1
|
Davenport AM, Marshall CR, Nishiguchi T, Kadota K, Andreeva AB, Horike S, Brozek CK. Size-Dependent Spin Crossover and Bond Flexibility in Metal-Organic Framework Nanoparticles. J Am Chem Soc 2024; 146:23692-23698. [PMID: 39145699 DOI: 10.1021/jacs.4c08883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Size reduction offers a synthetic route to tunable phase change behavior. Preparing materials as nanoparticles causes drastic modulations to critical temperatures (Tc), hysteresis widths, and the "sharpness" of first-order versus second-order phase transitions. A microscopic picture of the chemistry underlying this size dependence in phenomena ranging from melting to superconductivity remains debated. As a case study with broad implications, we report that size-dependent spin crossover (SCO) in nanocrystals of the metal-organic framework (MOF) Fe(1,2,3-triazolate)2 arises from metal-linker bonds becoming more labile in smaller particles. In comparison to the bulk material, differential scanning calorimetry indicates a ∼ 30-40% reduction in Tc and ΔH in the smallest particles. Variable-temperature vibrational spectroscopy reveals a diminished long-range structural cooperativity, while X-ray diffraction evidence an over 3-fold increase in the thermal expansion coefficients. This "phonon softening" provides a molecular mechanism for designing size-dependent behavior in framework materials and for understanding phase changes in general.
Collapse
Affiliation(s)
- Audrey M Davenport
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Checkers R Marshall
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Taichi Nishiguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kentaro Kadota
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Anastasia B Andreeva
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Satoshi Horike
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Carl K Brozek
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
2
|
Black AP, Escudero C, Fauth F, Fehse M, Agostini G, Reynaud M, Houdeville RG, Chatzogiannakis D, Orive J, Ramo-Irurre A, Casas-Cabanas M, Palacin MR. Beam Effects in Synchrotron Radiation Operando Characterization of Battery Materials: X-Ray Diffraction and Absorption Study of LiNi 0.33Mn 0.33Co 0.33O 2 and LiFePO 4 Electrodes. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:5596-5610. [PMID: 38883437 PMCID: PMC11170951 DOI: 10.1021/acs.chemmater.4c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 06/18/2024]
Abstract
Operando synchrotron radiation-based techniques are a precious tool in battery research, as they enable the detection of metastable intermediates and ensure characterization under realistic cycling conditions. However, they do not come exempt of risks. The interaction between synchrotron radiation and samples, particularly within an active electrochemical cell, can induce relevant effects at the irradiated spot, potentially jeopardizing the experiment's reliability and biasing data interpretation. With the aim of contributing to this ongoing debate, a systematic investigation into these phenomena was carried out by conducting a root cause analysis of beam-induced effects during the operando characterization of two of the most commonly employed positive electrode materials in commercial Li-ion batteries: LiNi0.33Mn0.33Co0.33O2 and LiFePO4. The study spans across diverse experimental conditions involving different cell types and absorption and scattering techniques and seeks to correlate beam effects with factors such as radiation energy, photon flux, exposure time, and other parameters associated with radiation dosage. Finally, it provides a comprehensive set of guidelines and recommendations for assessing and mitigating beam-induced effects that may affect the outcome of battery operando experiments.
Collapse
Affiliation(s)
- Ashley P Black
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, Bellaterra 08193, Spain
| | - Carlos Escudero
- ALBA Synchrotron Light Source, Cerdanyola del Vallès 08290, Spain
| | - François Fauth
- ALBA Synchrotron Light Source, Cerdanyola del Vallès 08290, Spain
| | - Marcus Fehse
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Technology Park, Albert Einstein 48, Vitoria-Gasteiz, Alava 01510, Spain
| | | | - Marine Reynaud
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Technology Park, Albert Einstein 48, Vitoria-Gasteiz, Alava 01510, Spain
| | - Raphaelle G Houdeville
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, Bellaterra 08193, Spain
| | - Dimitrios Chatzogiannakis
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, Bellaterra 08193, Spain
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Technology Park, Albert Einstein 48, Vitoria-Gasteiz, Alava 01510, Spain
| | - Joseba Orive
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Technology Park, Albert Einstein 48, Vitoria-Gasteiz, Alava 01510, Spain
| | - Alejandro Ramo-Irurre
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, Bellaterra 08193, Spain
| | - Montse Casas-Cabanas
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Technology Park, Albert Einstein 48, Vitoria-Gasteiz, Alava 01510, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - M Rosa Palacin
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, Bellaterra 08193, Spain
| |
Collapse
|
3
|
Boström HLB, Cairns AB, Chen M, Daisenberger D, Ridley CJ, Funnell NP. The pressure response of Jahn-Teller-distorted Prussian blue analogues. Chem Sci 2024; 15:3155-3164. [PMID: 38425511 PMCID: PMC10901509 DOI: 10.1039/d3sc06912e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024] Open
Abstract
Jahn-Teller (JT) distorted CuII-containing compounds often display interesting structural and functional behaviour upon compression. We use high-pressure X-ray and neutron diffraction to investigate four JT-distorted Prussian blue analogues: Cu[Co(CN)6]0.67, CuPt(CN)6, and ACuCo(CN)6 (A = Rb, Cs), where the first two were studied in both their hydrated and dehydrated forms. All compounds are less compressible than the JT-inactive MnII-based counterparts, indicating a coupling between the electronic and mechanical properties. The effect is particularly strong for Cu[Co(CN)6]0.67, where the local JT distortions are uncorrelated (so-called orbital disorder). This sample amorphises at 0.5 GPa when dehydrated. CuPt(CN)6 behaves similarly to the MnII-analogues, with phase transitions at around 1 GPa and low sensitivity to water. For ACuCo(CN)6, the JT distortions reduce the propensity for phase transitions, although RbCuCo(CN)6 transitions to a new phase (P2/m) around 3 GPa. Our results have a bearing on both the topical Prussian blue analogues and the wider field of flexible frameworks.
Collapse
Affiliation(s)
- Hanna L B Boström
- Max Planck Institute for Solid State Research Heisenbergstraße 1 D-70569 Stuttgart Germany
- Department of Materials and Environmental Chemistry, Stockholm University Svante Arrhenius väg 16C SE-106 91 Stockholm Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Materials and Environmental Chemistry, Stockholm University SE-114 18 Stockholm Sweden
| | - Andrew B Cairns
- Department of Materials, Imperial College London, Royal School of Mines Exhibition Road SW7 2AZ London UK
- London Centre for Nanotechnology, Imperial College London SW7 2AZ London UK
| | - Muzi Chen
- Department of Materials, Imperial College London, Royal School of Mines Exhibition Road SW7 2AZ London UK
- London Centre for Nanotechnology, Imperial College London SW7 2AZ London UK
| | | | - Christopher J Ridley
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory Harwell Campus Didcot OX11 0QX UK
| | - Nicholas P Funnell
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory Harwell Campus Didcot OX11 0QX UK
| |
Collapse
|
4
|
Boström HLB, Cairns AB, Chen M, Daisenberger D, Ridley CJ, Funnell NP. Radiation effects, zero thermal expansion, and pressure-induced phase transition in CsMnCo(CN) 6. Phys Chem Chem Phys 2022; 24:25072-25076. [PMID: 36227089 DOI: 10.1039/d2cp03754h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The Prussian blue analogue CsMnCo(CN)6 is studied using powder X-ray and neutron diffraction under variable temperature, pressure, and X-ray exposure. It retains cubic F4̄3m symmetry in the range 85-500 K with minimal thermal expansion, whereas a phase transition to P4̄n2 occurs at ∼2 GPa, driven by octahedral tilting. A small lattice contraction occurs upon increased X-ray dose. Comparisons with related systems indicate that the CsI ions decrease the thermal expansion and suppress the likelihood of phase transformations. The results improve the understanding of the stimuli-responsive behaviour of coordination polymers.
Collapse
Affiliation(s)
- Hanna L B Boström
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany.
| | - Andrew B Cairns
- Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, SW7 2AZ, London, UK
- London Centre for Nanotechnology, Imperial College London, SW7 2AZ, London, UK
| | - Muzi Chen
- Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, SW7 2AZ, London, UK
- London Centre for Nanotechnology, Imperial College London, SW7 2AZ, London, UK
| | | | - Christopher J Ridley
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | - Nicholas P Funnell
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| |
Collapse
|
5
|
Ma N, Ohtani R, Le HM, Sørensen SS, Ishikawa R, Kawata S, Bureekaew S, Kosasang S, Kawazoe Y, Ohara K, Smedskjaer MM, Horike S. Exploration of glassy state in Prussian blue analogues. Nat Commun 2022; 13:4023. [PMID: 35821027 PMCID: PMC9276687 DOI: 10.1038/s41467-022-31658-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/27/2022] [Indexed: 11/10/2022] Open
Abstract
Prussian blue analogues (PBAs) are archetypes of microporous coordination polymers/metal–organic frameworks whose versatile composition allows for diverse functionalities. However, developments in PBAs have centred solely on their crystalline state, and the glassy state of PBAs has not been explored. Here we describe the preparation of the glassy state of PBAs via a mechanically induced crystal-to-glass transformation and explore their properties. The preservation of short-range metal–ligand–metal connectivity is confirmed, enabling the framework-based functionality and semiconductivity in the glass. The transformation also generates unconventional CN− vacancies, followed by the reduction of metal sites. This leads to significant porosity enhancement in recrystallised PBA, enabled by further accessibility of isolated micropores. Finally, mechanical stability under stress for successful vitrification is correlated to defect contents and interstitial water. Our results demonstrate how mechanochemistry provides opportunities to explore glassy states of molecular framework materials in which the stable liquid state is absent. Developments in Prussian blue analogues (PBAs) have centred solely on their crystalline state. Here, the authors describe the preparation of the glassy state of PBAs via a mechanically induced crystal-to-glass transformation and explore their properties.
Collapse
Affiliation(s)
- Nattapol Ma
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Ryo Ohtani
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hung M Le
- Materials & Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Viet Nam
| | - Søren S Sørensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, 9220, Denmark
| | - Ryuta Ishikawa
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Satoshi Kawata
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Sareeya Bureekaew
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Soracha Kosasang
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Yoshiyuki Kawazoe
- New Industry Creation Hatchery Center, Tohoku University, Sendai, 980-8579, Japan
| | - Koji Ohara
- Diffraction and Scattering Division, Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo, 679-5198, Japan
| | - Morten M Smedskjaer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, 9220, Denmark
| | - Satoshi Horike
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan. .,AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan. .,Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan. .,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand.
| |
Collapse
|
6
|
Kholina Y, Dössegger J, Weber MC, Simonov A. Metastable disordered phase in flash-frozen Prussian Blue analogues. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2022; 78:369-375. [PMID: 35695110 DOI: 10.1107/s2052520622001275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/02/2022] [Indexed: 06/15/2023]
Abstract
A new metastable phase in flash-frozen disordered Prussian blue analogues is reported. The phase is characterised by the appearance of diffuse scattering clouds and the reduction of the local structure symmetry: from cubic to a tetragonal or lower space group. The phase transition is characterised by the translational modulation of the structure and is likely caused by the freezing of the water confined in the pores of the structure.
Collapse
Affiliation(s)
| | | | - Mads C Weber
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS, Le Mans Université, 72085 Le Mans, France
| | - Arkadiy Simonov
- Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
7
|
Hegner FS, Galán-Mascarós JR, López N. Lowering the Water Oxidation Overpotential by Spin-Crossover in Cobalt Hexacyanoferrate. J Phys Chem Lett 2022; 13:4104-4110. [PMID: 35502905 DOI: 10.1021/acs.jpclett.2c00614] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The oxygen evolution reaction (OER) is limited by the inherent linear scaling relationships of its reaction intermediates. Manipulating the spin configuration of the water oxidation intermediates allows us to overcome these constraints. Cobalt hexacyanoferrate (CoFe-PB) is an efficient and robust water oxidation catalyst and further known as a magnetic switch. Its versatile electronic structure renders it a potential candidate for magnetic tuning of the OER. Herein, we used first-principles density functional theory calculations to describe the OER on two different CoFe-PB model systems and evaluated the possibility for spin-crossover (SCO) of their resting states. We show that SCO during OER can significantly lower the overpotential by 0.7 V, leading to an overpotential of around 0.3 V, which is in agreement with the experimentally measured value. Applying an external potential >1.5 V vs SHE, the SCO-assisted pathway becomes largely favored and most likely the predominant reaction pathway.
Collapse
Affiliation(s)
- Franziska Simone Hegner
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
- Technical University of Munich (TUM), 85748 Garching, Germany
| | - José Ramón Galán-Mascarós
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
| |
Collapse
|
8
|
Collings IE, Hanfland M. Effect of synchrotron X-ray radiation damage on phase transitions in coordination polymers at high pressure. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2022; 78:100-106. [PMID: 35411849 DOI: 10.1107/s2052520622001305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The high-pressure phase-transition behaviour of metal-organic frameworks and coordination polymers upon varying degrees of X-ray irradiation are highlighted with four example studies. These show that, in certain cases, the radiation damage, while not extreme in changing unit-cell values, can impact the existence of a phase transition. In particular, pressure-induced phase transitions are suppressed after a certain absorbed dose threshold is reached for the sample. This is thought to be due to partial amorphization and/or defect formation in the sample, hindering the co-operative structural distortions needed for a phase transition. The high-pressure experiments were conducted with several crystals within the sample chamber in order to measure crystals with minimal X-ray irradiation at the highest pressures, which are compared with the crystals measured continuously upon pressure increase. Ways to minimize radiation damage are also discussed within the frame of high-pressure experiments.
Collapse
Affiliation(s)
- Ines E Collings
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Michael Hanfland
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, France
| |
Collapse
|
9
|
Group 10 metal-cyanide scaffolds in complexes and extended frameworks: Properties and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214310] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Avila Y, Acevedo-Peña P, Reguera L, Reguera E. Recent progress in transition metal hexacyanometallates: From structure to properties and functionality. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Gu D, Liang N, Li Q, Li G, Yu D, Liu Y. Selective Photocatalyst for styrene epoxidation with atmospheric O 2 using covalent organic frameworks. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02299g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fe@POG-OH was synthetized and used to photo-catalyze styrene epoxidation with high selectivity and high conversion at room temperature. O2˙− plays crucial roles in the effective and selective oxidation of styrene to styrene oxide.
Collapse
Affiliation(s)
- Defa Gu
- School of Chemistry, Beihang University, 37 Xueyuan Rd, Beijing, 100191, China
| | - Nianjie Liang
- School of Chemistry, Beihang University, 37 Xueyuan Rd, Beijing, 100191, China
| | - Qiaosheng Li
- School of Chemistry, Beihang University, 37 Xueyuan Rd, Beijing, 100191, China
| | - Guangwen Li
- Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| | - Dongdong Yu
- School of Chemistry, Beihang University, 37 Xueyuan Rd, Beijing, 100191, China
| | - Yuzhou Liu
- School of Chemistry, Beihang University, 37 Xueyuan Rd, Beijing, 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, 37 Xueyuan Rd, Beijing, 100191, China
- Beijing Shenyun Zhihe Technology Co., Ltd., 2 Yongcheng North Rd, Beijing, 100094, China
| |
Collapse
|
12
|
Cattermull J, Pasta M, Goodwin AL. Structural complexity in Prussian blue analogues. MATERIALS HORIZONS 2021; 8:3178-3186. [PMID: 34713885 PMCID: PMC9326455 DOI: 10.1039/d1mh01124c] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We survey the most important kinds of structural complexity in Prussian blue analogues, their implications for materials function, and how they might be controlled through judicious choice of composition. We focus on six particular aspects: octahedral tilts, A-site 'slides', Jahn-Teller distortions, A-site species and occupancy, hexacyanometallate vacancies, and framework hydration. The promising K-ion cathode material KxMn[Fe(CN)6]y serves as a recurrent example that illustrates many of these different types of complexity. Our article concludes with a discussion of how the interplay of various distortion mechanisms might be exploited to optimise the performance of this and other related systems, so as to aid in the design of next-generation PBA materials.
Collapse
Affiliation(s)
- John Cattermull
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK.
| | - Mauro Pasta
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK.
| | - Andrew L Goodwin
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK
| |
Collapse
|
13
|
Bogdanov NE, Zakharov BA, Chernyshov D, Pattison P, Boldyreva EV. Phase transition in an organic ferroelectric: glycinium phosphite, with and without X-ray radiation damage. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2021; 77:365-370. [PMID: 34096518 DOI: 10.1107/s2052520621003127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Thermal evolution of an organic ferroelectric, namely, glycinium phosphite, was probed by multi-temperature single-crystal diffraction using synchrotron radiation and also by a similar experiment with a laboratory X-ray diffractometer. Both series of measurements showed a transition from the paraelectric to the ferroelectric state at nearly the same temperature, Tc = 225 K. Temperature evolution of the unit-cell parameters and volume are drastically different for the synchrotron and laboratory data. The latter case corresponds to previous reports and shows an expected contraction of the cell on cooling. The data collected with the synchrotron beam show an abnormal nonlinear increase in volume on cooling. Structure analysis shows that this volume increase is accompanied by a suppression of scattering at high angles and an apparent increase of the anisotropic displacement parameters for all atoms; we therefore link these effects to radiation damage accumulated during consecutive data collections. The effects of radiation on the formation of the polar structure of ferroelectric glycinium phosphite is discussed together with the advantages and drawbacks of synchrotron experimentation with fine temperature sampling.
Collapse
Affiliation(s)
- Nikita E Bogdanov
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Ave. 5, Novosibirsk 630090, Russian Federation
| | - Boris A Zakharov
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Ave. 5, Novosibirsk 630090, Russian Federation
| | - Dmitry Chernyshov
- Swiss-Norwegian Beam Lines at ESRF, 71 avenue des Martyrs, Grenoble, France
| | - Philip Pattison
- Swiss-Norwegian Beam Lines at ESRF, 71 avenue des Martyrs, Grenoble, France
| | - Elena V Boldyreva
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Ave. 5, Novosibirsk 630090, Russian Federation
| |
Collapse
|
14
|
Coates CS, Murray CA, Boström HLB, Reynolds EM, Goodwin AL. Negative X-ray expansion in cadmium cyanide. MATERIALS HORIZONS 2021; 8:1446-1453. [PMID: 34846452 PMCID: PMC8111741 DOI: 10.1039/d0mh01989e] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Cadmium cyanide, Cd(CN)2, is a flexible coordination polymer best studied for its strong and isotropic negative thermal expansion (NTE) effect. Here we show that this NTE is actually X-ray-exposure dependent: Cd(CN)2 contracts not only on heating but also on irradiation by X-rays. This behaviour contrasts that observed in other beam-sensitive materials, for which X-ray exposure drives lattice expansion. We call this effect 'negative X-ray expansion' (NXE) and suggest its origin involves an interaction between X-rays and cyanide 'flips'; in particular, we rule out local heating as a possible mechanism. Irradiation also affects the nature of a low-temperature phase transition. Our analysis resolves discrepancies in NTE coefficients reported previously on the basis of X-ray diffraction measurements, and we establish the 'true' NTE behaviour of Cd(CN)2 across the temperature range 150-750 K. The interplay between irradiation and mechanical response in Cd(CN)2 highlights the potential for exploiting X-ray exposure in the design of functional materials.
Collapse
Affiliation(s)
- Chloe S. Coates
- Inorganic Chemistry Laboratory, South Parks RoadOxfordOX1 3QRUK+44 1865 272137
- Department of Chemistry, Lensfield RoadCambridgeUK
| | - Claire A. Murray
- Diamond Light Source, Harwell CampusDidcotOxfordshire OX11 0DEUK
| | - Hanna L. B. Boström
- Inorganic Chemistry Laboratory, South Parks RoadOxfordOX1 3QRUK+44 1865 272137
- Nanochemistry Department, Max Planck Institute for Solid State Research, Heisenbergstr. 1Stuttgart70569Germany
| | - Emily M. Reynolds
- Inorganic Chemistry Laboratory, South Parks RoadOxfordOX1 3QRUK+44 1865 272137
- ISIS Facility, STFC Rutherford Appleton LaboratoryDidcotOxfordshire OX11 0QXUK
| | - Andrew L. Goodwin
- Inorganic Chemistry Laboratory, South Parks RoadOxfordOX1 3QRUK+44 1865 272137
| |
Collapse
|
15
|
Boström HLB, Collings IE, Daisenberger D, Ridley CJ, Funnell NP, Cairns AB. Probing the Influence of Defects, Hydration, and Composition on Prussian Blue Analogues with Pressure. J Am Chem Soc 2021; 143:3544-3554. [PMID: 33629831 PMCID: PMC8028041 DOI: 10.1021/jacs.0c13181] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
The vast compositional
space of Prussian blue analogues (PBAs),
formula AxM[M′(CN)6]y·nH2O, allows
for a diverse range of functionality. Yet, the interplay between composition
and physical properties—e.g., flexibility and propensity for
phase transitions—is still largely unknown, despite its fundamental
and industrial relevance. Here we use variable-pressure X-ray and
neutron diffraction to explore how key structural features, i.e.,
defects, hydration, and composition, influence the compressibility
and phase behavior of PBAs. Defects enhance the flexibility, manifesting
as a remarkably low bulk modulus (B0 ≈
6 GPa) for defective PBAs. Interstitial water increases B0 and enables a pressure-induced phase transition
in defective systems. Conversely, hydration does not alter the compressibility
of stoichiometric MnPt(CN)6, but changes the high-pressure
phase transitions, suggesting an interplay between low-energy distortions.
AMnCo(CN)6 (AI = Rb, Cs) transition from F4̅3m to P4̅n2 upon compression due to octahedral tilting, and the critical
pressure can be tuned by the A-site cation. At 1 GPa, the symmetry
of Rb0.87Mn[Co(CN)6]0.91 is further
lowered to the polar space group Pn by an improper
ferroelectric mechanism. These fundamental insights aim to facilitate
the rational design of PBAs for applications within a wide range of
fields.
Collapse
Affiliation(s)
- Hanna L B Boström
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany.,Department of Inorganic Chemistry, Ångström Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden.,Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, U.K
| | - Ines E Collings
- Centre for X-ray Analytics, EMPA - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | | | - Christopher J Ridley
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K
| | - Nicholas P Funnell
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K
| | - Andrew B Cairns
- Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, London SW7 2AZ, U.K.,London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|