1
|
Li K, Ma T, Hu J, Gu Q, Xin Y, He J, Peng YK, Xu Z. Self-Similar Ligand for 2D Zr(IV)-Based Metal-Organic Frameworks: Fluorescent Sensing and Catalysis. Inorg Chem 2024; 63:23894-23906. [PMID: 39636016 DOI: 10.1021/acs.inorgchem.4c04177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Two-dimensional (2D) metal-organic framework sheets, in comparison to the 3D analogues, offer potential advantages for intercalation of guest components between the layers, exfoliation/dispersion into solutions, and processing into thin films. As a versatile platform for leveraging organic functions, the 2D Zr(IV)-carboxylate net here features a dendritic Sierpinski tritopic linker with conjugated alkyne branches and a photoactive triphenylamine core. The 2D solid can be easily dispersed in water and many other solvents, resulting in stable and fluorescent suspension for sensing nitro aromatic compounds and Fe3+ ions with high quenching efficiencies and ultralow limits of detection. Also, the neighboring alkyne units of the coordination solid undergo thermal cyclization (e.g., at 320 °C) to form cross-linked nanographene-like components to afford robust porosity, which substantially takes up PdCl2 (atomic ratio of Zr/Pd, 2.4:1) to afford a heterogeneous catalyst for Suzuki-Miyaura coupling reactions─direct in air and without the need for phosphine ligands.
Collapse
Affiliation(s)
- Kedi Li
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Tengrui Ma
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jieying Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 Guangdong, China
| | - Qianfeng Gu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yinger Xin
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 Guangdong, China
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Zhengtao Xu
- Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore
| |
Collapse
|
2
|
Lin Z, Zhong YH, Zhong L, Ye X, Chung LH, Hu X, Xu Z, Yu L, He J. Minimalist Design for Solar Energy Conversion: Revamping the π-Grid of an Organic Framework into Open-Shell Superabsorbers. JACS AU 2023; 3:1711-1722. [PMID: 37388679 PMCID: PMC10302748 DOI: 10.1021/jacsau.3c00132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 07/01/2023]
Abstract
We apply a versatile reaction to a versatile solid: the former involves the electron-deficient alkene tetracyanoethylene (TCNE) as the guest reactant; the latter consists of stacked 2D honeycomb covalent networks based on the electron-rich β-ketoenamine hinges that also activate the conjugated, connecting alkyne units. The TCNE/alkyne reaction is a [2 + 2] cycloaddition-retroelectrocyclization (CA-RE) that forms strong push-pull units directly into the backbone of the framework-i.e., using only the minimalist "bare-bones" scaffold, without the need for additional side groups of alkynes or other functions. The ability of the stacked alkyne units (i.e., as part of the honeycomb mass) to undergo such extensive rearrangement highlights the structural flexibility of these covalent organic framework (COF) hosts. The COF solids remain porous, crystalline, and air-/water-stable after the CA-RE modification, while the resulting push-pull units feature distinct open-shell/free-radical character, are strongly light-absorbing, and shift the absorption ends from 590 nm to around 1900 nm (band gaps from 2.17-2.23 to 0.87-0.95 eV), so as to better capture sunlight (especially the infrared region which takes up 52% of the solar energy). As a result, the modified COF materials achieve the highest photothermal conversion performances, holding promise in thermoelectric power generation and solar steam generation (e.g., with solar-vapor conversion efficiencies >96%).
Collapse
Affiliation(s)
- Zhiqing Lin
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuan-Hui Zhong
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Leheng Zhong
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinhe Ye
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Lai-Hon Chung
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuanhe Hu
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhengtao Xu
- Institute
of Materials Research and Engineering (IMRE), Agency for Science,
Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Lin Yu
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jun He
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Ma T, Li K, Hu J, Xin Y, Cao J, He J, Xu Z. Carbazole-Equipped Metal-Organic Framework for Stability, Photocatalysis, and Fluorescence Detection. Inorg Chem 2022; 61:14352-14360. [PMID: 36026539 DOI: 10.1021/acs.inorgchem.2c02135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The useful yet underutilized backfolded design is invoked here for functionalizing porous solids with the versatile carbazole function. Specifically, we attach carbazole groups as backfolded side arms onto the backbone of a linear dicarboxyl linker molecule. The bulky carbazole side arms point away from the carboxyl links and do not disrupt the Zr-carboxyl framework formation; namely, the resultant MOF solid ZrL1 features the same net as that of the unfunctionalized dicarboxyl linker, also known as the PCN-111 net or UiO-66 net. The ZrL1 structure features only half linker occupancy (about 6 out of the 12 linkers around the Zr6O8 cluster being missing) and partially collapses upon activation (acetone exchange and evacuation). Notably, the stability improves after heating in diphenyl oxide at 260 °C (POP-260 treatment; to form ZrL1-260), as indicated by the higher crystallinity and surface area of the activated ZrL1-260 sample. The ZrL1-260 samples achieve 72% yield in photocatalyzing reductive dehalogenation of phenacyl bromide; ZrL1 can detect nitro-aromatic compounds via fluorescence quenching, with selectivity and sensitivity toward 4-nitroaniline, featuring a limit of detection of 96 ppb.
Collapse
Affiliation(s)
- Tengrui Ma
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Kedi Li
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Jieying Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 Guangdong, China
| | - Yinger Xin
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Jialin Cao
- College of Engineering and Applied Sciences, Nanjing University, Science Park of Nanjing University, Qixia District, 210008 Nanjing, China
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 Guangdong, China
| | - Zhengtao Xu
- Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| |
Collapse
|
4
|
Ruiz‐Zambrana C, Dubey RK, Poyatos M, Mateo‐Alonso A, Peris E. Redox-Switchable Complexes Based on Nanographene-NHCs. Chemistry 2022; 28:e202201384. [PMID: 35638131 PMCID: PMC9400984 DOI: 10.1002/chem.202201384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 12/22/2022]
Abstract
A series of rhodium and iridium complexes with a N-heterocyclic carbene (NHC) ligand decorated with a perylene-diimide-pyrene moiety are described. Electrochemical studies reveal that the complexes can undergo two successive one-electron reduction events, associated to the reduction of the PDI moiety attached to the NHC ligand. The reduction of the ligand produces a significant increase on its electron-donating character, as observed from the infrared spectroelectrochemical studies. The rhodium complex was tested in the [3+2] cycloaddition of diphenylcyclopropenone and methylphenylacetylene, where it displayed a redox-switchable behavior. The neutral complex showed moderate activity, which was suppressed when the catalyst was reduced.
Collapse
Affiliation(s)
- César Ruiz‐Zambrana
- Institute of Advanced Materials (INAM). Centro de Innovación en Química Avanzada (ORFEO-CINQA).Universitat Jaume I.Av. Vicente Sos Baynat s/n.Castellón.12071Spain
| | - Rajeev K. Dubey
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastianSpain
| | - Macarena Poyatos
- Institute of Advanced Materials (INAM). Centro de Innovación en Química Avanzada (ORFEO-CINQA).Universitat Jaume I.Av. Vicente Sos Baynat s/n.Castellón.12071Spain
| | - Aurelio Mateo‐Alonso
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastianSpain
- Ikerbasque, Basque Foundation for Science48009BilbaoSpain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM). Centro de Innovación en Química Avanzada (ORFEO-CINQA).Universitat Jaume I.Av. Vicente Sos Baynat s/n.Castellón.12071Spain
| |
Collapse
|
5
|
Cheng S, Ma T, Xu X, Du P, Hu J, Xin Y, Ahn D, He J, Xu Z. A Ferrocene Metal-Organic Framework Solid for Fe-Loaded Carbon Matrices and Nanotubes: High-Yield Synthesis and Oxygen Reduction Electrocatalysis. Inorg Chem 2021; 60:17315-17324. [PMID: 34735125 DOI: 10.1021/acs.inorgchem.1c02696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Using a carbon-rich designer metal-organic framework (MOF), we open a high-yield synthetic strategy for iron-nitrogen-doped carbon (Fe-N-C) nanotube materials that emulate the electrocatalysis performance of commercial Pt/C. The Zr(IV)-based MOF solid boasts multiple key functions: (1) a dense array of alkyne units over the backbone and the side arms, which are primed for extensive graphitization; (2) the open, branched structure helps maintain porosity for absorbing nitrogen dopants; and (3) ferrocene units on the side arms as atomically dispersed precursor catalyst for targeting micropores and for effective iron encapsulation in the carbonized product. As a result, upon pyrolysis, over 89% of the carbon component in the MOF scaffold is successfully converted into carbonized products, thereby contrasting the easily volatilized carbon of most MOFs. Moreover, over 97% of the iron ends up being encased as acid-resistant Fe/Fe3C nanoparticles in carbon nanotubes/carbon matrices.
Collapse
Affiliation(s)
- Shengxian Cheng
- Department of Chemistry, City University of Hong Kong, Kowloon 000, Hong Kong, China
| | - Tengrui Ma
- Department of Chemistry, City University of Hong Kong, Kowloon 000, Hong Kong, China
| | - Xiaohui Xu
- Department of Chemistry, City University of Hong Kong, Kowloon 000, Hong Kong, China
| | - Peng Du
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 000, Hong Kong, China
| | - Jieying Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006, China
| | - Yinger Xin
- Department of Chemistry, City University of Hong Kong, Kowloon 000, Hong Kong, China
| | - Dohyun Ahn
- Department of Chemistry, City University of Hong Kong, Kowloon 000, Hong Kong, China
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006, China
| | - Zhengtao Xu
- Department of Chemistry, City University of Hong Kong, Kowloon 000, Hong Kong, China
| |
Collapse
|
6
|
Cheng S, Xin Y, Hu J, Feng W, Ahn D, Zeller M, He J, Xu Z. Invisible Silver Guests Boost Order in a Framework That Cyclizes and Deposits Ag 3Sb Nanodots. Inorg Chem 2021; 60:5757-5763. [PMID: 33787239 DOI: 10.1021/acs.inorgchem.1c00012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The infusion of metal guests into (i.e., metalating) the porous medium of metal-organic frameworks (MOFs) is a topical approach to wide-ranging functionalization purposes. We report the notable interactions of AgSbF6 guests with the designer MOF host ZrL1 [Zr6O4(OH)7(L1)4.5(H2O)4]. (1) The heavy-atom guests of AgSbF6 induce order in the MOF host to allow the movable alkyne side arm to be fully located by X-ray diffraction, but they themselves curiously remain highly disordered and absent in the strucutral model. The enhanced order of the framework can be generally ascribed to interaction of the silver guests with the host alkyne and thioether functions, while the invisible heavy-atom guest represents a new phenomenon in the metalation of open framework materials. (2) The AgSbF6 guests also participate in the thermocyclization of the vicinal alkyne units of the L1 linker (at 450 °C) and form the rare nanoparticle of Ag3Sb supported on the concomitantly formed nanographene network. The resulted composite exhibits high electrical conductivity (1.0 S/cm) as well as useful, mitigated catalytic activity for selectively converting nitroarenes into the industrially important azo compounds, i.e., without overshooting to form the amine side products. The heterogeneous/cyclable catalysis entails only the cheap reducing reagents of NaBH4, ethanol, and water, with yields being generally close to 90%.
Collapse
Affiliation(s)
- Shengxian Cheng
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yinger Xin
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jieying Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Weijin Feng
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Dohyun Ahn
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Matthias Zeller
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhengtao Xu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
7
|
Xu Z. Uniting Form and Function, Stability and Reactivity in Open Framework Materials. CHEM LETT 2021. [DOI: 10.1246/cl.200712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zhengtao Xu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
8
|
Zhou HQ, He Y, Hu JY, Chung LH, Gu Q, Liao WM, Zeller M, Xu Z, He J. Conjugated crosslinks boost the conductivity and stability of a single crystalline metal-organic framework. Chem Commun (Camb) 2021; 57:187-190. [PMID: 33313631 DOI: 10.1039/d0cc06765b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A linker molecule with four pendant thiophene functions was crystallized with Zr(iv) ions to form a semiconductive porous coordination solid (1.1 × 10-5 S cm-1). Oxidative treatment with FeCl3 guests then coupled the thiophene units to form conjugated bridges as covalent crosslinks. The resulting hybrid of a metal-organic framework and conjugated polymer featured robust crystalline order that withstood long-term air exposure and broad pH (from 0 to 12) conditions. Moreover, the homocoupled thiophene units, conjugated through sulfide links (-S-) with the linker backbone, afforded higher electronic conductivity (e.g., >2.2 × 10-3 S cm-1), which is characteristic of conductive polymer prototypes of polythiophene and polyphenylene sulfide. The crosslinked solid also exhibited proton conductivity that could be increased broadly upon H2SO4 treatment (e.g., from 5.0 × 10-7 to 1.6 × 10-3 S cm-1).
Collapse
Affiliation(s)
- Hua-Qun Zhou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hu J, Deng X, Zhang H, Diao Y, Cheng S, Zheng SL, Liao WM, He J, Xu Z. Linker Deficiency, Aromatic Ring Fusion, and Electrocatalysis in a Porous Ni 8-Pyrazolate Network. Inorg Chem 2021; 60:161-166. [PMID: 33306390 DOI: 10.1021/acs.inorgchem.0c02662] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cruciform linker molecule here features two designer functions: the pyrazole donors for framework construction, and the vicinal alkynyl units for benzannulation to form nanographene units into the Ni8-pyrazolate scaffold. Unlike the full 12 connections of the Ni8(OH)4(H2O)2 clusters in other Ni8-pyrazolate networks, significant linker deficiency was observed here, leaving about half of the Ni(II) sites capped by acetate ligands, which can be potentially removed to open the metal sites for reactivity. The crystalline Ni8-pyrazolate scaffold also retains the crystalline order even after thermal treatments (up to 300 °C) that served to partially graphitize the neighboring alkyne units. The resultant nanographene components enhance the electroactive properties of the porous hosts, achieving hydrogen evolution reaction (HER) activity that rivals that of topical nickel/palladium-enabled materials.
Collapse
Affiliation(s)
- Jieying Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Xiangling Deng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Hu Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Yingxue Diao
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Shengxian Cheng
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Sai-Li Zheng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Wei-Ming Liao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Zhengtao Xu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| |
Collapse
|