue (MB), as a model dye pollutant. The Wurtzite CdS and Ag3PO4 cubic crystal nanoparticles were synthesized and coupled mechanically. The binary sample's lowest photoluminescence (PL) results confirm a higher e/h separation. DRS results confirmed a decreased energy gap for the coupled system. The semiconductors' VB and CV potentials were calculated and used for constructing of Z-scheme mechanism. The photocatalytic activity was followed via an experimental design approach. The model F-value of 89.75 > F0.05,14,13 = 2.42 and LOF F-value of 6.57 < F0.05,10, 3 = 8.79 reveal that the model well processed data. The optimal run conditions were CMB: 5 ppm, Catalyst dose: 1 g/L, pH: 3.25, and irradiation time: 139 min, at which 85% of MB molecules were degraded. Based on the trend of ascorbic acid > isopropanol > formic acid ≈ nitrate obtained for the scavengers' importance in decreasing the photocatalyst activity, superoxide radicals had the highest effect in MB degradation and then •OH. The results showed the direct Z-scheme has the main effect on MB degradation by the binary sample.
Collapse
Affiliation(s)
- Seyyedeh Atefeh Mirsalari
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran.
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran.
| | - Ahmad Reza Massah
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran.
| |
Collapse
|
24
|
Shirzadi H, Nezamzadeh-Ejhieh A, Kolahdoozan M. Cerium oxide: synthesis, brief characterization, and optimization of the photocatalytic activity against phenazopyridine in an aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:30308-30320. [PMID: 36434455 DOI: 10.1007/s11356-022-24260-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Water pollution by antibiotics is a global crisis, and its risk is critically more severe due to the explosive use of these drug compounds. A critical effective removal method to diminish this risk is heterogeneous photocatalysis and optimizing the conditions to reach higher mineralization efficiency. CeO2 anoparticles (NPs) were synthesized and characterized by X-ray diffraction (XRD), UV-Vis diffuse reflection spectroscopy (DRS), and Fourier transform infrared spectroscopy (FTIR) techniques. A cubic structural crystallite phase was detected that had crystallite sizes of 17.9 and 16.7 nm estimated by the Scherrer and Williamson-Hall models. A typical FTIR absorption band for the Ce-O stretching absorption has appeared at 554 cm-1. Based on DRS data and the Kubelka-Munk and Tauc models, Eg values of 2.80, 3.06, 3.12, and 3.13 eV were obtained for n-values of 1/2, 2, 3/2, and 3, respectively. pHpzc of CeO2 NPs was about 5.7. The direct photolysis and surface adsorption processes have no critical role in phenazopyridine (PP) removal by appearing with 2.7 and 6.7% removal efficiencies, respectively. Due to the highest photocatalytic activity of CeO2 NPs toward PP, the effects of the critical operating variable on the activity were evaluated, and the optimal conditions were as catalyst dose, 0.7 g/L; pH, 6; irradiation time, 90 min; and CPP, 20 ppm. The Hinshelwood kinetics equation plot was y = - 6.6442 - 0.4677x (r2 = 0.9296), in which its slope as the rate constant of the photodegradation process was 0.4677 min-1 (corresponding to a t1/2 value of 1.48 min).
Collapse
Affiliation(s)
- Hamid Shirzadi
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran.
- Razi Chemistry Research Center (RCRC), Shahreza Branch, Islamic Azad University, Shahreza, Isfahan, Iran.
| | - Majid Kolahdoozan
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| |
Collapse
|
25
|
Yuan H, Shang P, Yang J, Huang Q, Song L, Jiang XF. Anion-Directed Self-Assembly of Calix[4]arene-Based Silver(I) Coordination Polymers and Photocatalytic Degradation of Organic Pollutants. Inorg Chem 2023; 62:2652-2662. [PMID: 36719869 DOI: 10.1021/acs.inorgchem.2c03587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Coordination polymers (CPs) have recently emerged as promising candidates for heterogeneous photocatalysis due to their structural designability and tunable properties. Herein, we developed two novel Ag(I)-calix[4]arene coordination polymers with the formula {[Ag2(μ-NO3)L1]}n (CP 1) and {[AgL1]·PF6}n (CP 2) (L1 = 2-mercapto-5-methyl-1,3,4-thiadiazole resorcinol calix[4]arene). Crystallography revealed that anion coordination and self-inclusion behavior induced the cavitand and silver ions to self-assemble into well-defined CPs 1 and 2 with different topological coordination frameworks, respectively. Furthermore, CPs 1 and 2 display high photocatalytic activity for the photodegradation of rhodamine B (RhB) and methyl orange (MO) in an aqueous solution under mild conditions (WLED and UV irradiation). The comparison results demonstrate that CP 1 exhibited better photocatalytic performance than CP 2, which correlated well with the differences in their molecular structure and HOMO-LUMO energy gaps. The photocatalysis products and possible intermediates were successfully monitored and determined using mass spectrum, gas chromatography, and electron paramagnetic resonance measurements. The rational photocatalysis mechanism was further investigated and proposed.
Collapse
Affiliation(s)
- Hui Yuan
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, P.R. China
| | - Ping Shang
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, P.R. China
| | - Jie Yang
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, P.R. China
| | - Qing Huang
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, P.R. China
| | - Ling Song
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, P.R. China
| | - Xuan-Feng Jiang
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, P.R. China.,Hubei Key Laboratory of Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang, Hubei 438000, P.R. China
| |
Collapse
|
26
|
Enhanced Removal of Organic Dyes Using Co-Catalytic Ag-Modified ZnO and TiO2 Sol-Gel Photocatalysts. Catalysts 2023. [DOI: 10.3390/catal13020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Zinc oxide and titanium dioxide semiconductor photocatalysts have been widely utilized in the last few decades for water treatment because of their high photocatalytic efficiency. Recently, a lot of researchers have focused on the improvement of the photocatalytic properties of catalysts through modifying and co-modifying them with different metals and nonmetals. These co-catalytic ions improve the photocatalytic activity of ZnO and TiO2 by reducing its energy band gap. This might be useful in wastewater treatment for the photocatalytic degradation of organic contaminants. In this study, we prepared semiconductor films that were surface-modified with Ag co-catalyst layers via the photo-fixation of Ag (I) ions with varied concentrations (10−2–10−4 M) in the water phase under UV illumination for the first time. The photocatalytic behavior was evaluated by the degradation of malachite green and methylene blue under UV and visible light irradiation. The ZnO/Ag and TiO2/Ag samples showed a faster degradation of malachite green compared to methylene blue due to the formation of stable intermediates by the reaction of OH radicals with the triarylmethane dye (C=C bond) during the photocatalysis. The co-catalytic-silver-modified films had a higher photocatalytic efficiency in comparison with the pure nanostructures. The dye photodegradation rate constants increased in the following order: pure films < films modified with Ag, 10−4 M < films modified with Ag10−3 M < films modified with Ag10−2 M. The Ag modification and the heterojunction of the composites contributed to trapping and transfer of the electrons. Therefore, the photogenerated charges had a longer lifetime, resulting in a strengthened photocatalytic ability of the ZnO/Ag and TiO2/Ag films.
Collapse
|
27
|
Mukherjee A, Dhak P, Hazra V, Goswami N, Dhak D. Synthesis of mesoporous Fe/Al/La trimetallic oxide for photodegradation of various water-soluble dyes: Kinetic, mechanistic, and pH studies. ENVIRONMENTAL RESEARCH 2023; 217:114862. [PMID: 36410464 DOI: 10.1016/j.envres.2022.114862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/05/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Phase pure, trigonal, mesoporous Fe/Al/La trimetallic nano-oxide (abbreviated as FAL) was synthesized using energy efficient chemical route with bandgap 1.97 eV and SBET = 50.02 m2/g and an average pore size of 8.95 nm for photodegradation of azo (di and tri) and thiazine class of dyes successfully. The valence band and conduction band potentials were calculated using the Mott-Schottky plot. The highest photodegradation efficiency was 93.85 ± 2% for reactive black 5 (RB5) at pH 7 under solar irradiation. The phase formation of FAL was confirmed by PXRD, TEM, and HRTEM analyses. The other characterizations include FESEM, Raman, EPR, UV, HPLC, LC-MS, etc. The presence of the metal centers and their corresponding oxidation states were confirmed by the SAEDS, elemental mapping, and XPS analyses respectively. FAL was also able to photodegrade direct blue 71 (DB71) and methylene blue (MB) under the same condition at different pH efficiently (pH 2-11). The photodegradation obeyed the pseudo-1st-order kinetics and was reusable up to 5 successive cycles. This study may be an efficient tool to meet UNs' SDG:6.
Collapse
Affiliation(s)
- Arnab Mukherjee
- Nanomaterials Research Lab, Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, 723104, India
| | - Prasanta Dhak
- Department of Chemistry, Techno India University, Kolkata, 700091, India
| | - Vishwadeepa Hazra
- Department of Chemical Sciences and Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, West Bengal, India
| | - Niharika Goswami
- Nanomaterials Research Lab, Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, 723104, India
| | - Debasis Dhak
- Nanomaterials Research Lab, Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, 723104, India.
| |
Collapse
|
28
|
Ghattavi S, Nezamzadeh-Ejhieh A. A mechanistic study of the photocatalytic activity of AgI–WO 3 in an experimentally designed approach toward methylene blue photodegradation. Catal Sci Technol 2023. [DOI: 10.1039/d2cy01815b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The visible light-active AgI/WO3 binary photocatalyst has been characterized using XRD, FTIR spectroscopy, SEM-EDX, cyclic voltammetry (CV), photoluminescence (PL), and UV–vis DRS techniques.
Collapse
Affiliation(s)
- Shirin Ghattavi
- Department of Chemistry, Shahreza Branch, Islamic Azad University, Shahreza, Islamic Republic of Iran
- Department of Chemistry, Firoozabad Branch, Islamic Azad University, Firoozabad, Islamic Republic of Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, Shahreza, Islamic Republic of Iran
- Razi Chemistry Research Center (RCRC), Shahreza Branch, Islamic Azad University, Shahreza, Islamic Republic of Iran
| |
Collapse
|
29
|
Li Y, Li X, Wang B. Constructing tunable coordinatively unsaturated sites in Fe-based metal-organic framework for effective degradation of pharmaceuticals in water: Performance and mechanism. CHEMOSPHERE 2023; 310:136816. [PMID: 36272621 DOI: 10.1016/j.chemosphere.2022.136816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Micropollutants are ubiquitously detected in the aqueous environment, which needs to be removed by novel materials effectively. Herein, we synthesized a photo-Fenton catalyst based on MIL-53 (Fe) to effectively degrade sulfadimidine, one of the micropollutants in water. Abundant Lewis acid active sites (54.26 μmol/g) were successfully constructed within the metal cluster using FeCl3·6H2O, 1,4-benzene dicarboxylate, and modulators. This study reports a strategy by effectively constructing tunable Lewis acid active sites within the cavities in MIL-53 (Fe) via a facile solvothermal reaction for sixteen micropollutants removal. The photo-Fenton degradation of sulfamethazine was completely removed (∼99%) within only 1 min with a small amount of hydrogen peroxide added. Both theoretical calculation and the experiment results prove that introducing the unsaturated coordinated/lewis acid sites can remarkably reduce the band gap energy and increase the charge-separation efficiency by changing the electron configuration with more distribution asymmetry of structures. The effective degradation of structurally diverse pharmaceuticals with environmentally relevant concentrations was studied by immobilizing MOF-catalyst into a PVDF support. This work advanced the development of effective approaches for emergency contaminants control.
Collapse
Affiliation(s)
- Yunyun Li
- School of Chemistry and Chemical Engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China; College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Shanxi, 716000, China
| | - Xiang Li
- School of Chemistry and Chemical Engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Bo Wang
- School of Chemistry and Chemical Engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
30
|
Zhang Y, Li Z, Gao F, Ma Z, Li W, Gao X, Fan G. Two amino acid Cu (II)-MOFs via one-pot method: Exhibiting good catalytic effect on the thermal decomposition of ammonium perchlorate and hexogen. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Jin JC, Wang J, Guo J, Yan MH, Wang J, Srivastava D, Kumar A, Sakiyama H, Muddassir M, Pan Y. A 3D rare cubane-like tetramer Cu(II)-based MOF with 4-fold dia topology as an efficient photocatalyst for dye degradation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Izadpanah Ostad M, Niknam Shahrak M, Galli F. The effect of different reaction media on photocatalytic activity of Au- and Cu-decorated zeolitic imidazolate Framework-8 toward CO2 photoreduction to methanol. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
33
|
Dong X, Shi Z, Li D, Li Y, An N, Shang Y, Sakiyama H, Muddassir M, Si C. The regulation research of topology and magnetic exchange models of CPs through Co(II) concentration adjustment. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Zabihi M, Motavalizadehkakhky A. PbS/ZIF-67 nanocomposite: novel material for photocatalytic degradation of basic yellow 28 and direct blue 199 dyes. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Zhang W, Ye G, Liao D, Chen X, Lu C, Nezamzadeh-Ejhieh A, Khan MS, Liu J, Pan Y, Dai Z. Recent Advances of Silver-Based Coordination Polymers on Antibacterial Applications. Molecules 2022; 27:7166. [PMID: 36363993 PMCID: PMC9656551 DOI: 10.3390/molecules27217166] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 07/30/2023] Open
Abstract
With the continuous evolution of bacteria and the constant use of traditional antibiotics, the emergence of drug-resistant bacteria and super viruses has attracted worldwide attention. Antimicrobial therapy has become the most popular and important research field at present. Coordination Polymer (CP) and/or metal-organic framework (MOF) platforms have the advantages of a high biocompatibility, biodegradability, and non-toxicity, have a great antibacterial potential and have been widely used in antibacterial treatment. This paper reviewed the mechanism and antibacterial effect of three typical MOFs (pure Ag-MOFs, hybrid Ag-MOFs, and Ag-containing-polymer @MOFs) in silver-based coordination polymers. At the same time, the existing shortcomings and future views are briefly discussed. The study on the antibacterial efficacy and mechanism of Ag-MOFs can provide a better basis for its clinical application and, meanwhile, open up a novel strategy for the preparation of more advanced Ag-contained materials with antibacterial characteristics.
Collapse
Affiliation(s)
- Wenfeng Zhang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Gaomin Ye
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Donghui Liao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Xuelin Chen
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
| | - Chengyu Lu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
| | | | - M. Shahnawaz Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Jianqiang Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
| | - Ying Pan
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Zhong Dai
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
36
|
New Cu(II)-based three dimensional supramolecular coordination polymer as photocatalyst for the degradation of methylene blue. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Metal–organic frameworks (MOFs) for the efficient removal of contaminants from water: Underlying mechanisms, recent advances, challenges, and future prospects. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214595] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Sathishkumar K, Ragupathy S, Karunanithi M, Krishnakumar M, Mani D, Ahn YH. Effect of cobalt incorporation on the photocatalytic degradation of brilliant green using SnO2 nanoparticles under visible light irradiation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Tan X, Liao D, Rao C, Zhou L, Tan Z, Pan Y, Singh A, Kumar A, Liu J, Li B. Recent advances in nano-architectonics of metal-organic frameworks for chemodynamic therapy. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123352] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Two uranyl-organic frameworks based on pyridine carboxylic acid and their electrochemistry properties study. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Zeng Y, Xu G, Kong X, Ye G, Guo J, Lu C, Nezamzadeh-Ejhieh A, Shahnawaz Khan M, Liu J, Peng Y. Recent advances of the core-shell MOFs in tumour therapy. Int J Pharm 2022; 627:122228. [PMID: 36162610 DOI: 10.1016/j.ijpharm.2022.122228] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 12/15/2022]
Abstract
Coordination chemistry has always been vital to explore the material prominence of metal-organic systems. The metal-organic chemistry plays a fundamental role in decisive structural features, which are accountable for tuning the properties of materials. Tumour therapy has become an important research field of medical treatment in the world. Metal-organic frameworks (MOFs) have attracted extensive interest in medical science research due to their large effective surface area, clear pore network, and critical catalytic performance. Compared with traditional MOF materials, MOF materials with core-shell structures have a higher loading rate and better stability, which can overcome a single function. They have been successfully used in tumour medical research and have excellent prospects for diagnosing and treating various tumours. The current review article thoroughly describes the various synthetic approaches for engineering core-shell MOF materials, the structural types, and the potential functional applications. We also discussed core-shell MOF materials for the various treatment of tumours, such as tumour chemotherapy, tumour phototherapy and tumour microenvironment anti-hypoxia therapy. In this paper, the synthesized procedures of core-shell MOFs and their applications for tumour treatment have been discussed, and their future research has prospected. The current improved strategies, challenges, and prospects are also presented because of the metal-organic chemistry governing the structural modification of core-shell MOFs for tumour therapy applications. Therefore, the present review article opens a new door for medicinal chemists to tune the structural features of the core-shell MOF materials to modulate tumour therapy with simple, low-cost materials for better human lives.
Collapse
Affiliation(s)
- Yana Zeng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Guihua Xu
- Department of Science and Education, The Dongguan Affiliated Hospital of Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan 523900, China
| | - Xiangyang Kong
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Gaomin Ye
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Jian Guo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China.
| | - Chengyu Lu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | | | - M Shahnawaz Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China.
| | - Yanqiong Peng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
42
|
Zhong XL, Wang J, Shi C, Lu L, Srivastava D, Kumar A, Afzal M, Alarifi A. Photocatalytic applications of a new 3D Mn(II)-based MOF with mab topology. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
3,5-Dibromosalicylaldehyde nicotinoylhydrazone and 4,4′-bipyridine appended new Zn(II) Coordination Polymer: Secnidazole sensing and Rhodamine B photocatalytic degradation properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Ji GJ, Xiang T, Yan TX, Li XJ, Chen L. Efficient adsorption separation of xylene isomers on Cu-BTC@Fe3O4 by appropriate activation methods. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Sensing and photocatalytic properties of a new 1D Zn(II)-based coordination polymer derived from the 3,5-dibromosalicylaldehyde nicotinoylhydrazone ligand. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Ali A, Muslim M, Neogi I, Afzal M, Alarifi A, Ahmad M. Construction of a 3D Metal-Organic Framework and Its Composite for Water Remediation via Selective Adsorption and Photocatalytic Degradation of Hazardous Dye. ACS OMEGA 2022; 7:24438-24451. [PMID: 35874213 PMCID: PMC9301640 DOI: 10.1021/acsomega.2c01869] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, a new bimetallic Na(I)-Zn(II) metal-organic framework (MOF), formulated as [Na2Zn3(btc)2(μ-HCOO)2(μ-H2O)8] n (1) (H3btc = benzene tricarboxylic acid), and its composite (ZnO@1) have been successfully synthesized using solvothermal and mechanochemical solid grinding methods. 1 and ZnO@1 were characterized by diffraction [single-crystal X-ray diffraction (XRD) and powder XRD], spectroscopic (ultraviolet-visible diffuse reflectance spectroscopy and Fourier transform infrared spectroscopy), microscopic (transmission electron microscopy), and thermal (thermogravimetric analysis) methods. The surface area and porosity of 1 were determined using a Brunauer-Emmett-Teller analyzer. Single-crystal diffraction of 1 confirms that Na1 and Zn2 have octahedral coordination environments, whereas Zn1 has a tetrahedral coordination geometry. Topological simplification of 1 shows a 3,6-connected kgd net. Na(I)-Zn(II) MOF (1) is crystallized with slight porosity and exhibits good tendency toward the encapsulation of zinc oxide nanoparticles (ZnO NPs). The photocatalytic behaviors of 1 and its composite (ZnO@1) were investigated over MB dye under sunlight illumination with promising degradation efficiencies of 93.69% for 1 and 97.53% for ZnO@1 in 80 min.
Collapse
Affiliation(s)
- Arif Ali
- Department
of Applied Chemistry, ZHCET, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Mohd Muslim
- Department
of Applied Chemistry, ZHCET, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Ishita Neogi
- Chemical
Sciences and Technology Division, CSIR-National
Institute for Interdisciplinary Science and Technology (NIIST), Industrial Estate PO, Thiruvananthapuram 695019, India
| | - Mohd Afzal
- Department
of Chemistry, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alarifi
- Department
of Chemistry, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Musheer Ahmad
- Department
of Applied Chemistry, ZHCET, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| |
Collapse
|
47
|
Cancer nanomedicine: A step towards improving the drug delivery and enhanced efficacy of chemotherapeutic drugs. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Houshiar S, Rafiee Z, Grami M. Polymer/ZIF‐67 composite as an effective and recyclable nanocatalyst for Biginelli reaction. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Zahra Rafiee
- Department of Chemistry Yasouj University Yasouj Iran
| | | |
Collapse
|
49
|
NIR-II-driven intracellular photocatalytic oxygen-generation on Z-Scheme iron sulfide/cobalt sulfide nanosheets for hypoxic tumor therapy. J Colloid Interface Sci 2022; 625:145-157. [DOI: 10.1016/j.jcis.2022.06.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 11/17/2022]
|
50
|
Zhang N, Wu X, Lv K, Chu Y, Wang G, Sun XP. Controlled synthesis of magnetic polyoxometalates/iron oxide composites for photocatalytic degradation. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2078366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Niuniu Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, China
| | - Xia Wu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, China
| | - Kangjia Lv
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, China
| | - Yujie Chu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, China
| | - Guan Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, China
| | - Xiao-Peng Sun
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, China
| |
Collapse
|