1
|
Zhao J, Sun M, Liu W, Chen H, Huang X, Gao Y, Teng H, Li Z. In-situ sonochemical formation of N-graphyne modulated porous g-C 3N 4 for boosted photocatalysis degradation of pollutants and nitrogen fixation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124629. [PMID: 38865891 DOI: 10.1016/j.saa.2024.124629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Herein, Nitrogen-doped graphyne/porous g-C3N4 composites are firstly in-situ synthesized via the ultrasound vibration of CaC2, triazine, and porous g-C3N4 in absolute ethanol. A variety of characterizations are performed to investigate the morphology, microstructure, composition, and electrical/optical features of the obtained composites, such as transmission electron microscopy, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectra, X-ray photoelectron spectroscopy, and so forth. It is found that N-doped graphyne with flexible folds lamellar structure is intimately attached to flake g-C3N4 in the as-prepared composites. An enlargement of 1.68 and 1.44 folds for the photocatalytic degradation of levofloxacin, rhodamine B, Methylene blue, and Tetracycline is realized by N-doped graphyne/g-C3N4 in comparison with that of pristine g-C3N4, respectively. In addition, the highest NH3 production rate attains 1.71 mmol⋅gcat-1⋅h-1 for N-doped graphyne/g-C3N4, which is 5.89 times larger than that of g-C3N4 (0.29 mmol⋅gcat-1⋅h-1). The improved mechanism of photocatalysis including higher photo-response and carrier separation rate is verified by transient photo-current, transient photo-potential, Mott-Schottky plots, Tafel plots, electrochemical impedance spectroscopy, turn-over frequency, photoluminescence spectra, and UV-vis diffuse absorption spectra, etc. Overall, the current study shows that N-doped graphyne synthesized from CaC2 and triazine is a useful decoration to modulate the photocatalytic features of g-C3N4, which can also be widely extended for in-situ modification of other photocatalysts.
Collapse
Affiliation(s)
- Junjie Zhao
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Mingxuan Sun
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Wenzhu Liu
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Haohao Chen
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xiangzhi Huang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yu Gao
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Huanying Teng
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Ziyang Li
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
2
|
Song T, Liu H, Zou H, Wang C, Shu S, Dai H, Duan L. Metal-Free Wet Chemistry for the Fast Gram-Scale Synthesis of γ-Graphyne and its Derivatives. Angew Chem Int Ed Engl 2024:e202411228. [PMID: 39292221 DOI: 10.1002/anie.202411228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
γ-Graphyne (GY), an emerging carbon allotrope, is envisioned to offer various alluring properties and broad applicability. While significant progress has been made in the synthesis of GY over recent decades, its widespread application hinges on developing efficient, scalable, and accessible synthetic methods for the production of GY and its derivatives. Here we report a facile metal-free nucleophilic crosslinking method using wet chemistry for fast gram-scale production of GY and its derivatives. This synthesis method involves the aromatic nucleophilic substitution reactions between fluoro-(hetero)arenes and alkynyl silanes in the presence of a catalytic amount of tetrabutylammonium fluoride, where the fluoride plays a crucial role in removing protective groups from alkynyl silanes and generating reactive alkynylides. Our comprehensive analysis of the as-prepared GY reveals a layered structure, characterized by the presence of the C(sp)-C(sp2) bond. The synthetic strategy shows remarkable tolerance to various functional groups and enables the preparation of diverse F-/N-rich GY derivatives, using electron-deficient fluoro-substituted (hetero)arenes as precursors. The feasibility of producing GY and derivatives from fluorinated (hetero)arenes through the metal-free, scalable, and cost-effective approach paves the way for broad applications of GY and may inspire the development of new carbon materials.
Collapse
Affiliation(s)
- Tao Song
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, China
- Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310030, Hangzhou, China
| | - Hong Liu
- Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Haiyuan Zou
- Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Cheng Wang
- Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310030, Hangzhou, China
| | - Siyan Shu
- Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310030, Hangzhou, China
| | - Hao Dai
- Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310030, Hangzhou, China
| | - Lele Duan
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310030, Hangzhou, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd, 310000, Hangzhou, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 310024, Hangzhou, China
| |
Collapse
|
3
|
Li Z, Sun M, Chen H, Zhao J, Huang X, Gao Y, Teng H, Chen C. N-doped Ti 3C 2-reinforced porous g-C 3N 4 for photocatalytic contaminants degradation and nitrogen reduction. Dalton Trans 2024; 53:9750-9762. [PMID: 38780236 DOI: 10.1039/d4dt01031k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Herein, a series of N-doped Ti3C2/porous g-C3N4 composites are ultrasonically prepared from N-doped Ti3C2 and porous g-C3N4 under N2 atmosphere. The structure, morphology, and optical characteristics of the as-prepared composites are characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, UV-vis diffuse reflectance spectroscopy, etc. Moreover, photocatalytic measurements show that N-doped Ti3C2 is an excellent modifier for porous g-C3N4 to heighten its photocatalytic activity. Only 44.1% of rhodamine B can be degraded by the photocatalysis of pristine porous g-C3N4, while the photocatalytic degradation ratio of rhodamine B can reach up to 97.5% for the optimal N-doped Ti3C2 loading composites under visible light for 15 min. Moreover, the photocatalytic tests of N2 fixation confirm that the optimal composites show the highest production yield of NH4+ (11.8 μmol gcat-1 h-1), which is 2.11-folds more than that of porous g-C3N4 (5.6 μmol gcat-1 h-1). The reinforced photocatalytic properties are revealed to profit from the more photogenerated electrons and holes' separation, higher ability for light response, and more abundant active sites. This work develops the route for boosting the photocatalytic properties of porous g-C3N4 with N-doped Ti3C2.
Collapse
Affiliation(s)
- Ziyang Li
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China.
| | - Mingxuan Sun
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China.
| | - Haohao Chen
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China.
| | - Junjie Zhao
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China.
| | - Xiangzhi Huang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China.
| | - Yu Gao
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China.
| | - Huanying Teng
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China.
| | - Chen Chen
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China.
| |
Collapse
|
4
|
Luo X, Yuan P, Xiao H, Li S, Luo J, Li J, Lai W, Chen Y, Li D. Effects of Intrinsic Defects in Pt-Based Carbon Supports on Alkaline Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26044-26056. [PMID: 38717586 DOI: 10.1021/acsami.4c00690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Carbon material has widely been utilized in the synthesis of efficient carbon-supported Pt (Pt/C) catalysts, in which the structural properties greatly influence the electrocatalytic performances of Pt/C catalysts. However, the effects of intrinsic defects in carbon supports on the performance of the alkaline hydrogen evolution reaction (HER) have not been systematically investigated. Herein, porous carbon supports with different degrees of intrinsic defects were prepared by a simple template-assisted strategy, and the resulting samples were systematically studied by various analytical methods. The results suggested that the presence of abundant intrinsic defects (vacancy and topological defects) in the carbon support was advantageous in terms of favoring the dispersion and anchoring of Pt species, promoting electron transfer between Pt atoms and the carbon support, and tuning the electronic states of Pt species. These features improved the HER performance of Pt/C catalysts. Compared to the nontemplate-assisted carbon-supported Pt catalyst (Pt/NTC) with an overpotential of 178 mV, the optimized template-assisted carbon-supported Pt catalyst (Pt/TC) exhibited a lower overpotential of 58 mV at 10 mA cm-2. Besides, the Pt/TC catalyst displayed better HER durability than the Pt/NTC catalyst owing to its strong metal-support interaction. The DFT calculations confirmed the important role played by intrinsic defects (vacancy and topological defects) in stabilizing Pt atoms, with Pt-C3 coordination identified as the most favorable structure for improving the HER performance of Pt. Overall, novel insights on the significant contribution of intrinsic defects in porous carbon supports on the HER performances of Pt/C catalysts were provided, useful for future design and fabrication of advanced carbon-supported catalysts or other carbon-based electrode materials.
Collapse
Affiliation(s)
- Xianyou Luo
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Ping Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Haoming Xiao
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Shengwei Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Junhui Luo
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Junyi Li
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Wende Lai
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Yong Chen
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - De Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
Li S, Sun M, Huang X, Chen H, Zhao J, Li Z. In situ sonochemical synthesis of flower-like N-graphyne/BiOCl 0.5Br 0.5 microspheres for efficient removal of levofloxacin. Dalton Trans 2024; 53:917-931. [PMID: 38105741 DOI: 10.1039/d3dt03418f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
In this work, N-graphyne is in situ coupled with BiOCl0.5Br0.5via a facile one-step sonochemical method. To our knowledge, both the synthesis strategy for BiOCl0.5Br0.5 and the N-graphyne/BiOCl0.5Br0.5 photocatalytic system are new developments. A collection of characterization methods is adopted to detect the morphologies, structures, and electronic and optical properties. The results demonstrate that wrinkle-like N-graphyne nanosheets successfully enwind around or on flower-like BiOCl0.5Br0.5 microspheres, which are regularly assembled by BiOCl0.5Br0.5 nanosheets. Compared with pristine BiOCl0.5Br0.5, N-graphyne/BiOCl0.5Br0.5 composites exhibit superior adsorption capacity and visible-light-driven photocatalytic degradation of levofloxacin. In particular, the optimal N-graphyne amount for ameliorating the photocatalytic performance of BiOCl0.5Br0.5 is ascertained. In addition, the good stable performance for photocatalysis is confirmed by four cycling experiments. The dominant active species is confirmed to be O2˙- during photodegradation. The improved photocatalytic activity is attributed to the enhanced visible light response and the accelerated transfer/separation of photogenerated carriers by N-graphyne, which are verified using UV-vis absorption spectra, photocurrents, photopotentials, Nyquist plots, and Mott-Schottky curves. This study develops a new perspective for the synthesis and modification of BiOX solid solution, which can be used as an efficient photocatalyst.
Collapse
Affiliation(s)
- Shuyan Li
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Mingxuan Sun
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Xiangzhi Huang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Haohao Chen
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Junjie Zhao
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Ziyang Li
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
6
|
Shaheen I, Hussain I, Zahra T, Javed MS, Shah SSA, Khan K, Hanif MB, Assiri MA, Said Z, Arifeen WU, Akkinepally B, Zhang K. Recent advancements in metal oxides for energy storage materials: Design, classification, and electrodes configuration of supercapacitor. JOURNAL OF ENERGY STORAGE 2023; 72:108719. [DOI: 10.1016/j.est.2023.108719] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Li H, Lim JH, Lv Y, Li N, Kang B, Lee JY. Graphynes and Graphdiynes for Energy Storage and Catalytic Utilization: Theoretical Insights into Recent Advances. Chem Rev 2023; 123:4795-4854. [PMID: 36921251 DOI: 10.1021/acs.chemrev.2c00729] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Carbon allotropes have contributed to all aspects of people's lives throughout human history. As emerging carbon-based low-dimensional materials, graphyne family members (GYF), represented by graphdiyne, have a wide range potential applications due to their superior physical and chemical properties. In particular, graphdiyne (GDY), as the leader of the graphyne family, has been practically applied to various research fields since it was first successfully synthesized. GYF have a large surface area, both sp and sp2 hybridization, and a certain band gap, which was considered to originate from the overlap of carbon 2pz orbitals and the inhomogeneous π-bonds of carbon atoms in different hybridization forms. These properties mean GYF-based materials still have many potential applications to be developed, especially in energy storage and catalytic utilization. Since most of the GYF have yet to be synthesized and applications of successfully synthesized GYF have not been developed for a long time, theoretical results in various application fields should be shared to experimentalists to attract more intentions. In this Review, we summarized and discussed the synthesis, structural properties, and applications of GYF-based materials from the theoretical insights, hoping to provide different viewpoints and comments.
Collapse
Affiliation(s)
- Hao Li
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Jong Hyeon Lim
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Yipin Lv
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Nannan Li
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Baotao Kang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|
8
|
Zeng L, Zhang S, Yao L, Bi Z, Zhang Y, Kang P, Yan J, Zhang Z, Yun J. A type-II NGyne/GaSe heterostructure with high carrier mobility and tunable electronic properties for photovoltaic application. NANOTECHNOLOGY 2022; 34:065702. [PMID: 36356303 DOI: 10.1088/1361-6528/aca1cc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The two-dimensional heterostructures with type-II band alignment and super-high carrier mobility offer an updated perspective for photovoltaic devices. Here, based on the first-principles calculation, a novel vertical NGyne/GaSe heterostructure with an intrinsic type-II band alignment, super-high carrier mobility (104cm2V-1s-1), and strong visible to ultraviolet light absorption (104-105cm-1) is constructed. We investigate the electronic structure and the interfacial properties of the NGyne/GaSe heterostructure under electric field and strain. The band offsets and band gap of the NGyne/GaSe heterostructure can be regulated under applied vertical electric field and strain efficiently. Further study reveals that the photoelectric conversion efficiency of the NGyne/GaSe heterostructure is vastly improved under a negative electric field and reaches up to 25.09%. Meanwhile, near-free electron states are induced under a large applied electric field, leading to the NGyne/GaSe heterostructure transform from semiconductors to metal. Our results indicate that the NGyne/GaSe heterostructure will have extremely potential in optoelectronic devices, especially solar cells.
Collapse
Affiliation(s)
- Liru Zeng
- School of Information Science and Technology, Northwest University, Xi'an, 710127, People's Republic of China
| | - Siyu Zhang
- School of Information Science and Technology, Northwest University, Xi'an, 710127, People's Republic of China
| | - Linwei Yao
- School of Information Science and Technology, Northwest University, Xi'an, 710127, People's Republic of China
| | - Zhisong Bi
- School of Information Science and Technology, Northwest University, Xi'an, 710127, People's Republic of China
| | - Yanni Zhang
- College of Physics & Electronic Engineering, Xianyang Normal University, Xianyang, 712000, People's Republic of China
| | - Peng Kang
- Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
| | - Junfeng Yan
- School of Information Science and Technology, Northwest University, Xi'an, 710127, People's Republic of China
| | - Zhiyong Zhang
- School of Information Science and Technology, Northwest University, Xi'an, 710127, People's Republic of China
| | - Jiangni Yun
- School of Information Science and Technology, Northwest University, Xi'an, 710127, People's Republic of China
- Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
| |
Collapse
|
9
|
Adsorption and electrochemical properties of deep eutectic solvent-functionalized oxidized hydrogen-substituted graphyne and its composites with multi-walled carbon nanotubes. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Nitrogen-doped graphyne/BiOBr nanocomposites: In-situ sonochemical synthesis and boosted photocatalytic performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Mahamiya V, Shukla A, Chakraborty B. Prediction of a novel 2D porous boron nitride material with excellent electronic, optical and catalytic properties. Phys Chem Chem Phys 2022; 24:21009-21019. [PMID: 36000355 DOI: 10.1039/d2cp02705d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Holey graphyne (HGY) is a recently synthesized two-dimensional semiconducting allotrope of carbon composed of a regular pattern of six- and eight-vertex carbon rings. In this study, based on first-principles density functional theory and molecular dynamics simulations, we predict a similar stable porous boron nitride holey graphyne-like structure that we call BN-holey-graphyne (BN-HGY). The dynamical and thermal stability of the structure at room temperature is confirmed by performing calculations of the phonon dispersion relations, and also ab initio molecular dynamics simulations. The BN-HGY structure has a wide direct band gap of 5.18 eV, which can be controllably tuned by substituting carbon, aluminum, silicon, and phosphorus atoms in place of sp and sp2 hybridized boron and nitrogen atoms of BN-HGY. We have also calculated the optical properties of the HGY and BN-HGY structures for the first time and found that the optical absorption spectra of these structures span the full visible region and a wide range of the ultraviolet region. We found that the Gibbs free energy of the BN-HGY structure for the hydrogen adsorption process is very close to zero (-0.04 eV) and, therefore, the BN-HGY structure can be utilized as a potential catalyst for the HER. Therefore, we propose that the boron nitride analog of holey graphyne can be synthesized, and it has a wide range of applications in nanoelectronics, optoelectronics, spintronics, ultraviolet lasers, and solar cell devices.
Collapse
Affiliation(s)
- Vikram Mahamiya
- Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Alok Shukla
- Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Brahmananda Chakraborty
- High pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Bombay, Mumbai, 40085, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| |
Collapse
|
12
|
Chen X, Jiang X, Yang N. Graphdiyne Electrochemistry: Progress and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201135. [PMID: 35429089 DOI: 10.1002/smll.202201135] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Graphdiyne, a carbon allotrope, was synthesized in 2010 for the first time. It consists of two acetylene bonds between adjacent benzene rings. Graphdiyne and its composites thus exhibit ultrahigh intrinsic electrochemical activities. As "star" electrode materials, they have been utilized for various electrochemical applications. With the aim of giving a full screen of graphdiyne electrochemistry, this review starts from the history of graphdiyne materials, followed by their structural and electrochemical features. Recent progress and achievements in the synthesis of graphdiyne materials and their composites are overviewed. Subsequently, various electrochemical applications of graphdiyne materials and their composites are summarized, covering those in the fields of electrochemical energy conversion, electrochemical energy storage, and electrochemical sensing. The perspectives of graphdiyne electrochemistry are also discussed and outlined.
Collapse
Affiliation(s)
- Xinyue Chen
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Xin Jiang
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Nianjun Yang
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| |
Collapse
|
13
|
Ball milling synthesis of porous g-C3N4 ultrathin nanosheets functionalized with alkynyl groups for strengthened photocatalytic activity. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120097] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Abdi G, Alizadeh A, Grochala W, Szczurek A. Developments in Synthesis and Potential Electronic and Magnetic Applications of Pristine and Doped Graphynes. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2268. [PMID: 34578583 PMCID: PMC8469384 DOI: 10.3390/nano11092268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022]
Abstract
Doping and its consequences on the electronic features, optoelectronic features, and magnetism of graphynes (GYs) are reviewed in this work. First, synthetic strategies that consider numerous chemically and dimensionally different structures are discussed. Simultaneous or subsequent doping with heteroatoms, controlling dimensions, applying strain, and applying external electric fields can serve as effective ways to modulate the band structure of these new sp2/sp allotropes of carbon. The fundamental band gap is crucially dependent on morphology, with low dimensional GYs displaying a broader band gap than their bulk counterparts. Accurately chosen precursors and synthesis conditions ensure complete control of the morphological, electronic, and physicochemical properties of resulting GY sheets as well as the distribution of dopants deposited on GY surfaces. The uniform and quantitative inclusion of non-metallic (B, Cl, N, O, or P) and metallic (Fe, Co, or Ni) elements into graphyne derivatives were theoretically and experimentally studied, which improved their electronic and magnetic properties as row systems or in heterojunction. The effect of heteroatoms associated with metallic impurities on the magnetic properties of GYs was investigated. Finally, the flexibility of doped GYs' electronic and magnetic features recommends them for new electronic and optoelectronic applications.
Collapse
Affiliation(s)
- Gisya Abdi
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland; (G.A.); (W.G.)
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Abdolhamid Alizadeh
- Department of Organic Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran 1993893973, Iran;
| | - Wojciech Grochala
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland; (G.A.); (W.G.)
| | - Andrzej Szczurek
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland; (G.A.); (W.G.)
| |
Collapse
|
15
|
Application of deep eutectic solvents modified oxidized Hydrogen-substituted graphyne in adsorption and electrochemistry. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Chang F, Yang C, Wang J, Lei B, Li S, Kim H. Enhanced photocatalytic conversion of NOx with satisfactory selectivity of 3D-2D Bi4O5Br2-GO hierarchical structures via a facile microwave-assisted preparation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118237] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Ghiasi R, Valizadeh A. HYDROGEN ADSORPTION AND STORAGE
ON PALLADIUM-FUNCTIONALIZED GRAPHYNE
AND ITS BORON NITRIDE ANALOGUE. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621060032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Ameri B, Mohammadi Zardkhoshoui A, Hosseiny Davarani SS. Metal-organic-framework derived hollow manganese nickel selenide spheres confined with nanosheets on nickel foam for hybrid supercapacitors. Dalton Trans 2021; 50:8372-8384. [PMID: 34037022 DOI: 10.1039/d1dt01215k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic framework (MOF) derived nanoarchitectures have special features, such as high surface area (SA), abundant active sites, exclusive porous networks, and remarkable supercapacitive performance when compared to traditional nanoarchitectures. Herein, we propose a viable strategy for the synthesis of hollow manganese nickel selenide spheres comprising nanosheets supported on the nickel foam (denoted as MNSe@NF) from the MOF. The MNSe nanostructures can demonstrate enriched active sites, and shorten the ion-electron diffusion pathways. When the MNSe@NF electrode is used as a cathode electrode for a hybrid supercapacitor, the electrode reflected impressive supercapacitive properties with a high capacity of 325.6 mA h g-1 (1172.16 C g-1) at 2 A g-1, an exceptional rate performance of 86.6% at 60 A g-1, and remarkable longevity (3.2% capacity decline after 15 000 cycles). Also, the assembled MNSe@NF∥AC@NF hybrid supercapacitors employing activated carbon on the nickel foam (AC@NF, anode electrode) and MNSe@NF (cathode electrode) revealed an impressive energy density of 66.1 W h kg-1 at 858.45 W kg-1 and an excellent durability of 94.1% after 15 000 cycles.
Collapse
Affiliation(s)
- Bahareh Ameri
- Department of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran, Iran.
| | | | | |
Collapse
|
19
|
Hosseini S, Amoozadeh A. Plasma Treatment as a Promising Environmentally Benign Approach for Synthesis of Valuable Multi-gas Doped Nano-TiO 2 -P25: An Efficient Way to Boost the Photocatalytic Performance under Visible Light Illumination. Photochem Photobiol 2021; 97:672-687. [PMID: 33372315 DOI: 10.1111/php.13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/22/2020] [Indexed: 11/29/2022]
Abstract
An ingenious prospect has been established to synthesize a wide range of non-metal-doped TiO2 -P25 by plasma technique. Different atmospheres (Air, O2 , N2 , Ar and CO2 ) have been embedded on the surface of TiO2 -P25 by plasma treating as an effective alternative to wet chemical pretreatment processes. This approach is clean beyond recognition by employing pure gases as well as no need to poison precursors or organic solvents without producing waste stream, which surprisingly can meet green chemistry purposes. More specifically, plasma has been a contributing factor in the narrowing band gap energies of doped photocatalysts in comparison with pure TiO2 -P25. Synthesized photocatalysts gained enormous benefit from the plasma treatment in the selective oxidation of benzyl alcohols to associating aldehydes under blue LED illumination with excellent yields, which dramatically decreased the time reaction to many folds. Additionally, benzaldehyde formation under influence of various wavelengths of visible light, including blue photons (λmax = 460 nm), green photons (λmax = 510 nm) and red photons (λmax = 630 nm) was compared to assess the effect of plasma treating on photoactivity of nano-TiO2 -P25. Furthermore, as-prepared photocatalysts were investigated by diverse characterization techniques.
Collapse
Affiliation(s)
- Saber Hosseini
- Department of Organic Chemistry, Faculty of Chemistry, Semnan University, Semnan, Iran
| | - Ali Amoozadeh
- Department of Organic Chemistry, Faculty of Chemistry, Semnan University, Semnan, Iran
| |
Collapse
|
20
|
Liu C, Wang S, Wang X, Ye X, Li Z, Wei J, Cheng P, Li Y. Structural, elastic and electronic properties of atomically thin pyridyne: theoretical predictions. Phys Chem Chem Phys 2021; 23:5385-5391. [PMID: 33645606 DOI: 10.1039/d0cp06504h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we propose a new acetylenic carbon material called pyridyne, which is composed of acetylenic linkages and pyridine rings. From first-principles calculations, we investigate the structural, elastic and electronic properties of pyridyne. It is found that the structure of pyridyne is stable at 300 K and its stability is comparable to experimentally synthesized graphdiyne and graphtetrayne. Compared with graphene or graphyne, pyridyne possesses more diverse pores and reduced delocalization of electrons. The in-plane stiffness of pyridyne is 183 N m-1 with a Poisson's ratio of 0.304. Pyridyne is found to be a semiconductor with a direct band gap of 0.91 eV. The intrinsic electron mobility can reach 6.08 × 104 cm2 V-1 s-1, while the hole mobility can reach 1.82 × 104 cm2 V-1 s-1.
Collapse
Affiliation(s)
- Chuan Liu
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, 233000, China.
| | - Shuaishuai Wang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, 233000, China.
| | - Xuchun Wang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, 233000, China.
| | - Xiangju Ye
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, 233000, China.
| | - Zirong Li
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, 233000, China.
| | - Jumeng Wei
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, 233000, China.
| | - Ping Cheng
- College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yingjie Li
- Anhui Key Lab of Coal Clean Conversion and Utilization, Anhui University of Technology, Maanshan, 243032, China
| |
Collapse
|
21
|
Liu X, Li J, Yao W. CdS@MoS 2 Hetero-structured Nanocomposites Are Highly Effective Photo-Catalysts for Organic Dye Degradation. ACS OMEGA 2020; 5:27463-27469. [PMID: 33134709 PMCID: PMC7594156 DOI: 10.1021/acsomega.0c03968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
CdS@MoS2 hetero-structured nanocomposites (HSNPs) were successfully synthesized via a hydrothermal approach. The morphology and crystal structure of these composites as well as their ability to act as photocatalysts for the degradation of methylene blue were investigated using scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and UV-vis absorption spectroscopy. The developed CdS@MoS2 nanocomposites exhibited an 80% degradation rate with 30 min of visible light irradiation. To characterize the basis of the photocatalytic properties of these materials, the transient photocurrent densities were determined for the CdS@MoS2 HSNPs and pure dendritic CdS nanotrees. The results suggest that the photocatalytic activity may reflect electron transfer between the conduction band maximum of CdS and MoS2. Additionally, the improved visible light absorption, decreased electron-hole pair recombination, and enhanced surface area for more effective dye absorption likely contribute to improved photocatalytic performance.
Collapse
Affiliation(s)
- Xiaonan Liu
- College
of Chemical Engineering, Sichuan University
of Science & Engineering, Zigong 643000, PR China
- CAEP,
Institute of Chemical Materials, Mianyang 621900, P. R.
China
| | - Jinshan Li
- CAEP,
Institute of Chemical Materials, Mianyang 621900, P. R.
China
| | - Weitang Yao
- Joint
Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, No. 59 Qinglong Avenue, Fucheng District, Mianyang, Sichuan 621010, P. R. China
| |
Collapse
|