1
|
Bär SI, Pradhan R, Biersack B, Nitzsche B, Höpfner M, Schobert R. New chimeric HDAC inhibitors for the treatment of colorectal cancer. Arch Pharm (Weinheim) 2023; 356:e2200422. [PMID: 36442846 DOI: 10.1002/ardp.202200422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022]
Abstract
Colorectal cancer is the third most common cause of cancer-associated deaths due to a high recurrence rate and an increasing occurrence of resistance to established therapies. This highlights the importance of developing new chemotherapeutic agents. The current study focuses on cancer-specific targets such as apoptosis-inhibiting survivin, which distinguishes cancer cells from healthy tissue. A combination of pharmacophores of established anticancer agents to afford chimeric pleiotropic chemotherapeutic agents was tested on this cancer entity. We analysed the effects of the dual mode anticancer agents, animthioxam, brimbam, troxbam, and troxham, as well as their structural congeners suberoylanilide hydroxamic acid and combretastatin A-4 on human cancer cell lines. Their cytotoxicity was determined using the MTT assay, further techniques for detecting apoptotic events, cell cycle analyses, clonogenic and wound healing assays, immunostaining, histone deacetylase (HDAC) activity measurements, and Western blot analysis for the detection of survivin expression in HCT116 colon cancer cells. Molecular docking studies were conducted to assess potential molecular targets of the test compounds. The test compounds were found selectively cytotoxic toward cancer cells by inducing apoptosis. The metastatic potential was effectively reduced by disruption of the microtubular cytoskeleton. The test compounds were also proven to be general HDAC inhibitors and to lead to reduced survivin expression.
Collapse
Affiliation(s)
- Sofia I Bär
- Organic Chemistry Laboratory, University of Bayreuth, Bayreuth, Germany
| | - Rohan Pradhan
- Care Group Sight Solution Pvt. Ltd., Dabhasa, Vadodara, India
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, Bayreuth, Germany
| | - Bianca Nitzsche
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Michael Höpfner
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Rainer Schobert
- Organic Chemistry Laboratory, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
2
|
Bär SI, Schleser SW, Oberhuber N, Herrmann A, Schlotte L, Weber SE, Schobert R. Trans-[bis(benzimidazol-2-ylidene)dichlorido]platinum(II) complexes with peculiar modes of action and activity against cisplatin-resistant cancer cells. J Inorg Biochem 2023; 238:112028. [PMID: 36274479 DOI: 10.1016/j.jinorgbio.2022.112028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
Three series of cis- and trans-[bis(benzimidazol-2-ylidene)dichlorido]platinum(II) and cis-[(benzimidazol-2-ylidene)(DMSO)dichlorido]platinum(II) complexes were synthesised and screened for cytotoxicity against six human cancer cell lines. Depending on their N-alkyl and 5-alkoxycarbonyl substituents, two-digit nanomolar to single-digit micromolar IC50 values against cancer cell lines intrinsically resistant to or ill-responding to cisplatin were reached by both cis- and trans-configured complexes. The stability of the complexes under aqueous biotest conditions was shown via 1H and 195Pt NMR monitoring to be dependent on their configuration and their N-substituents. Localisation studies employing click reactions with 1-alkyne- or cyclopropene-tagged derivatives revealed that the cis-complexes accumulated in the cell nuclei and the trans-complexes in the mitochondria. While the most active cis-complexes showed modes of action akin to those of cisplatin, the most active trans-complexes differed from cisplatin by much lower rates of cellular uptake and ROS production, and by their non-interaction with the cell cycle and the DNA of cancer cells. Thus, we identified structural key elements for the synthesis of optimised trans-configured NHC platinum(II) complexes with high activity also against cisplatin-refractory cancer cells.
Collapse
Affiliation(s)
- Sofia I Bär
- Organic Chemistry Laboratory, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Sebastian W Schleser
- Organic Chemistry Laboratory, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Natalie Oberhuber
- Organic Chemistry Laboratory, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Alexander Herrmann
- Organic Chemistry Laboratory, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Luca Schlotte
- Organic Chemistry Laboratory, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Stefanie E Weber
- Organic Chemistry Laboratory, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Rainer Schobert
- Organic Chemistry Laboratory, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany.
| |
Collapse
|
3
|
Baishya T, Gomila RM, Frontera A, Barcelo-Oliver M, Verma AK, Bhattacharyya MK. Enclathration of Mn(II)(H2O)6 guests and unusual Cu⋯O bonding contacts in supramolecular assemblies of Mn(II) Co-crystal hydrate and Cu(II) Pyridinedicarboxylate: Antiproliferative evaluation and theoretical studies. Polyhedron 2023. [DOI: 10.1016/j.poly.2022.116243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Cervinka J, Gobbo A, Biancalana L, Markova L, Novohradsky V, Guelfi M, Zacchini S, Kasparkova J, Brabec V, Marchetti F. Ruthenium(II)-Tris-pyrazolylmethane Complexes Inhibit Cancer Cell Growth by Disrupting Mitochondrial Calcium Homeostasis. J Med Chem 2022; 65:10567-10587. [PMID: 35913426 PMCID: PMC9376960 DOI: 10.1021/acs.jmedchem.2c00722] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
While ruthenium arene complexes have been widely investigated
for
their medicinal potential, studies on homologous compounds containing
a tridentate tris(1-pyrazolyl)methane ligand are almost absent in
the literature. Ruthenium(II) complex 1 was obtained
by a modified reported procedure; then, the reactions with a series
of organic molecules (L) in boiling alcohol afforded novel complexes 2–9 in 77–99% yields. Products 2–9 were fully structurally characterized. They are
appreciably soluble in water, where they undergo partial chloride/water
exchange. The antiproliferative activity was determined using a panel
of human cancer cell lines and a noncancerous one, evidencing promising
potency of 1, 7, and 8 and
significant selectivity toward cancer cells. The tested compounds
effectively accumulate in cancer cells, and mitochondria represent
a significant target of biological action. Most notably, data provide
convincing evidence that the mechanism of biological action is mediated
by the inhibiting of mitochondrial calcium intake.
Collapse
Affiliation(s)
- Jakub Cervinka
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic.,Faculty of Science, Department of Biochemistry, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Alberto Gobbo
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy.,Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Lorenzo Biancalana
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Lenka Markova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Massimo Guelfi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic.,Faculty of Science, Department of Biophysics, Palacky University in Olomouc, Slechtitelu 27, CZ-78371 Olomouc, Czech Republic
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
5
|
Dutta D, Sharma P, Gomila RM, Frontera A, Barcelo-Oliver M, Verma AK, Gogoi M, Bhattacharyya MK. Solvent driven structural topologies involving unconventional O H(methanol)⋯π contact and anti-cooperative HB⋯anion-π⋯HB assemblies with unusual enclathration of dual guest (H2O)4 cores in Mn(II) and Ni(II) coordination compounds: Antiproliferative evaluation and theoretical studies. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Peng K, Liang BB, Liu W, Mao ZW. What blocks more anticancer platinum complexes from experiment to clinic: Major problems and potential strategies from drug design perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214210] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Zhao S, Yang Z, Jiang G, Huang S, Bian M, Lu Y, Liu W. An overview of anticancer platinum N-heterocyclic carbene complexes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Fernández-Pampín N, Vaquero M, Gil T, Espino G, Fernández D, García B, Busto N. Distinct mechanism of action for antitumoral neutral cyclometalated Pt(II)-complexes bearing antifungal imidazolyl-based drugs. J Inorg Biochem 2021; 226:111663. [PMID: 34801972 DOI: 10.1016/j.jinorgbio.2021.111663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/11/2022]
Abstract
Three neutral Pt(II) complexes containing 1-Methylimidazole and the antifungal imidazolyl drugs Clotrimazole and Bifonazole have been prepared. The general formula of the new derivatives is [Pt(κ2-(C^N)Cl(L)], where C^N stands for ppy = 2-phenylpyridinate, and L = 1-Methylimidazole (MeIm) for [Pt-MeIm]; L = Clotrimazole (CTZ) for [Pt-CTZ] and L = Bifonazole (BFZ) for [Pt-BFZ]). The complexes have been completely characterized in solution and the crystal structures of [Pt-BFZ] and [Pt-CTZ] have been resolved. Complexes [Pt-MeIm] and [Pt-BFZ] present higher cytotoxicity than cisplatin in SW480 (colon adenocarcinoma), A549 (lung adenocarcinoma) and A2780 (ovarian cancer) cell lines. [Pt-MeIm] shows the highest accumulation in A549 cells, in agreement with its inability to interact with serum albumin. By contrast, [Pt-CTZ] and [Pt-BFZ] interact with serum proteins, a fact that reduces their bioavailability. The strongest interaction with bovine serum albumin (BSA) is found for [Pt-BFZ], which is the least internalized inside the cells. All the complexes are able to covalently interact with DNA. The most cytotoxic complexes, [Pt-MeIm] and [Pt-BFZ] induce cellular accumulation in G0/G1 and apoptosis by a similar pathway, probably involving a reactive oxygen species (ROS) generation mechanism. [Pt-BFZ] turns out to be the most efficient complex regarding ROS generation and causes mitochondrial membrane depolarization, whereas [Pt-MeIm] induces the opposite effect, hyperpolarization of the mitochondrial membrane. On the contrary, the least cytotoxic complex, [Pt-CTZ] cannot block the cell cycle or generate ROS and the mechanism by which it induces apoptosis could be a different one.
Collapse
Affiliation(s)
- Natalia Fernández-Pampín
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Mónica Vaquero
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Tania Gil
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Gustavo Espino
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Darío Fernández
- Departamento de Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad de Burgos, Paseo de los Comendadores, s/n, 09001 Burgos, Spain; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Godoy Cruz 2290, C1425FQB, Buenos Aires, Argentina
| | - Begoña García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Natalia Busto
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| |
Collapse
|
9
|
Huang S, Sheng X, Bian M, Yang Z, Lu Y, Liu W. Synthesis and in vitro anticancer activities of selenium N-heterocyclic carbene compounds. Chem Biol Drug Des 2021; 98:435-444. [PMID: 34051050 DOI: 10.1111/cbdd.13900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/08/2021] [Accepted: 05/23/2021] [Indexed: 12/24/2022]
Abstract
Fourteen novel selenium N-heterocyclic carbene (Se-NHC) compounds derived from 4,5-diarylimidazole were designed, synthesized, and evaluated as antiproliferative agents. Most of them were more effective toward A2780 ovarian cancer cells than HepG2 hepatocellular carcinoma cells. Among them, the most active compound 2b was about fourfold more active than the positive control ebselen against A2780 cells. In addition, this compound displayed twofold higher cytotoxicity to A2780 cells than to IOSE80 normal ovarian epithelial cells. Further studies revealed that 2b could induce reactive oxygen species production, damage mitochondrial membrane potential, block the cells in the G0/G1 phase, and finally promote A2780 cell apoptosis.
Collapse
Affiliation(s)
- Sheng Huang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyu Sheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mianli Bian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhibin Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
10
|
Bär SI, Gold M, Schleser SW, Rehm T, Bär A, Köhler L, Carnell LR, Biersack B, Schobert R. Guided Antitumoural Drugs: (Imidazol-2-ylidene)(L)gold(I) Complexes Seeking Cellular Targets Controlled by the Nature of Ligand L. Chemistry 2021; 27:5003-5010. [PMID: 33369765 PMCID: PMC7986617 DOI: 10.1002/chem.202005451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 01/21/2023]
Abstract
Three [1,3-diethyl-4-(p-methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)imidazol-2-ylidene](L)gold(I) complexes, 4 a (L=Cl), 5 a (L=PPh3 ), and 6 a (L=same N-heterocyclic carbene (NHC)), and their fluorescent [4-(anthracen-9-yl)-1,3-diethyl-5-phenylimidazol-2-ylidene](L)gold(I) analogues, 4 b, 5 b, and 6 b, respectively, were studied for their localisation and effects in cancer cells. Despite their identical NHC ligands, the last three accumulated in different compartments of melanoma cells, namely, the nucleus (4 b), mitochondria (5 b), or lysosomes (6 b). Ligand L was also more decisive for the site of accumulation than the NHC ligand because the couples 4 a/4 b, 5 a/5 b, and 6 a/6 b, carrying different NHC ligands, afforded similar results in cytotoxicity tests, and tests on targets typically found at their sites of accumulation, such as DNA in nuclei, reactive oxygen species and thioredoxin reductase in mitochondria, and lysosomal membranes. Regardless of the site of accumulation, cancer cell apoptosis was eventually induced. The concept of guiding a bioactive complex fragment to a particular subcellular target by secondary ligand L could reduce unwanted side effects.
Collapse
Affiliation(s)
- Sofia I. Bär
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Madeleine Gold
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Sebastian W. Schleser
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Tobias Rehm
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Alexander Bär
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Leonhard Köhler
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Lucas R. Carnell
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Bernhard Biersack
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| | - Rainer Schobert
- Organic Chemistry LaboratoryUniversity BayreuthUniversitaetsstr. 3095447BayreuthGermany
| |
Collapse
|
11
|
Das B, Gupta P. Luminescent terpyridine appended geminal bisazide and bistriazoles: multinuclear Pt(II) complexes and AIPE-based DNA detection with the naked eye. Dalton Trans 2021; 50:10225-10236. [PMID: 34236066 DOI: 10.1039/d1dt01108a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report square planar Pt(ii) complexes as luminescent biosensors for DNA detection in solution. The sensing is attributed to the aggregation induced bright red photoluminescence (AIPE) of the complexes in the presence of DNA that can be seen with the naked eye using only a 360 nm light source. Terpyridine appended luminescent geminal bistriazoles (L1-L4, from geminal bisazide A through azide-alkyne 'click' cycloaddition) with versatile chelating sites were explored for metal coordination and reaction with Pt(dmso)2Cl2 yielding tetranuclear and dinuclear complexes of Pt(ii) with different N∩N ligand environments. Thermally stable gem-bisazide and bistriazoles are hardly reported in the literature and this is the first report of terpyridine appended geminal bisazide and bistriazoles.
Collapse
Affiliation(s)
- Bishnu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | - Parna Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| |
Collapse
|
12
|
Shao TM, Wei ZZ, Luo XL, Qin QP, Tan MX, Zeng JJ, Liang CJ, Liang H. High cytotoxic and apoptotic effects of platinum( ii) complexes bearing the 4-acridinol ligand. NEW J CHEM 2020. [DOI: 10.1039/d0nj04753h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
4-Acridinol platinum(ii) complex PtA induces SK-OV-3/DDP cell apoptosis that is mediated by the mitochondrial dysfunction pathway.
Collapse
Affiliation(s)
- Tai-Ming Shao
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Zu-Zhuang Wei
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- P. R. China
| | - Xiao-Ling Luo
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Jia-Jing Zeng
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Chun-Jie Liang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- P. R. China
| |
Collapse
|