1
|
Hajian R, Mousavi NS. Manganese salophen covalently anchored to amino-functionalized graphene oxide as an efficient heterogeneous catalyst for selective epoxidation. RSC Adv 2024; 14:38470-38479. [PMID: 39640526 PMCID: PMC11618214 DOI: 10.1039/d4ra05280c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Epoxidation of olefins catalyzed by manganese(iii) salophen (MnSalop) immobilized on graphene oxide (GO) modified with 3-aminopropyltrimethoxysilane (GO·NH2) has been reported. Characterization of the solid catalyst by FTIR, DR UV-Vis, FESEM, XRD, elemental scanning mappings, TGA/DTG, BET measurements, and ICP analysis aided in understanding the catalyst morphology. It confirmed that there was no significant demetallation or chemical change in MnSalop-GO·NH2. The heterogeneous catalyst (MnSalop-GO·NH2) showed high efficiency in the oxidation of different olefins with H2O2 as a green oxygen donor agent assisted by NaHCO3 as co-catalyst at room temperature. The alkenes were oxidized to their corresponding epoxides with 88-100% selectivity and turnover frequency (TOF) values ranging from 40.7 to 162.8 h-1 in the presence of MnSalop-GO·NH2 under mild conditions. When supported on GO, MnSalop-GO·NH2 afforded epoxide yields comparable to those of the corresponding homogeneous analog. The prepared catalyst was selective for most olefins, with a high conversion. In addition, it could be reused four times without any remarkable loss in catalytic performance.
Collapse
Affiliation(s)
- Robabeh Hajian
- Department of Chemistry, Yazd University Yazd 89195-741 Iran +98-353-8210644 +98-353-31232822
| | - Narjes Sadat Mousavi
- Department of Chemistry, Yazd University Yazd 89195-741 Iran +98-353-8210644 +98-353-31232822
| |
Collapse
|
2
|
Song Y, Jin Z, Zhang J, Jin B, Peng R. Spiral gas-solid two-phase flow continuous mechanochemical synthesis of salophen complexes and catalytic thermal decomposition of ammonium perchlorate. Dalton Trans 2024; 53:3765-3776. [PMID: 38304968 DOI: 10.1039/d3dt03644h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Although mechanochemistry is increasingly becoming an alternative to traditional chemical synthesis, highly efficient continuous mechanochemical synthesis techniques are still rare. In this work, a novel spiral gas-solid two-phase flow (S-GSF) synthesis technique for the mechanochemical synthesis of salophen complexes has been reported, which is an approach for continuous synthesis based solely on airflow impacting the reaction. The synthesis of salophen-Br-Cu was used as a model reaction to optimize the reaction conditions, and three other salophen complexes, namely, salophen-Br-Co, salophen-Br-Ni, and salophen-Br-Zn were synthesized on this basis. The structure and thermal stability of the obtained products were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, UV-vis spectroscopy, nuclear magnetic resonance spectroscopy, scanning electron microscopy, and differential thermal analysis (DTA). The results showed that these complexes can be obtained continuously at a rate close to 4 g min-1, and the corresponding space-time yield is close to 1.2 × 105 kg m-3 day-1. In addition, DTA was used to analyze the catalytic performance of the complex for ammonium perchlorate (AP). The results showed that compared to the conditions for pure AP, salophen-Br-Co and salophen-Br-Cu could significantly reduce the high-temperature decomposition of AP pyrolysis to 77.0 and 102.1 °C, respectively. According to the method of Kissinger calculations, the Ea of AP decomposition decreased from 217.3 kJ mol-1 to 131.0 and 118.5 kJ mol-1, respectively. The TG data at different heating rates were analyzed using two isoconversion methods, i.e. Flynne-Walle-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS). The activation energies of AP, AP + 10 wt% salophen-Br-Co, and AP + 10 wt% salophen-Br-Cu were calculated. When the conversion degree (α) is between 0.1 and 0.9, the Ea values obtained from the two isoconversion methods are similar and exhibit certain matching. These two isoconversion methods also confirm Kissinger's calculations.
Collapse
Affiliation(s)
- Yong Song
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Zhiyuan Jin
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Juan Zhang
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Bo Jin
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Rufang Peng
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
3
|
Oliveri IP, Attinà A, Di Bella S. A Zinc(II) Schiff Base Complex as Fluorescent Chemosensor for the Selective and Sensitive Detection of Copper(II) in Aqueous Solution. SENSORS (BASEL, SWITZERLAND) 2023; 23:3925. [PMID: 37112266 PMCID: PMC10141078 DOI: 10.3390/s23083925] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
The development of chemosensors able to detect analytes in a variety of sample matrices through a low-cost, fast, and direct approach is of current interest in food, health, industrial, and environmental fields. This contribution presents a simple approach for the selective and sensitive detection of Cu2+ ions in aqueous solution based on a transmetalation process of a fluorescent substituted Zn(salmal) complex. Transmetalation is accompanied by relevant optical absorption changes and quenching of the fluorescence emission, leading to high selectivity and sensitivity of the chemosensor, with the advantage of not requiring any sample pretreatment or pH adjustment. Competitive experiments demonstrate a high selectivity of the chemosensor towards Cu2+ with respect to the most common metal cations as potential interferents. A limit of detection down to 0.20 μM and a dynamic linear range up to 40 μM are achieved from fluorometric data. By exploiting the fluorescence quenching upon formation of the copper(II) complex, simple paper-based sensor strips, visible to naked eyes under UV light, are used for the rapid, qualitative, and quantitative in situ detection of Cu2+ ions in aqueous solution over a wide concentration range, up to 10.0 mM, in specific environments, such as in industrial wastewater, where higher concentrations of Cu2+ ions can occur.
Collapse
|
4
|
Lewis Acidic Zinc(II) Complexes of Tetradentate Ligands as Building Blocks for Responsive Assembled Supramolecular Structures. CHEMISTRY 2023. [DOI: 10.3390/chemistry5010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
This review presents representative examples illustrating how the Lewis acidic character of the Zn(II) metal center in Zn(salen)-type complexes, as well as in complexes of other tetradentate ligands, and the nature of the medium govern their supramolecular aggregation, leading to the formation of a variety of supramolecular structures, either in solution or in the solid state. Stabilization of these Lewis acidic complexes is almost always reached through an axial coordination of a Lewis base, leading to a penta-coordinated square-pyramidal geometry around the metal center. The coverage is not exhaustive, mainly focused on their crystallographic structures, but also on their aggregation and sensing properties in solution, and on their self-assembled and responsive nanostructures, summarizing their salient aspects. The axial ligands can easily be displaced, either in solution or in the solid state, with suitable Lewis bases, thus being responsive supramolecular structures useful for sensing. This contribution represents the first attempt to relate some common features of the chemistry of different families of Zn(II) complexes of tetradentate ligands to their intrinsic Lewis acidic character.
Collapse
|
5
|
Kübler J, Pfund B, Wenger OS. Zinc(II) Complexes with Triplet Charge-Transfer Excited States Enabling Energy-Transfer Catalysis, Photoinduced Electron Transfer, and Upconversion. JACS AU 2022; 2:2367-2380. [PMID: 36311829 PMCID: PMC9597861 DOI: 10.1021/jacsau.2c00442] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 05/28/2023]
Abstract
Many CuI complexes have luminescent triplet charge-transfer excited states with diverse applications in photophysics and photochemistry, but for isoelectronic ZnII compounds, this behavior is much less common, and they typically only show ligand-based fluorescence from singlet π-π* states. We report two closely related tetrahedral ZnII compounds, in which intersystem crossing occurs with appreciable quantum yields and leads to the population of triplet excited states with intraligand charge-transfer (ILCT) character. In addition to showing fluorescence from their initially excited 1ILCT states, these new compounds therefore undergo triplet-triplet energy transfer (TTET) from their 3ILCT states and consequently can act as sensitizers for photo-isomerization reactions and triplet-triplet annihilation upconversion from the blue to the ultraviolet spectral range. The photoactive 3ILCT state furthermore facilitates photoinduced electron transfer. Collectively, our findings demonstrate that mononuclear ZnII compounds with photophysical and photochemical properties reminiscent of well-known CuI complexes are accessible with suitable ligands and that they are potentially amenable to many different applications. Our insights seem relevant in the greater context of obtaining photoactive compounds based on abundant transition metals, complementing well-known precious-metal-based luminophores and photosensitizers.
Collapse
|
6
|
Oliveri IP, Consiglio G, Munzi G, Failla S, Di Bella S. Deaggregation properties and transmetalation studies of a zinc(II) salen-type Schiff-base complex. Dalton Trans 2022; 51:11859-11867. [PMID: 35876090 DOI: 10.1039/d2dt01448c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This paper reports the synthesis and the deaggregation properties of a Lewis acidic Zn(II) salen-type Schiff-base complex derivative from diaminomaleonitrile and a systematic detailed study of its transmetalation with other metal ions in solution. In a solution of non-coordinating solvents, the complex is in a dimeric form, while in coordinating solvents or upon addition of a Lewis base it is stabilized as monomeric adducts. Experiments done in two solvents with different Lewis basicities indicate a major role of the stability of the starting adduct in transmetalation. Thus, using nitrate or perchlorate salts, acetonitrile solutions of the complex give an immediate and complete transmetalation with Cu2+, while with Co2+ and Ni2+ a much slower transmetalation rate is observed. Instead, using chloride salts a fast and complete transmetalation is observed for divalent ions of the first transition series (Mn2+, Fe2+, Co2+, Ni2+, Cu2+), indicating the role of the chloride in stabilizing the transition state of the transmetalation. On the other hand, DMF solutions of the complex are less prone to transmetalation, according with the greater basicity of the solvent and, hence, the greater stability of the related adducts with the complex. Therefore, the nature of the solvent and the counteranion allow controlling the transmetalation process of this Zn(II) Schiff-base complex.
Collapse
Affiliation(s)
- Ivan Pietro Oliveri
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Giuseppe Consiglio
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Gabriella Munzi
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Salvatore Failla
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Santo Di Bella
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| |
Collapse
|
7
|
Kurz H, Hils C, Timm J, Hörner G, Greiner A, Marschall R, Schmalz H, Weber B. Self-Assembled Fluorescent Block Copolymer Micelles with Responsive Emission. Angew Chem Int Ed Engl 2022; 61:e202117570. [PMID: 35129881 PMCID: PMC9310857 DOI: 10.1002/anie.202117570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/06/2022]
Abstract
Responsive fluorescent materials offer a high potential for sensing and (bio-)imaging applications. To investigate new concepts for such materials and to broaden their applicability, the previously reported non-fluorescent zinc(II) complex [Zn(L)] that shows coordination-induced turn-on emission was encapsulated into a family of non-fluorescent polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) diblock copolymer micelles leading to brightly emissive materials. Coordination-induced turn-on emission upon incorporation and ligation of the [Zn(L)] in the P4VP core outperform parent [Zn(L)] in pyridine solution with respect to lifetimes, quantum yields, and temperature resistance. The quantum yield can be easily tuned by tailoring the selectivity of the employed solvent or solvent mixture and, thus, the tendency of the PS-b-P4VP diblock copolymers to self-assemble into micelles. A medium-dependent off-on sensor upon micelle formation could be established by suppression of non-micelle-borne emission background pertinent to chloroform through controlled acidification indicating an additional pH-dependent process.
Collapse
Affiliation(s)
- Hannah Kurz
- Department of ChemistryInorganic Chemistry IVUniversity of BayreuthUniversitätsstrasse 3095447BayreuthGermany
| | - Christian Hils
- Macromolecular Chemistry and Bavarian Polymer InstituteUniversity of BayreuthUniversitätsstrasse 3095440BayreuthGermany
| | - Jana Timm
- Department of ChemistryPhysical Chemistry IIIUniversity of BayreuthUniversitätsstrasse 3095447BayreuthGermany
| | - Gerald Hörner
- Department of ChemistryInorganic Chemistry IVUniversity of BayreuthUniversitätsstrasse 3095447BayreuthGermany
| | - Andreas Greiner
- Macromolecular Chemistry and Bavarian Polymer InstituteUniversity of BayreuthUniversitätsstrasse 3095440BayreuthGermany
| | - Roland Marschall
- Department of ChemistryPhysical Chemistry IIIUniversity of BayreuthUniversitätsstrasse 3095447BayreuthGermany
| | - Holger Schmalz
- Macromolecular Chemistry and Bavarian Polymer InstituteUniversity of BayreuthUniversitätsstrasse 3095440BayreuthGermany
| | - Birgit Weber
- Department of ChemistryInorganic Chemistry IVUniversity of BayreuthUniversitätsstrasse 3095447BayreuthGermany
| |
Collapse
|
8
|
Kurz H, Hils C, Timm J, Hörner G, Greiner A, Marschall R, Schmalz H, Weber B. Selbstassemblierte fluoreszierende Blockcopolymer‐Mizellen mit responsiver Emission. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hannah Kurz
- Institut für Chemie Anorganische Chemie IV Universität Bayreuth Universitätsstrasse 30 95447 Bayreuth Deutschland
| | - Christian Hils
- Macromolecular Chemistry and Bavarian Polymer Institute University of Bayreuth Universitätsstrasse 30 95440 Bayreuth Germany
| | - Jana Timm
- Institut für Chemie Physikalische Chemie III Universität Bayreuth Universitätsstrasse 30 95447 Bayreuth Deutschland
| | - Gerald Hörner
- Institut für Chemie Anorganische Chemie IV Universität Bayreuth Universitätsstrasse 30 95447 Bayreuth Deutschland
| | - Andreas Greiner
- Macromolecular Chemistry and Bavarian Polymer Institute University of Bayreuth Universitätsstrasse 30 95440 Bayreuth Germany
| | - Roland Marschall
- Institut für Chemie Physikalische Chemie III Universität Bayreuth Universitätsstrasse 30 95447 Bayreuth Deutschland
| | - Holger Schmalz
- Macromolecular Chemistry and Bavarian Polymer Institute University of Bayreuth Universitätsstrasse 30 95440 Bayreuth Germany
| | - Birgit Weber
- Institut für Chemie Anorganische Chemie IV Universität Bayreuth Universitätsstrasse 30 95447 Bayreuth Deutschland
| |
Collapse
|
9
|
Kargar H, Fallah-Mehrjardi M, Behjatmanesh-Ardakani R, Amiri Rudbari H, Adabi Ardakani A, Sedighi-Khavidak S, Munawar KS, Ashfaq M, Tahir MN. Synthesis, spectral characterization, crystal structures, biological activities, theoretical calculations and substitution effect of salicylidene ligand on the nature of mono and dinuclear Zn(II) Schiff base complexes. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
OLIVERI IPP, Munzi G, Di Bella S. A simple approach based on transmetalation for the selective and sensitive colorimetric/fluorometric detection of copper(II) ions in drinking water. NEW J CHEM 2022. [DOI: 10.1039/d2nj03695a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The search for feasible and efficient methods for sensing cations in the environment is a challenge of current scientific interest. Among colorimetric and fluorometric methods, those allowing a direct and...
Collapse
|
11
|
Kurz H, Hörner G, Weser O, Li Manni G, Weber B. Quenched Lewis Acidity: Studies on the Medium Dependent Fluorescence of Zinc(II) Complexes. Chemistry 2021; 27:15158-15170. [PMID: 34431572 PMCID: PMC8596774 DOI: 10.1002/chem.202102086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 01/04/2023]
Abstract
Three new zinc(II) coordination units [Zn(1-3)] based on planar-directing tetradentate Schiff base-like ligands H2 (1-3) were synthesized. Their solid-state structures were investigated by single crystal X-ray diffraction, showing the tendency to overcome the square-planar coordination sphere by axial ligation. Affinity in solution towards axial ligation has been tested by extended spectroscopic studies, both in the absorption and emission mode. The electronic spectrum of the pyridine complex [Zn(1)(py)] has been characterized by MC-PDFT to validate the results of extended TD-DFT studies. Green emission of non-emissive solutions of [Zn(1-3)] in chloroform could be switched on in the presence of potent Lewis-bases. While interpretation in terms of an equilibrium of stacked/non-fluorescent and destacked/fluorescent species is in line with precedents from literature, the sensitivity of [Zn(1-3)] was greatly reduced. Results of a computation-based structure search allow to trace the hidden Lewis acidity of [Zn(1-3)] to a new stacking motif, resulting in a strongly enhanced stability of the dimers.
Collapse
Affiliation(s)
- Hannah Kurz
- Inorganic Chemistry IVUniversity of BayreuthUniversitätsstraße 3095447BayreuthGermany
| | - Gerald Hörner
- Inorganic Chemistry IVUniversity of BayreuthUniversitätsstraße 3095447BayreuthGermany
| | - Oskar Weser
- Max Planck Institute for Solid State ResearchHeisenbergstraße 170569StuttgartGermany
| | - Giovanni Li Manni
- Max Planck Institute for Solid State ResearchHeisenbergstraße 170569StuttgartGermany
| | - Birgit Weber
- Inorganic Chemistry IVUniversity of BayreuthUniversitätsstraße 3095447BayreuthGermany
| |
Collapse
|
12
|
Study on electrochemical behavior and in vitro anticancer effect of Co(II) and Zn(II) complexes containing pyridine-2,6-dicarboxylate. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Binding Properties of a Dinuclear Zinc(II) Salen-Type Molecular Tweezer with a Flexible Spacer in the Formation of Lewis Acid-Base Adducts with Diamines. INORGANICS 2021. [DOI: 10.3390/inorganics9060049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this paper we report the binding properties, by combined 1H NMR, optical absorption, and fluorescence studies, of a molecular tweezer composed of two Zn(salen)-type Schiff-base units connected by a flexible spacer, towards a series of ditopic diamines having a strong Lewis basicity, with different chain length and rigidity. Except for the 1,2-diaminoethane, in all other cases the formation of stable 1:1 Lewis acid-base adducts with large binding constants is demonstrated. For α,ω-aliphatic diamines, binding constants progressively increase with the increasing length of the alkyl chain, thanks to the flexible nature of the spacer and the parallel decreased conformational strain upon binding. Stable adducts are also found even for short diamines with rigid molecular structures. Given their preorganized structure, these latter species are not subjected to loss of degrees of freedom. The binding characteristics of the tweezer have been exploited for the colorimetric and fluorometric selective and sensitive detection of piperazine.
Collapse
|
14
|
Di Bella S. Lewis acidic zinc(II) salen-type Schiff-base complexes: sensing properties and responsive nanostructures. Dalton Trans 2021; 50:6050-6063. [PMID: 33876173 DOI: 10.1039/d1dt00949d] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this frontier article some peculiar characteristics of Zn(salen)-type Schiff-base complexes are reviewed. The paper is mainly focused on the most recent and relevant achievements on responsive supramolecular nanostructures and sensing properties, both of them related to the Lewis acidic character of the ZnII centre in these molecular species, providing an interpretation of these features. The sensing properties of Zn(salen)-type complexes mainly originate from optical spectroscopic changes associated with the formation of the adducts upon addition of a Lewis base (analyte), either by deaggregation of dimeric species or displacement of the solvent coordinated to the metal centre. In both cases the direct sensing is related either to the Lewis acidic character of the complex as well as to the Lewis basicity of the analyte. The formation of responsive nanostructures with fluorescent, and/or vapochromic, mechanochromic, and thermochromic characteristics is driven by non-mutual intermolecular ZnO interactions, further stabilized by π-π stacking interactions and/or interdigitation of the alkyl side groups. The Lewis acidic character is not a prerogative of Zn(salen)-type complexes of tetradentate Schiff-bases. Many other classes of ZnII complexes can possess this property. A correct interpretation of their chemistry is certainly useful for further development of these classical coordination compounds as new molecular materials.
Collapse
Affiliation(s)
- Santo Di Bella
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| |
Collapse
|
15
|
Munzi G, Failla S, Di Bella S. Highly selective and sensitive colorimetric/fluorometric dual mode detection of relevant biogenic amines. Analyst 2021; 146:2144-2151. [PMID: 33538722 DOI: 10.1039/d0an02336a] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biogenic amines are involved in physiological roles in living organisms, but their excessive production or intake can induce undesired toxicological effects. As biogenic amines can be found in the process of food spoilage, they are considered an indicator of food quality and freshness, and their detection is of crucial importance in food safety. In this contribution, we report the fast and direct colorimetric and fluorometric sensing of biogenic amines by means of a dinuclear Zn(ii) Schiff-base complex. The selective and sensitive detection involves the formation of stable adducts between the dinuclear complex, acting as the Lewis acidic molecular tweezer, and biogenic di- or polyamines. The selectivity towards biogenic amines, even in the presence of common aliphatic, primary, secondary, or tertiary monoamines, heterocyclic amines, and amino acids, is demonstrated by competitive experiments. The quantitation of histamine in a fish matrix is easily achieved using a standard extraction procedure followed by simple colorimetric or fluorometric measurements.
Collapse
Affiliation(s)
- Gabriella Munzi
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | | | | |
Collapse
|
16
|
Qian SS. Synthesis, crystal structure and antibacterial activity of a heterometallic tetranuclear Cd2Tb2 complex derived from 5-chloro-2-(3-ethoxy-2-hydroxybenzylideneamino)phenol. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1897616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Shao-Song Qian
- School of Life Sciences, Shandong University of Technology, Zibo, P.R. China
| |
Collapse
|
17
|
Yang YS, Shang Q, Zhang YP, Niu WY, Xue JJ. Synthesis and self-assembly of Salen type Schiff based on o-phenylenediamine organogels in response to Zn2+. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|