1
|
Mukhopadhyay S, Sahoo RK, Patro AG, Khuntia AP, Nembenna S. Low-valent germanium and tin hydrides as catalysts for hydroboration, hydrodeoxygenation (HDO), and hydrodesulfurization (HDS) of heterocumulenes. Dalton Trans 2024; 53:18207-18216. [PMID: 39466610 DOI: 10.1039/d3dt04080a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The low-valent germanium and tin hydrides, [LMH; L = {(ArHN)(ArN)-CN-C(NAr)(NHAr); Ar = 2,6-Et2-C6H3}; M = Ge; (Ge-1), Sn (Sn-2)] bearing bis-guanidinato anions are employed as catalysts for chemoselective reduction of heterocumulenes via hydroboration reactions. This protocol demonstrates that a wide range of carbodiimides (CDI), isocyanates, isothiocyanates, and isoselenocyanates undergo partial reduction, yielding the corresponding N-boryl formamidine, N-boryl formamide, N-boryl thioformamide, and N-boryl selenoformamide products, respectively. Isocyanates and isothiocyanates are further converted into N-boryl methyl amines through hydrodeoxygenation (HDO) and hydrodesulfurization (HDS) reactions in the presence of catalyst Ge-1. Additionally, catalyst Sn-2 exhibits excellent inter and intra-molecular chemoselectivity over other functional groups. Based on stoichiometric experiments, a plausible catalytic cycle for chemoselective hydroboration of heterocumulenes is proposed.
Collapse
Affiliation(s)
- Sayantan Mukhopadhyay
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - A Ganesh Patro
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Anwesh Prasad Khuntia
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| |
Collapse
|
2
|
Long T, Zhang L, Cao Z. THF-Assisted CO 2 Reduction Catalyzed by Electride Mg 2EP: Insight from DFT Calculations. J Phys Chem A 2024; 128:5344-5350. [PMID: 38940816 DOI: 10.1021/acs.jpca.4c03500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Hydroboration and hydrogenation reductions of CO2 catalyzed by a porphyrinoid-based dimagnesium(I) electride (Mg2EP) were investigated by density functional theory calculations. Herein, the presence of potentially excess electrons located at the Mg-Mg bond endows Mg2EP with the ability to activate small molecules such as CO2, HBpin, and H2, thus opening up the possibility for further CO2 conversion. The Mg2EP-catalyzed hydroboration of CO2 to HCOOBpin is predicted to have relatively higher activity in comparison to the hydrogenation reduction to formic acid (HCOOH). Interestingly, the common solvent molecule tetrahydrofuran as an auxiliary can coordinate with the Mg center to effectively weaken the bonding interaction between the dimagnesium center and the intermediate species from the CO2 conversion, thereby promoting the catalytic cycle for the CO2 hydroboration. The present results suggest that the electride Mg2EP is promising for the molecular catalyst in the CO2 transformation.
Collapse
Affiliation(s)
- Tairen Long
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, China
| | - Lin Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, China
| |
Collapse
|
3
|
Zhang X, Lu K, Chen X, Su G, Rong X, Ma M. Hydroboration and hydrosilylation of alkenes catalyzed by an unsymmetrical magnesium methyl complex. Org Biomol Chem 2024; 22:5353-5360. [PMID: 38869074 DOI: 10.1039/d4ob00745j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The hydroboration and hydrosilylation of alkenes catalyzed by the unsymmetrical β-diketiminate magnesium methyl complex [(DippXylNacnac)MgMe (THF)] (1) have been reported. When complex 1 was employed as a highly efficient catalyst in the hydroboration of various alkenes with HBpin, only the anti-Markovnikov hydroboration products were obtained in high yields and with high regioselectivities under mild reaction conditions (60 °C). To our surprise, it showed different regioselectivities in the hydrosilylation of a range of alkenes with PhSiH3. Aromatic alkene substrates afforded the corresponding branched Markovnikov hydrosilylation products in high yields and with high regioselectivities; conversely, aliphatic alkenes produced the linear anti-Markovnikov products in moderate yields. This is completely consistent with the corresponding density functional theory (DFT) calculations. In addition, the practical utility was demonstrated via scale-up reactions of boronate esters and a preliminary plausible mechanism of hydroboration and hydrosilylation have been investigated as well.
Collapse
Affiliation(s)
- Xuguang Zhang
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Kai Lu
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Xi Chen
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Guanxin Su
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiaofei Rong
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Mengtao Ma
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
4
|
Rajput S, Sahoo RK, Sarkar N, Nembenna S. Gallium Hydride-Catalyzed Selective Hydroboration of Unsaturated Organic Substrates. Chempluschem 2024; 89:e202300737. [PMID: 38437065 DOI: 10.1002/cplu.202300737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
The first examples of tetrasubstituted conjugated bis-guanidinate (CBG) supported monomeric and thermally stable gallium dihalides [LGaX2], (X=Cl (Ga-Cl), I (Ga-I)) and dihydride (Ga-H) [LGaH2] (where L={(ArHN)(ArN)-C=N-C=(NAr)(NHAr)}; Ar=2,6-Et2-C6H3) compounds are reported. The reaction of in situ generated LLi with 1.0 equiv. GaX3 (X=Cl, I) afforded compounds Ga-Cl and Ga-I. The reaction between Ga-Cl and Li[HBEt3] in benzene yielded the dihydride compound Ga-H. All reported compounds (Ga-Cl, Ga-I, and Ga-H) were characterized by NMR, HRMS, and single-crystal X-ray diffraction studies. Ga-H was probed for the hydroboration of carbodiimides (CDI), isocyanates, and isothiocyanates with HBpin. Compound Ga-H was also found effective for the catalytic hydroboration of imines, nitriles, alkynes, esters, and formates, affording the corresponding products in quantitative yields. Stoichiometric reactions with a CDI were performed to establish the catalytic cycle.
Collapse
Affiliation(s)
- Sagrika Rajput
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| | - Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| | - Nabin Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| |
Collapse
|
5
|
Cruz TFC, Loupy V, Veiros LF. Zinc-Catalyzed Hydroboration of Carbon Dioxide Amplified by Borane-Tethered Heteroscorpionate Bis(Pyrazolyl)methane Ligands. Inorg Chem 2024; 63:8244-8256. [PMID: 38656156 PMCID: PMC11080050 DOI: 10.1021/acs.inorgchem.4c00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
The borane-functionalized (BR2) bis(3,5-dimethylpyrazolyl)methane (LH) ligands 1a (BR2: 9-borabicyclo[3.3.1]nonane or 9-BBN), 1b (BR2: BCy2), and 1c (BR2: B(C6F5)2) were synthesized by the allylation-hydroboration of LH. Metalation of 1a,b with ZnCl2 yielded the heteroscorpionate dichloride complexes [(1a,b)ZnCl2] 3a,b. The reaction of 1a with ZnEt2 led to the formation of the zwitterionic complex [Et(1a)ZnEt(THF)] 5. The reaction of complex 3a with two equivalents of KHBEt3 under a carbon dioxide (CO2) atmosphere gave rise to the formation of the dimeric bis(formate) complex [(1a)Zn(OCHO)2]2 8, in which its borane moieties intermolecularly stabilize the formate ligands of opposite metal centers. The allylated precursor Lallyl and its zinc dichloride, diethyl and bis(formate) complexes [(Lallyl)ZnCl2] 2, [(Lallyl)ZnEt2] 4, and [(Lallyl)Zn(OCHO)2] 7 were also isolated. The catalyst systems composed of 1 mol % of 3a or 3b and two equivalents of KHBEt3 hydroborated CO2 at 1 bar with pinacolborane (HBPin) to the methanol-level product H3COBPin (and PinBOBPin) in yields of 42 or 86%, respectively. The catalyst systems using the unfunctionalized complex [(LH)ZnCl2] 6 and KHBEt3 or KHBEt3/nOctBR2 (BR2: 9-BBN or BCy2) hydroborated CO2 to H3COBPin but in 2.5- to 6-fold lower activities than those exhibited by 3a,b/KHBEt3. The hydroboration of CO2 using 8 as a catalyst led to yields of 39-43%, comparable to those obtained with 3a/KHBEt3. The results confirmed that the catalytic intermediates benefit from the incorporated boranes' intra- or intermolecular stabilizations.
Collapse
Affiliation(s)
- Tiago F. C. Cruz
- Centro de Química
Estrutural, Institute of Molecular Sciences, Departamento de Engenharia
Química, Instituto Superior Técnico,
Universidade de Lisboa, Av. Rovisco Pais, 1049 001 Lisboa, Portugal
| | - Valentin Loupy
- Centro de Química
Estrutural, Institute of Molecular Sciences, Departamento de Engenharia
Química, Instituto Superior Técnico,
Universidade de Lisboa, Av. Rovisco Pais, 1049 001 Lisboa, Portugal
| | - Luís F. Veiros
- Centro de Química
Estrutural, Institute of Molecular Sciences, Departamento de Engenharia
Química, Instituto Superior Técnico,
Universidade de Lisboa, Av. Rovisco Pais, 1049 001 Lisboa, Portugal
| |
Collapse
|
6
|
Patro AG, Sahoo RK, Nembenna S. Zinc hydride catalyzed hydroboration of esters. Dalton Trans 2024; 53:3621-3628. [PMID: 38289250 DOI: 10.1039/d3dt04084d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The conjugated bis-guanidinate (CBG)-supported zinc hydride {LZnH}2; L = {(ArHN)(ArN)-CN-C(NAr)(NHAr); Ar = 2,6-Et2-C6H3} (I) is utilized as a catalyst for the hydroboration of esters with pinacolborane (HBpin) under mild reaction conditions. Various aryl and alkyl substrates containing electron-donating, withdrawing, and cyclic groups of esters are effectively converted into alkoxy boronate esters as products upon hydroboration. Furthermore, stoichiometric experiments have been performed to understand the plausible reaction mechanism for the hydroboration of esters. Additionally, complex (I) was used for the hydroboration of carbonate, carboxylic acid, and anhydride substrates to showcase the broad substrate scope.
Collapse
Affiliation(s)
- A Ganesh Patro
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI) Bhubaneswar, 752050, India.
| | - Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI) Bhubaneswar, 752050, India.
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI) Bhubaneswar, 752050, India.
| |
Collapse
|
7
|
Han HJ, Park SY, Jeon SE, Kwak JS, Lee JH, Jaladi AK, Hwang H, An DK. Grignard Reagent-Catalyzed Hydroboration of Esters, Nitriles, and Imines. Molecules 2023; 28:7090. [PMID: 37894569 PMCID: PMC10609653 DOI: 10.3390/molecules28207090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The reduction in esters, nitriles, and imines requires harsh conditions (highly reactive reagents, high temperatures, and pressures) or complex metal-ligand catalytic systems. Catalysts comprising earth-abundant and less toxic elements are desirable from the perspective of green chemistry. In this study, we developed a green hydroboration protocol for the reduction in esters, nitriles, and imines at room temperature (25 °C) using pinacolborane as the reducing agent and a commercially available Grignard reagent as the catalyst. Screening of various alkyl magnesium halides revealed MeMgCl as the optimal catalyst for the reduction. The hydroboration and subsequent hydrolysis of various esters yielded corresponding alcohols over a short reaction time (~0.5 h). The hydroboration of nitriles and imines produced various primary and secondary amines in excellent yields. Chemoselective reduction and density functional theory calculations are also performed. The proposed green hydroboration protocol eliminates the requirements for complex ligand systems and elevated temperatures, providing an effective method for the reduction in esters, nitriles, and imines at room temperature.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Duk Keun An
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea; (H.J.H.); (S.Y.P.); (S.E.J.); (J.S.K.); (J.H.L.); (A.K.J.); (H.H.)
| |
Collapse
|
8
|
Kumar GS, Kumar R, Sau A, Chandrasekhar V, Panda TK. Zinc Catalyzed Hydroboration of Esters and Nitriles with Pinacolborane. J Org Chem 2023; 88:12613-12622. [PMID: 37615400 DOI: 10.1021/acs.joc.3c01306] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
We developed a bench-stable iminopyridine-ligated zinc complex for the effective catalytic hydroboration of esters and nitriles under solvent-free conditions. Various esters and nitriles bearing different functionalities were selectively reduced to form corresponding alcohols and amines in good yields. Detailed Hammett plots are provided to explain the electronic effects on the phenyl ring.
Collapse
Affiliation(s)
- Gobbilla Sai Kumar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Hyderabad, Telangana 502284, India
| | - Ravi Kumar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Hyderabad, Telangana 502284, India
| | - Abhijit Sau
- Department of Chemistry, Indian Institute of Technology Hyderabad, Hyderabad, Telangana 502284, India
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500107, India
- Department of Chemistry, IIT Kanpur, Kanpur 208016, India
| | - Tarun K Panda
- Department of Chemistry, Indian Institute of Technology Hyderabad, Hyderabad, Telangana 502284, India
| |
Collapse
|
9
|
Deka H, Ritacco I, Fridman N, Caporaso L, Eisen MS. Catalytic regeneration of metal-hydrides from their corresponding metal-alkoxides via the hydroboration of carbonates to obtain methanol and diols. Chem Sci 2023; 14:8369-8379. [PMID: 37576386 PMCID: PMC10413203 DOI: 10.1039/d3sc01700a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/24/2023] [Indexed: 08/15/2023] Open
Abstract
Thorium complexes decorated with 5-, 6-, and 7-membered N-heterocyclic iminato ligands containing mesityl wingtip substitutions have been synthesized and fully characterized. These complexes were found to be efficient in the hydroboration of cyclic and linear organic carbonates with HBpin or 9-BBN promoting their decarbonylation and producing the corresponding boronated diols and methanol. In addition, the hydroboration of CO2 breaks the molecule into "CO" and "O" forming boronated methanol and pinBOBpin. Moreover, the demanding depolymerization of polycarbonates to the corresponding boronated diols and methanol opens the possibility of recycling polymers for energy sources. Increasing the core ring size of the ligands allows a better performance of the complexes. The reaction proceeds with high yields under mild reaction conditions, with low catalyst loading, and short reaction times, and shows a broad applicability scope. The reaction is achieved via the recycling of a high-energy Th-H moiety from a stable Th-OR motif. Experimental evidence and DFT calculations corroborate the formation of the thorium hydride species and the reduction of the carbonate with HBpin to the corresponding Bpin-protected alcohols and H3COBpin through the formate and acetal intermediates.
Collapse
Affiliation(s)
- Hemanta Deka
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City Haifa 3200003 Israel
- Department of Chemistry, Goalpara College Goalpara 783101 Assam India
| | - Ida Ritacco
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno Via Giovanni Paolo II, 132, 84084 Fisciano Salerno Italy
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City Haifa 3200003 Israel
| | - Lucia Caporaso
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno Via Giovanni Paolo II, 132, 84084 Fisciano Salerno Italy
| | - Moris S Eisen
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City Haifa 3200003 Israel
| |
Collapse
|
10
|
Sarkar N, Kumar Sahoo R, Nembenna S. Aluminium-Catalyzed Selective Hydroboration of Esters and Epoxides to Alcohols: C-O Bond Activation. Chemistry 2023; 29:e202203023. [PMID: 36226774 DOI: 10.1002/chem.202203023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 11/07/2022]
Abstract
In this work, the molecular aluminium dihydride complex bearing an N, N'-chelated conjugated bis-guanidinate (CBG) ligand is used as a catalyst for reducing a wide range of aryl and alkyl esters with good tolerance of alkene (C=C), alkyne (C≡C), halides (Cl, Br, I and F), nitrile (C≡N), and nitro (NO2 ) functionalities. Further, we investigated the catalytic application of aluminium dihydride in the C-O bond cleavage of alkyl and aryl epoxides into corresponding branched Markovnikov ring-opening products. In addition, the chemoselective intermolecular reduction of esters over other reducible functional groups, such as amides and alkenes, has been established. Intermediates are isolated and characterized by NMR and HRMS studies, which confirm the probable catalytic cycles for the hydroboration of esters and epoxides.
Collapse
Affiliation(s)
- Nabin Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| | - Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| |
Collapse
|
11
|
Qiu H, Lv K, Qu H, Zhang X, Yuan T, Yao W, Xue F, Ma M. Chemoselective electrocatalytic hydroboration of alkynes with pinacolborane. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Chen Z, Lv K, Yuan T, Zhang X, Yao W, Ma M. Electrochemical hydroboration of carbonyl compounds. Dalton Trans 2022; 51:11868-11875. [PMID: 35876237 DOI: 10.1039/d2dt01841a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A green and sustainable electrochemical hydroboration of carbonyl compounds with HBpin has been reported for the first time. Under catalyst-free and additive-free mild reaction conditions the corresponding boronic esters were obtained in excellent yields via the simple electrochemical hydroboration of various aldehydes and ketones with HBpin at room temperature. The scale-up reaction demonstrated potential practical applications. A plausible reaction mechanism was proposed based on the corresponding deuterium-labelling, radical inhibition and cyclic voltammetry experiments.
Collapse
Affiliation(s)
- Zewei Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Kang Lv
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Taoyue Yuan
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Xuguang Zhang
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Weiwei Yao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
13
|
Khuntia AP, Sarkar N, Patro AG, Sahoo RK, Nembenna S. Germanium Hydride Catalyzed Selective Hydroboration and Cyanosilylation of Ketones. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anwesh Prasad Khuntia
- National Institute of Science Education and Research School of Chemical Sciences SCS NISERbhubaneswar 752050 bhubaneswar INDIA
| | - Nabin Sarkar
- National Institute of Science Education and Research School of Chemical Sciences INDIA
| | - A Ganesh Patro
- National Institute of Science Education and Research School of Chemical Sciences SCS NISERbhubaneswar 752050 bhubaneswar INDIA
| | - Rajata Kumar Sahoo
- National Institute of Science Education and Research School of Chemical Sciences SCS NISERbhubaneswar 752050 bhubaneswar INDIA
| | - Sharanappa Nembenna
- National Institute of Science Education and Research (NISER) School of Chemical Sciences Jatni CampusNISER, BhubaneswarINDIA 752050 Bhubaneswar INDIA
| |
Collapse
|
14
|
Yan B, Dutta S, Ma X, Ni C, Koley D, Yang Z, Roesky HW. Organoaluminum hydrides catalyzed hydroboration of carbonates, esters, carboxylic acids, and carbon dioxide. Dalton Trans 2022; 51:6756-6765. [PMID: 35420111 DOI: 10.1039/d2dt00785a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The reductive functionalization of the CO unit of carbonates, carboxylic acids, esters, and CO2, respectively has received great attention since its introduction. This method is often used industrially for the synthesis of high value-added energy products in chemistry. This opens up a new way forward to reduce greenhouse gases and the consumption of traditional energy sources. Herein, we report an earth-abundant, cheap, and readily available aluminum dihydride, which can catalyze the reduction of a range of carbonates, esters, carboxylic acids, and CO2, respectively in the presence of pinacolborane as a reducing agent. Moreover, we demonstrate that the reaction can proceed to obtain good yield products under mild conditions, with low catalyst loading and solvent-free reactions. The mechanism of the catalytic reduction of carbonates has been investigated.
Collapse
Affiliation(s)
- Ben Yan
- School of Chemstry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| | - Sayan Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, India.
| | - Xiaoli Ma
- School of Chemstry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| | - Congjian Ni
- School of Chemstry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| | - Debasis Koley
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, India.
| | - Zhi Yang
- School of Chemstry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| | - Herbert W Roesky
- Dr. P. H. W. Roesky, Institut für Anorganische Chemie, Georg-August-Universität Göttin-gen, Tammannnstr. 4, 37077 Göttingen, Germany.
| |
Collapse
|
15
|
Wang S, Jiang N, Liu Y, Hao Y, Zhang Q, Niu H, Wang J. Novel hollow hierarchical Pb-Mg thin nanosheet catalyst with high performance for solvent-free synthesis of methyl phenyl carbonate. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Abstract
The addition of a B-H bond to an unsaturated bond (polarized or unpolarized) is a powerful and atom-economic tool for the synthesis of organoboranes. In recent years, s-block organometallics have appeared as alternative catalysts to transition-metal complexes, which traditionally catalyze the hydroboration of unsaturated bonds. Because of the recent and rapid development in the field of hydroboration of unsaturated bonds catalyzed by alkali (Li, Na, K) and alkaline earth (Mg, Ca, Sr, Ba) metals, we provide a detailed and updated comprehensive review that covers the synthesis, reactivity, and application of s-block metal catalysts in the hydroboration of polarized as well as unsaturated carbon-carbon bonds. Moreover, we describe the main reaction mechanisms, providing valuable insight into the reactivity of the s-block metal catalysts. Finally, we compare these s-block metal complexes with other redox-neutral catalytic systems based on p-block metals including aluminum complexes and f-block metal complexes of lanthanides and early actinides. In this review, we aim to provide a comprehensive, authoritative, and critical assessment of the state of the art within this highly interesting research area.
Collapse
Affiliation(s)
- Marc Magre
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Marcin Szewczyk
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Magnus Rueping
- Chemical Science Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
17
|
Sai Kumar G, Bhattacharjee J, Kumari K, Moorthy S, Bandyopadhyay A, Kumar Singh S, Panda TK. Hydroboration of Nitriles, Esters, and Amides Catalyzed by Simple Neosilyllithium. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
18
|
Bhattacharjee J, Bockfeld D, Tamm M. N-Heterocyclic Carbene-Phosphinidenide Complexes as Hydroboration Catalysts. J Org Chem 2022; 87:1098-1109. [PMID: 35007063 DOI: 10.1021/acs.joc.1c02377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The reactions of the N-heterocyclic carbene-phosphinidene adducts (NHC)PSiMe3 and (NHC)PH with the dinuclear ruthenium and osmium complexes [(η6-p-cymene)MCl2]2 (M = Ru, Os) afforded the half-sandwich complexes [(η6-p-cymene){(NHC)P}MCl] and [(η6-p-cymene){(NHC)PH}MCl2] with two- and three-legged piano-stool geometries, respectively (NHC = IDipp, IMes; IDipp = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene; IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene). The complexes were initially tested as precatalysts for the hydroboration of benzonitrile, and the most active species, the ruthenium complex [(η6-p-cymene){(IMes)P}RuCl], was further used for the efficient hydroboration of a wide range (ca. 50 substrates) of nitriles, carboxylic esters, and carboxamides in neat pinacolborane (HBpin) under comparatively mild reaction conditions (60-80 °C, 3-5 mol % catalyst loading). Preliminary mechanistic and kinetic studies are reported, and stoichiometric reactions with HBpin indicate the initial formation of the monohydride complex [(η6-p-cymene){(IMes)P}RuH] as the putative catalytically active species.
Collapse
Affiliation(s)
- Jayeeta Bhattacharjee
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Dirk Bockfeld
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Matthias Tamm
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
19
|
Ni C, Yu H, Liu L, Yan B, Zhang B, Ma X, Zhang X, Yang Z. An efficient catalytic method for the borohydride reaction of esters using diethylzinc as precatalyst. NEW J CHEM 2022. [DOI: 10.1039/d2nj03136a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cheap and easily available ZnEt2 is an effective precatalyst, which can be used for the hydroboration reaction of various organic carbonates and esters with HBpin.
Collapse
Affiliation(s)
- Congjian Ni
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Hailong Yu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Ling Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Ben Yan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Bingyi Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Xiaoli Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Xiuhui Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Zhi Yang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| |
Collapse
|
20
|
Wei Y, Bao Q, Song L, Hong D, Gao J, Wang S, Zhu X, Zhou S, Mu X. Synthesis and characterization of rare-earth metallate amido complexes bearing 2-amidate-functionalized indolyl ligand and their application in the hydroboration of esters with pinacolborane. Dalton Trans 2022; 51:2953-2961. [DOI: 10.1039/d1dt03384k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactions of 2-amidate-functionalized indolyl proligand 2-(2,6-iPr2C6H3NHC=O)C8H5NH (H2L) with [(Me3Si)2N]3RE(μ-Cl)Li(THF)3 were studied leading to the synthesis and characterization of a series of novel discrete trinuclear rare-earth metal metallate amido complexes...
Collapse
|
21
|
Li CQ, Leng G, Li W. Hydroboration of carbon dioxide with pinacolborane catalyzed by various aluminum hydrides: A comparative mechanistic study. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01024k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, density functional theory (DFT) calculations was performed to probe the catalytic viability of various neutral, cationic and anionic aluminum hydrides (AlH) in the hydroboration of CO2 with...
Collapse
|
22
|
Panda TK, Bhattacharjee J, Rawal P, Das S, Harinath A, Gupta P. Highly efficient Ti-catalyst for deoxygenative reduction of esters at ambient conditions: experimental and mechanistic insights from DFT Study. Dalton Trans 2022; 51:5859-5867. [DOI: 10.1039/d2dt00076h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we report the synthesis of dianionic amidophosphineborane–supported titanium chloride [{Ph2P(BH3)N}2C6H4}TiCl2] (1) and TiIV alkyl complex [{Ph2P(BH3)N}2C6H4}Ti(CH2SiMe3)2] (2) using salt metathesis reaction. The TiIV complex 1 was obtained...
Collapse
|
23
|
Zhang F, Guo C, Gong M, Xie H, Luo Y. Hydroborative reduction of amides to amines mediated by La(CH 2C 6H 4NMe 2- o) 3. NEW J CHEM 2022. [DOI: 10.1039/d1nj04996h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
La(CH2C6H4NMe2-o)3/HBpin is an efficient catalytic system for the deoxygenative reduction of primary, secondary and tertiary amides to amines.
Collapse
Affiliation(s)
- Fangcao Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Chenjun Guo
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Mingliang Gong
- The Barstow School Ningbo Campus, Ningbo 315201, P. R. China
| | - Hongzhen Xie
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Yunjie Luo
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Ningbo 315211, P. R. China
| |
Collapse
|
24
|
Luo M, Qin Y, Chen X, Xiao Q, Zhao B, Yao W, Ma M. ZnBr 2-Catalyzed Dehydrogenative Borylation of Terminal Alkynes. J Org Chem 2021; 86:16666-16674. [PMID: 34726924 DOI: 10.1021/acs.joc.1c01936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The simple, commercially available ZnBr2 has been successfully employed as a highly efficient and chemoselective catalyst for the dehydrogenative borylation of terminal alkynes with HBpin under mild conditions. It shows a good tolerance toward various functional groups such as aryl, alkyl, heteroaryl, etc. The plausible reaction mechanism has been investigated based on the corresponding stoichiometric experiments and DFT calculations.
Collapse
Affiliation(s)
- Man Luo
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Yi Qin
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Xi Chen
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Qian Xiao
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Binlin Zhao
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Weiwei Yao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengtao Ma
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
25
|
Roy MMD, Omaña AA, Wilson ASS, Hill MS, Aldridge S, Rivard E. Molecular Main Group Metal Hydrides. Chem Rev 2021; 121:12784-12965. [PMID: 34450005 DOI: 10.1021/acs.chemrev.1c00278] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review serves to document advances in the synthesis, versatile bonding, and reactivity of molecular main group metal hydrides within Groups 1, 2, and 12-16. Particular attention will be given to the emerging use of said hydrides in the rapidly expanding field of Main Group element-mediated catalysis. While this review is comprehensive in nature, focus will be given to research appearing in the open literature since 2001.
Collapse
Affiliation(s)
- Matthew M D Roy
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Alvaro A Omaña
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Andrew S S Wilson
- Department of Chemistry, University of Bath, Avon BA2 7AY, United Kingdom
| | - Michael S Hill
- Department of Chemistry, University of Bath, Avon BA2 7AY, United Kingdom
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
26
|
|
27
|
Li M, Liu X, Cui D. Catalytic hydroboration of carbonyl derivatives by using phosphinimino amide ligated magnesium complexes. Dalton Trans 2021; 50:13037-13041. [PMID: 34581349 DOI: 10.1039/d1dt00143d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reduction of carbonyl derivatives by using Earth-abundant, cheap, and environmentally benign metal-based catalysts through an atom-efficient method is a challenging task. Herein, we report the synthesis and characterization of dinuclear magnesium complexes 1-3 chelated by a phosphinimino amide skeleton. In combination with pinacolborane (HBpin) as a reducing agent, complex 1 bearing an ortho-methyl substituent on the phenyl ring of the ligand showed excellent reduction capability for a broad range of carbonyl derivatives under mild reaction conditions. Aldehydes, ketones, and acrolein substrates were efficiently reduced to the corresponding alkoxy-borane products with a record high TOF. Besides, acrolein derivatives were exclusively reduced to 1,2-regioselective products. Using two equiv. of HBpin, ester substrates were reduced to two kinds of alkoxy-borane products. Carbonate reduction accomplished by using complex 1 and three equiv. of HBpin afforded diols and a methanol precursor, respectively. When chiral substrates such as (S)-1,2-propanediol carbonate and L-lactide or polymeric P(L-LA) were employed, the chirality was almost retained in their reductive products.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. .,University of Science and Technology of China, Hefei 230026, China
| | - Xinli Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Dongmei Cui
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. .,University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
28
|
Ankur, Kannan R, Chambenahalli R, Banerjee S, Yang Y, Maron L, Venugopal A. [(Me
6
TREN)MgOCHPh
2
][B(C
6
F
5
)
4
]: A Model Complex to Explore the Catalytic Activity of Magnesium Alkoxides in Ketone Hydroboration. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ankur
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram 695551 India
| | - Ramkumar Kannan
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram 695551 India
| | - Raju Chambenahalli
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram 695551 India
| | - Sumanta Banerjee
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram 695551 India
| | - Yan Yang
- LPCNO, UMR 5215, INSA, UPS Université de Toulouse-CNRS 31000 Toulouse France
| | - Laurent Maron
- LPCNO, UMR 5215, INSA, UPS Université de Toulouse-CNRS 31000 Toulouse France
| | - Ajay Venugopal
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram 695551 India
| |
Collapse
|
29
|
Légaré Lavergne J, To HM, Fontaine FG. Boric acid as a precatalyst for BH 3-catalyzed hydroboration. RSC Adv 2021; 11:31941-31949. [PMID: 35495511 PMCID: PMC9041564 DOI: 10.1039/d1ra05945a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/11/2021] [Indexed: 01/23/2023] Open
Abstract
We report that boric acid, BO3H3, is a good precatalyst for the BH3-catalyzed hydroboration of esters using pinacolborane as a borylation agent. Using microwave irradiation as an energy source, we demonstrated that a dozen esters were converted into the corresponding boronate ethers in good yields. It was also possible to use boric acid as a precatalyst to reduce carbonates and alkynes. Considering the hazardous and pyrophoric nature of BH3 solutions, boric acid proves to be a safe and green precatalyst for the metal-free reduction of unsaturated species.
Collapse
Affiliation(s)
- Julien Légaré Lavergne
- Département de Chimie, Université Laval 1045 Avenue de la Médecine Québec G1V 0A6 Québec Canada
| | - Hoang-Minh To
- Département de Chimie, Université Laval 1045 Avenue de la Médecine Québec G1V 0A6 Québec Canada
| | | |
Collapse
|
30
|
Zhu Q, Fettinger JC, Power PP. Hydrostannylation of carbon dioxide by a hydridostannylene molybdenum complex. Dalton Trans 2021; 50:12555-12562. [PMID: 34545896 DOI: 10.1039/d1dt02473f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction of the aryltin(II) hydrides {AriPr4Sn(μ-H)}2 or {AriPr6Sn(μ-H)}2 (AriPr4 = -C6H3-2,6-(C6H3-2,6-iPr2)2, AriPr6 = -C6H3-2,6-(C6H2-2,4,6-iPr3)2) with two equivalents of the molybdenum carbonyl [Mo(CO)5(THF)] afforded the divalent tin hydride transition metal complexes, Mo(CO)5{Sn(AriPr6)H}, (1), or Mo(CO)5{Sn(AriPr4)(THF)H} (2), respectively. Complex 1 effects the facile hydrostannylation of carbon dioxide, to yield Mo(CO)5{Sn(AriPr6)(κ2-O,O'-O2CH)}, (3), which features a bidentate formate ligand coordinating the tin atom. Reaction of 3 with the pinacolborane, HBpin (pin = pinacolato) in benzene regenerated 1 in quantitative yield. All complexes were characterized by X-ray crystallography, as well as UV-visible, IR, and multinuclear NMR spectroscopies. The isolation of 1 and 2 is consistent with the existence of monomeric forms of {AriPr4Sn(μ-H)}2 and {AriPr6Sn(μ-H)}2 in solution. Regeneration of 1 from 3via reaction with pinacolborane as the hydrogen source shows the catalytic potential of 1 in the hydrogenation of CO2.
Collapse
Affiliation(s)
- Qihao Zhu
- Department of Chemistry, University of California, Davis, California 95616, USA.
| | - James C Fettinger
- Department of Chemistry, University of California, Davis, California 95616, USA.
| | - Philip P Power
- Department of Chemistry, University of California, Davis, California 95616, USA.
| |
Collapse
|
31
|
Guo C, Zhang F, Yu C, Luo Y. Reduction of Amides to Amines with Pinacolborane Catalyzed by Heterogeneous Lanthanum Catalyst La(CH 2C 6H 4NMe 2- o) 3@SBA-15. Inorg Chem 2021; 60:13122-13135. [PMID: 34357749 DOI: 10.1021/acs.inorgchem.1c01531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydroboration of amides is a useful synthetic strategy to access the corresponding amines. In this contribution, it was found that the supported lanthanum benzyl material La(CH2C6H4NMe2-o)3@SBA-15 was highly active for the hydroboration of primary, secondary, and tertiary amides to amines with pinacolborane. These reactions selectively produced target amines and showed good tolerance for functional groups such as -NO2, -halogen, and -CN, as well as heteroatoms such as S and O. This reduction procedure exhibited the recyclable and reusable property of heterogeneous catalysts and was applicable to gram-scale synthesis. The reaction mechanisms were proposed based on some control experiments and the previous literature. This is the first example of hydroborative reduction of amides to amines mediated by heterogeneous catalysts.
Collapse
Affiliation(s)
- Chenjun Guo
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Fangcao Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Chong Yu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Yunjie Luo
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China.,Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Ningbo 315211, P. R. China
| |
Collapse
|
32
|
Bisai MK, Gour K, Das T, Vanka K, Sen SS. Readily available lithium compounds as catalysts for the hydroboration of carbodiimides and esters. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121924] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
33
|
Ghosh P, Jacobi von Wangelin A. Manganese‐Catalyzed Hydroborations with Broad Scope. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pradip Ghosh
- Dept. of Chemistry University of Hamburg Martin Luther King Pl 6 20146 Hamburg Germany
| | | |
Collapse
|
34
|
Ghosh P, Jacobi von Wangelin A. Manganese-Catalyzed Hydroborations with Broad Scope. Angew Chem Int Ed Engl 2021; 60:16035-16043. [PMID: 33894033 PMCID: PMC8362021 DOI: 10.1002/anie.202103550] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/22/2021] [Indexed: 12/29/2022]
Abstract
Reductive transformations of easily available oxidized matter are at the heart of synthetic manipulation and chemical valorization. The applications of catalytic hydrofunctionalization benefit from the use of liquid reducing agents and operationally facile setups. Metal‐catalyzed hydroborations provide a highly prolific platform for reductive valorizations of stable C=X electrophiles. Here, we report an especially facile, broad‐scope reduction of various functions including carbonyls, carboxylates, pyridines, carbodiimides, and carbonates under very mild conditions with the inexpensive pre‐catalyst Mn(hmds)2. The reaction could be successfully applied to depolymerizations.
Collapse
Affiliation(s)
- Pradip Ghosh
- Dept. of Chemistry, University of Hamburg, Martin Luther King Pl 6, 20146, Hamburg, Germany
| | | |
Collapse
|
35
|
Banerjee I, Panda TK. Recent developments in the reduction of unsaturated bonds by magnesium precursors. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Indrani Banerjee
- Department of Chemistry Indian Institute of Technology Hyderabad Sangareddy India
| | - Tarun K. Panda
- Department of Chemistry Indian Institute of Technology Hyderabad Sangareddy India
| |
Collapse
|
36
|
Five-Membered Cyclic Carbonates: Versatility for Applications in Organic Synthesis, Pharmaceutical, and Materials Sciences. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review presents the recent advances involving several applications of five-membered cyclic carbonates and derivatives. With more than 150 references, it covers the period from 2012 to 2020, with special emphasis on the use of five-membered cyclic carbonates as building blocks for organic synthesis and material elaboration. We demonstrate the application of cyclic carbonates in several important chemical transformations, such as decarboxylation, hydrogenation, and transesterification reactions, among others. The presence of cyclic carbonates in molecules with high biological potential is also displayed, together with the importance of these compounds in the preparation of materials such as urethanes, polyurethanes, and flame retardants.
Collapse
|
37
|
Thenarukandiyil R, Satheesh V, Shimon LJW, de Ruiter G. Hydroboration of Nitriles, Esters, and Carbonates Catalyzed by Simple Earth-Abundant Metal Triflate Salts. Chem Asian J 2021; 16:999-1006. [PMID: 33728809 DOI: 10.1002/asia.202100003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/10/2021] [Indexed: 11/11/2022]
Abstract
During the past decade earth-abundant metals have become increasingly important in homogeneous catalysis. One of the reactions in which earth-abundant metals have found important applications is the hydroboration of unsaturated C-C and C-X bonds (X=O or N). Within these set of transformations, the hydroboration of challenging substrates such as nitriles, carbonates and esters still remain difficult and often relies on elaborate ligand designs and highly reactive catalysts (e. g., metal alkyls/hydrides). Here we report an effective methodology for the hydroboration of challenging C≡N and C=O bonds that is simple and applicable to a wide set of substrates. The methodology is based on using a manganese(II) triflate salt that, in combination with commercially available potassium tert-butoxide and pinacolborane, catalyzes the hydroboration of nitriles, carbonates, and esters at room temperature and with near quantitative yields in less than three hours. Additional studies demonstrated that other earth-abundant metal triflate salts can facilitate this reaction as well, which is further discussed in this report.
Collapse
Affiliation(s)
- Ranjeesh Thenarukandiyil
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, 3200008, Haifa, Israel
| | - Vanaparthi Satheesh
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, 3200008, Haifa, Israel
| | - Linda J W Shimon
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Graham de Ruiter
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, 3200008, Haifa, Israel
| |
Collapse
|
38
|
Kosloski-Oh SC, Wood ZA, Manjarrez Y, de Los Rios JP, Fieser ME. Catalytic methods for chemical recycling or upcycling of commercial polymers. MATERIALS HORIZONS 2021; 8:1084-1129. [PMID: 34821907 DOI: 10.1039/d0mh01286f] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polymers (plastics) have transformed our lives by providing access to inexpensive and versatile materials with a variety of useful properties. While polymers have improved our lives in many ways, their longevity has created some unintended consequences. The extreme stability and durability of most commercial polymers, combined with the lack of equivalent degradable alternatives and ineffective collection and recycling policies, have led to an accumulation of polymers in landfills and oceans. This problem is reaching a critical threat to the environment, creating a demand for immediate action. Chemical recycling and upcycling involve the conversion of polymer materials into their original monomers, fuels or chemical precursors for value-added products. These approaches are the most promising for value-recovery of post-consumer polymer products; however, they are often cost-prohibitive in comparison to current recycling and disposal methods. Catalysts can be used to accelerate and improve product selectivity for chemical recycling and upcycling of polymers. This review aims to not only highlight and describe the tremendous efforts towards the development of improved catalysts for well-known chemical recycling processes, but also identify new promising methods for catalytic recycling or upcycling of the most abundant commercial polymers.
Collapse
Affiliation(s)
- Sophia C Kosloski-Oh
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | | | | | |
Collapse
|
39
|
Abstract
The use of CO2 as a C1 building block for chemical synthesis is receiving growing attention, due to the potential of this simple molecule as an abundant and cheap renewable feedstock. Among the possible reductants used in the literature to bring about CO2 reduction to C1 derivatives, hydroboranes have found various applications, in the presence of suitable homogenous catalysts. The current minireview article summarizes the main results obtained since 2016 in the synthetic design of main group, first and second row transition metals for use as catalysts for CO2 hydroboration.
Collapse
|
40
|
Zhang F, Gong M, Xie H, Luo Y. La(CH 2C 6H 4NMe 2- o) 3-catalyzed reduction of esters to alcohols with pinacolborane. NEW J CHEM 2021. [DOI: 10.1039/d1nj03732c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
La(CH2C6H4NMe2-o)3/HBpin is an efficient catalytic system for the hydroborative reduction of esters to alcohols under mild conditions.
Collapse
Affiliation(s)
- Fangcao Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Mingliang Gong
- The Barstow School Ningbo Campus, Ningbo 315201, P. R. China
| | - Hongzhen Xie
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Yunjie Luo
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Ningbo 315211, P. R. China
| |
Collapse
|